2025 Illinois Statewide Technical Reference Manual for Energy Efficiency Version 13.0

Volume 3: Residential Measures

FINAL

September 20, 2024

Effective:

January 1, 2025

[INTENTIONALLY LEFT BLANK]

VOLUME 1: OVERVIEW AND USER GUIDE

VOLUME 2: COMMERCIAL AND INDUSTRIAL MEASURES

5.	Vo	LUME 3: RESIDENTIAL MEASURES	6
5.1	Аp	pliances End Use	6
5	5.1.1	ENERGY STAR AIR PURIFIER/CLEANER	6
9	5.1.2	ENERGY STAR CLOTHES WASHERS	10
5	5.1.3	ENERGY STAR DEHUMIDIFIER	19
5	5.1.4	ENERGY STAR DISHWASHER	24
5	5.1.5	ENERGY STAR Freezer	30
5	5.1.6	ENERGY STAR, CEE TIER 2 OR CEE TIER 3 REFRIGERATOR	34
5	5.1.7	ENERGY STAR AND CEE TIER 2 ROOM AIR CONDITIONER	40
5	5.1.8	REFRIGERATOR AND FREEZER RECYCLING	47
5	5.1.9	ROOM AIR CONDITIONER RECYCLING	52
9	5.1.10	D ENERGY STAR CLOTHES DRYER	55
9	5.1.11	ENERGY STAR Water Coolers	62
9	5.1.12	2 Ozone Laundry	64
Ę	5.1.13	INCOME QUALIFIED: ENERGY STAR AND CEE TIER 2 ROOM AIR CONDITIONER - RETIRED 12/31/2014	70
Ę	5.1.14	RESIDENTIAL INDUCTION COOKING APPLIANCES	71
Ę	5.1.15	RESIDENTIAL BOLT-ON SMART DRYER SENSOR	79
9	5.1.16	5 ELECTRIC LAWN AND GARDEN EQUIPMENT	83
Ę	5.1.17	P ENERGY STAR ALL-IN-ONE CLOTHES WASHER-DRYER	87
5.2	Co	nsumer Electronics End Use	98
Ę	5.2.1	Advanced Power Strip – Tier 1	98
Ę	5.2.2	Tier 2 Advanced Power Strips (APS) – Residential Audio Visual	103
Ę	5.2.3	ENERGY STAR TELEVISION	107
Ę	5.2.4	SMART SOCKETS	109
5.3	HVA	C End Use	113
5	5.3.1	AIR SOURCE HEAT PUMPS (CENTRALLY DUCTED, DUCTLESS AND PORTABLE)	113
5	5.3.2	BOILER PIPE INSULATION	135
9	5.3.3	CENTRAL AIR CONDITIONING	139
9	5.3.4	Duct Insulation and Sealing	149
ç	5.3.5	Furnace Blower Motor	165
ç	5.3.6	GAS HIGH EFFICIENCY BOILER	170
	5.3.7	GAS HIGH EFFICIENCY FURNACE	174

	5.3.8	GROUND SOURCE HEAT PUMP	179
	5.3.9	HIGH EFFICIENCY BATHROOM EXHAUST OR RADON MITIGATION FAN	194
	5.3.10	HVAC TUNE UP (CENTRAL AIR CONDITIONING OR AIR SOURCE HEAT PUMP)	197
	5.3.11	Programmable Thermostats	201
	5.3.12	DUCTLESS HEAT PUMPS – REMOVED IN V12	206
	5.3.13	RESIDENTIAL FURNACE TUNE-UP	207
	5.3.14	BOILER RESET CONTROLS	210
	5.3.15	ENERGY STAR CEILING FAN	213
	5.3.16	Advanced Thermostats	217
	5.3.17	GAS HIGH EFFICIENCY COMBINATION BOILER	226
	5.3.18	Furnace Filter Alarm – Provisional Measure	231
	5.3.19	THERMOSTATIC RADIATOR VALVES – PROVISIONAL MEASURE	232
	5.3.20	RESIDENTIAL ENERGY RECOVERY VENTILATOR (ERV)	235
	5.3.21	AIR HANDLER FILTER CLEANING/REPLACEMENT	245
	5.3.22	HIGH EFFICIENCY KITCHEN EXHAUST FANS	249
5	.4 Hot	Water End Use	251
	5.4.1	DOMESTIC HOT WATER PIPE INSULATION	251
	5.4.2	GAS WATER HEATER	258
	5.4.3	HEAT PUMP WATER HEATERS	263
	5.4.4	LOW FLOW FAUCET AERATORS	273
	5.4.5	Low Flow Showerheads	283
	5.4.6	WATER HEATER TEMPERATURE SETBACK	291
	5.4.7	WATER HEATER WRAP	295
	5.4.8	THERMOSTATIC RESTRICTOR SHOWER VALVE	298
	5.4.9	Shower Timer	305
	5.4.10	POOL COVERS	311
	5.4.11	Drain Water Heat Recovery	314
	5.4.12	RECIRCULATING PUMP CONTROLS	318
	5.4.13	AUTO-DIVERTING TUB SPOUT SYSTEM	324
5	.5 Light	ting End Use	332
	5.5.1	COMPACT FLUORESCENT LAMP (CFL)—RETIRED 12/31/2018, REMOVED IN V8	332
	5.5.2	ENERGY STAR SPECIALTY COMPACT FLUORESCENT LAMP (CFL)—RETIRED 12/31/2018, REMOVED IN V8	332
	5.5.3	ENERGY STAR TORCHIERE—RETIRED 12/31/2018, REMOVED IN V8	332
	5.5.4	EXTERIOR HARDWIRED COMPACT FLUORESCENT LAMP (CFL) FIXTURE—RETIRED 12/31/2018. REMOVED IN V8	332

5.5.5	INTERIOR HARDWIRED COMPACT FLUORESCENT LAMP (CFL) FIXTURE—RETIRED 12/31/2018, REMOVED IN V8	332
5.5.6	LED SPECIALTY LAMPS	333
5.5.7	LED EXIT SIGNS	344
5.5.8	LED Screw Based Omnidirectional Bulbs	349
5.5.9	LED FIXTURES	357
5.5.10	Holiday String Lighting	364
5.5.11	LED NIGHTLIGHTS	369
5.5.12	CONNECTED LED LAMPS	374
5.5.13	EISA EXEMPT LED LIGHTING	380
5.5.14	Ultra-Efficient LED Lighting	389
5.6 She	ell End Use	398
5.6.1	Air Sealing	398
5.6.2	BASEMENT SIDEWALL INSULATION	416
5.6.3	FLOOR INSULATION ABOVE CRAWLSPACE	426
5.6.4	Wall Insulation	436
5.6.5	CEILING/ATTIC INSULATION	446
5.6.6	RIM/BAND JOIST INSULATION	457
5.6.7	Low-E Storm Window	467
5.6.8	HIGH PERFORMANCE WINDOWS	473
5.6.9	Insulated Cellular Shades	482
5.6.10	Multifamily Whole Building Aerosol Sealing	489
5.6.11	Insulated Concrete Forms	493
5.7 Mis	cellaneous	504
5.7.1	HIGH EFFICIENCY POOL PUMPS	504
5.7.2	Low Flow Toilets	509
5.7.3	Level 2 Electric Vehicle Charger	512
5.7.4	HEAT PUMP SWIMMING POOL HEATER	515
575	TREE PLANTING	523

VOLUME 4: CROSS-CUTTING MEASURES AND ATTACHMENTS

5. Volume 3: Residential Measures

5.1 Appliances End Use

5.1.1 ENERGY STAR Air Purifier/Cleaner

DESCRIPTION

An air purifier (cleaner) meeting the efficiency specifications of ENERGY STAR Version 2.0 (effective date: October 17, 2020) and ENERGY STAR Most Efficient 2024 criteria (effective date: January 1, 2024) is purchased and installed in place of a model meeting the current federal standard.

This measure was developed to be applicable to the following program types: TOS, NC.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient equipment is defined as an air purifier meeting the efficiency specifications of ENERGY STAR as provided below.

Must produce a minimum 30 Clean Air Delivery Rate (CADR) for Smoke¹ to be considered under this
specification. Minimum Performance Requirement is expressed in Smoke CADR/Watt and it shall be
greater than or equal to the Minimum Smoke CADR/Watt Requirement shown in the table below:

	ENERGY STAR	ENERGY STAR Most Efficient
CADR Range	CADR/W	CADR/W
30 ≤ Smoke CADR < 100	1.90	5.40
100 ≤ Smoke CADR < 150	2.40	6.60
150 ≤ Smoke CADR < 200	2.90	7.60
200 ≤ Smoke CADR	2.90	7.00

- "Partial On Mode" Requirements are to be calculated as per Section 3.4.1 of the Energy Star Eligibility Criteria ²
- UL Safety Requirement: Models that emit ozone as a byproduct of air cleaning must meet UL Standard 867 (ozone production must not exceed 50ppb)

DEFINITION OF BASELINE EQUIPMENT

The baseline for this measure is defined as a new air purifier that meets the Code of Federal Regulations appliance federal efficiency standards. As of December 31, 2023, those are as defined below for air cleaners³:

	Integrated Energy Factor (PM _{2.5} CADR/W)			
CADP Pango	Tier 1	Tier 2		
CADR Range	December 31, 2023	December 31, 2025		
10 ≤ PM _{2.5} CADR < 100	1.70	1.90		
$100 \le PM_{2.5} CADR < 150$	1.90	2.40		
PM _{2.5} CADR ≥ 150	2.00	2.90		

¹ Measured according to the latest ANSI/AHAM AC-1 (AC-1) Standard

² ENERGY STAR® Product Specification for Room Air Cleaners - Eligibility Criteria Version 2.0, effective October 17, 2020.

³ DOE Energy Conservation Standards for Air Cleaners, EERE–2021–BT–STD–0035, Federal Register, vol. 88, no.168, August 31, 2023. Effective date of conservation standard: December 31, 2023.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The measure life is assumed to be 9 years.4

DEEMED MEASURE COST

The incremental cost for this measure is dependent on the Air Purifier size in CADR of Smoke. ⁵

Product Size	Minimum	Average ENERGY STAR Purchase Cost	Average Incremental Cost (\$)	
	CADR/W	(\$)	Non-IQ	IQ ⁶
30 ≤ Smoke CADR < 100	1.9	\$82.49	\$8.44	\$20.78
100 ≤ Smoke CADR < 150	2.4	\$140.43	\$22.33	\$42.01
150 ≤ Smoke CADR < 200	2.9	\$349.00	\$92.34	\$135.12
200 ≤ Smoke CADR	2.9	\$264.49	\$44.50	\$81.17

LOADSHAPE

Loadshape C53 - Flat

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = kWh base - kWh eff$

= (hours * (SmokeCADR base / (SmokeCADR per watt base * 1000)) + kWh base

(8760 - hours) * PartialOnModePower base / 1000)) * IQAdj

kWh eff = hours * (SmokeCADR eff / (SmokeCADR per watt eff * 1000)) +

(8760 - hours) * PartialOnModePower_eff / 1000)

Where:

= Annual Electrical Usage for baseline unit (kWh) kWh base = Annual Electrical Usage for efficient unit (kWh) kWh_eff hours = Annual active operating hours $= 5840^7$ SmokeCADR base = Smoke CADR for baseline units, as provided in table below SmokeCADR_per_watt_base = Smoke CADR delivery rate per watt for baseline units, as provided in table below PartialOnModePower base = Partial On Model Power for baseline units by category

(watts), as provided in table below

⁴ ENERGY STAR Qualified Room Air Cleaner Calculator citing Appliance Magazine, Portrait of the U.S. Appliance Industry 1998.

⁵ ENERGY STAR V2 Room Air Cleaners Data Package (October 11, 2019). See file "ENERGY STAR V2 Room Air Cleaners Data Package GH 05122020 VEIC.xlsx"

⁶ IQ Incremental costs factor in the assumption that a secondhand unit costs on average 50% of a new baseline unit, and that 1/3 of IQ participants would have purchased a unit on the secondhand market. See "IQ Appliance Calculations.xls" for information.

⁷ Consistent with ENERGY STAR v.2.0 Room Air Cleaners Data Package and analysis. See file: ICF_EPA_AirPurifier_Summary Savings Calculations.xlsx.

1000 = Conversion factor from watts to kilowatts

IQAdj = Baseline consumption adjustment for IQ program participants to

account for a portion of participants who would have utilized the

secondary market.8

= 1.25 if IQ, 1.0 if non-IQ

SmokeCADR eff = Smoke CADR for efficient unit

= Actual, if unknown use values provided in table below

SmokeCADR_per_watt_eff = Smoke CADR delivery rate per watt for efficient units

= Actual, if unknown use values provided in table below

PartialOnModePower_eff = Partial On Model Power for efficient units by category

(watts)

= Actual, if unknown use values provided in table below

Parameter assumptions for units by CADR Range:9

CADR Range	Smoke CADR	Smoke CADR per Watt	Partial On Mode Power (watts)	Annual Ene (kWh	
	Baseline Units			Non-IQ	IQ
30 ≤ Smoke CADR < 100	70.9	1.7	2	249	312
100 ≤ Smoke CADR < 150	129.8	1.9	2	405	506
150 ≤ Smoke CADR < 200	173.2	2.0	2	512	640
200 ≤ Smoke CADR	315.0	2.0	2	926	1157
			Efficient Units		
30 ≤ Smoke CADR < 100	70.9	3.42	0.51	123	
100 ≤ Smoke CADR < 150	129.8	4.14	0.52	185	
150 ≤ Smoke CADR < 200	173.2	4.77	0.53	214	
200 ≤ Smoke CADR	315.0	5.13	0.63	361	

	Energy Δk\	_
CADR Range	Non-IQ	IQ
30 ≤ Smoke CADR < 100	127	189
100 ≤ Smoke CADR < 150	220	322

⁸ It is assumed that a second-hand unit is on average 2/3 of a measure's EUL years old (6 years). The baseline consumption from the TRM in 2018 was increased by an estimate of 0.4% * 6 years (based on review of the refrigerator/freezer regression algorithm used in the 5.1.8 Refrigerator and Freezer Recycling measure) to account for degradation of performance over time. This secondhand consumption was then weighted 1/3: 2/3 current new baseline to estimate a multiplier for IQ participants. See "IQ Appliance Calculations.xls" for information.

⁹ Baseline values are consistent with ENERGY STAR v.2.0 Room Air Cleaners Data Package and analysis. See file: ICF_EPA_AirPurifier_Summary Savings Calculations.xlsx. Efficient values are averages within each CADR range for all models on the ENERGY STAR Qualified products list (QPL accessed: February 18, 2021). Both Baseline & Efficient Capacities (CADR) are also sourced from the ENERGY STAR QPL. For Final Savings Calcs for this measure please see: IL TRM_AirPurifier_Summary Savings Calculations_06152021.xlsx.

		Savings Wh
CADR Range	Non-IQ	IQ
150 ≤ Smoke CADR < 200	298	426
200 ≤ Smoke CADR	565	796

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh/Hours *CF$

Where:

ΔkWh = Gross customer annual kWh savings for the measure

Hours = Average hours of use per year

= 5840 hours¹⁰

CF = Summer Peak Coincidence Factor for measure

 $=66.7\%^{11}$

	ΔkW	
CADR Range	Non-IQ	IQ
30 ≤ Smoke CADR < 100	0.014	0.022
100 ≤ Smoke CADR < 150	0.025	0.037
150 ≤ Smoke CADR < 200	0.034	0.049
200 ≤ Smoke CADR	0.065	0.091

FOSSIL FUEL SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

There are no operation and maintenance cost adjustments for this measure. 12

MEASURE CODE: RS-APL-ESAP-V07-250101

REVIEW DEADLINE: 1/1/2028

¹⁰ Consistent with ENERGY STAR v.2.0 Room Air Cleaners Data Package and analysis. See file: ICF_EPA_AirPurifier_Summary Savings Calculations.xlsx.

¹¹ Assumes that the purifier usage is evenly spread throughout the year, therefore coincident peak is calculated as 5840/8760 =

¹² Some types of room air cleaners require filter replacement or periodic cleaning, but this is likely to be true for both efficient and baseline units and so no difference in cost is assumed.

5.1.2 ENERGY STAR Clothes Washers

DESCRIPTION

This measure relates to the installation of a clothes washer meeting the ENERGY STAR, ENERGY STAR Most Efficient/CEE Tier 2 or CEE Advanced Tier minimum qualifications. Note if the DHW and dryer fuels of the installations are unknown (for example through a retail program) savings should be based on a weighted blend using RECS data (the resultant values (kWh, therms and gallons of water) are provided). The algorithms can also be used to calculate site specific savings where DHW and dryer fuels are known.

This measure was developed to be applicable to the following program types: TOS, NC.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

Clothes washer must meet the ENERGY STAR, ENERGY STAR Most Efficient/CEE Tier 2 or CEE Advanced Tier minimum qualifications, as required by the program.

DEFINITION OF BASELINE EQUIPMENT

The baseline condition is a standard sized clothes washer meeting the minimum federal baseline as of January 2018. 13

Efficiency Level	Top Loading >2.5 Cu ft	Front Loading >2.5 Cu ft	
Federal Standard	≥1.57 IMEF, ≤6.5 IWF	≥1.84 IMEF, ≤4.7 IWF	
ENERGY STAR	≥2.06 IMEF, ≤4.3 IWF	≥2.76 IMEF, ≤3.2 IWF	
ENERGY STAR	,		
Most Efficient/CEE			
Tier 2			
CEE Advanced Tier			

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 14 years¹⁴

DEEMED MEASURE COST

The incremental cost for an efficient unit for a non-IQ participant is assumed to be: \$87, for an ENERGY STAR Most Efficient/CEE Tier 2 unit it is \$85 and for a CEE Advanced Tier it is \$99.15

For an IQ participant the incremental cost is assumed to be: \$214, for an ENERGY STAR Most Efficient/CEE Tier 2 unit it is \$212 and for a CEE Advanced Tier it is \$227. 16

¹³ DOE Energy Conservation Standards for Clothes Washers, Appliance and Equipment Standard, 10 CFR Part 430.32(g)

¹⁴ Based on DOE Life-Cycle Cost and Payback Period Excel-based analytical tool.

¹⁵ Cost estimates are based on analysis of cost data provided in the 2017 Department of Energy Technical Support Document (see IL_TRM_CW Analysis_082022.xlsx). This analysis looked at incremental cost and market data from the CEC Appliance Database and attempts to find the costs associated only with the efficiency improvements. Note that the incremental cost assumes a mix of top and front loading machines available in each efficiency tier. Since CEE T2 and Advanced Tier units are all front loading, and the incremental cost is lower for these machines, the T2 incremental cost is lower than ENERGY STAR which is based on a mix of front and top- loading machines..

¹⁶ IQ Incremental costs factor in the assumption that a secondhand unit costs on average 50% of a new baseline unit, and that 1/3 of IQ participants would have purchased a unit on the secondhand market. See "IQ Appliance Calculations.xls" for information.

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape R01 - Residential Clothes Washer

COINCIDENCE FACTOR

The coincidence factor for this measure is 3.8%.¹⁷

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

1. Calculate clothes washer savings based on the Integrated Modified Energy Factor (IMEF).

The Integrated Modified Energy Factor (IMEF) includes unit operation, standby, water heating, and drying energy use: "IMEF is the quotient of the capacity of the clothes container, C, divided by the total clothes washer energy consumption per cycle, with such energy consumption expressed as the sum of the machine electrical energy consumption, M, the hot water energy consumption, E, the energy required for removal of the remaining moisture in the wash load, D, and the combined low-power mode energy consumption".¹⁸

The hot water and dryer savings calculated here assumes electric DHW and Dryer (this will be separated in Step 2).

IMEFsavings¹⁹ = Capacity * (IQAdj/IMEFbase - 1/IMEFeff) * Ncycles

Where

Capacity = Clothes Washer capacity (cubic feet)

= Actual. If capacity is unknown assume 3.55 cubic feet 20

IQAdj = Baseline consumption adjustment for IQ program participants to account for a portion

of participants who would have utilized the secondary market.²¹

= 1.02 if IQ, 1.0 if non-IQ

IMEFbase = Integrated Modified Energy Factor of baseline unit

¹⁷ Calculated from Itron eShapes, 8760 hourly data by end use for Missouri, as provided by Ameren.

¹⁸ Definition provided on the ENERGY STAR website.

¹⁹ IMEFsavings represents total kWh only when water heating and drying are 100% electric.

²⁰ Based on the average clothes washer volume of all units that pass the new Federal Standard on the California Energy Commission (CEC) database of Clothes Washer products accessed on 04/21/2022. If utilities have specific evaluation results providing a more appropriate assumption for homes in a particular market or geographical area then that should be used.

²¹ It is assumed that a second-hand unit is on average 2/3 of a measure's EUL years old (9 years). The baseline consumption of a unit meeting the pre 03/2015 Federal Standard was increased by an estimate of 0.4% * 9 years (based on review of the refrigerator/freezer regression algorithm used in the 5.1.8 Refrigerator and Freezer Recycling measure) to account for degradation of performance over time. For 2025 on, the post 03/2015 Federal Standard is utilized. This second hand consumption was then weighted 1/3: 2/3 current new baseline to estimate a multiplier for IQ participants. See "IQ Appliance Calculations.xls" for information.

 $= 1.71^{22}$

IMEFeff = Integrated Modified Energy Factor of efficient unit

= Actual. If unknown assume average values provided below.

Ncycles = Number of Cycles per year

 $= 276^{23}$

IMEFsavings is provided below based on deemed values:²⁴

Efficiency Level	IMEF	IMEF Savings (kWh)
Federal Standard	1.75	0.0
ENERGY STAR	2.21	130.6
ENERGY STAR Most		
Efficient/CEE Tier 2	2.92	238.4
CEE Advanced Tier	3.10	257.9

2. Break out savings calculated in Step 1 for electric DHW and electric dryer

ΔkWh = [Capacity * IQAdj/IMEFbase * Ncycles * (%CWbase + (%DHWbase * %Electric_DHW) + (%Dryerbase * %Electric_Dryer))] - [Capacity * 1/IMEFeff * Ncycles * (%CWeff + (%DHWeff * %Electric_DHW) + (%Dryereff * %Electric_Dryer))]

Where:

%CW = Percentage of total energy consumption for Clothes Washer operation (different for

baseline and efficient unit – see table below)

%DHW = Percentage of total energy consumption used for water heating (different for

baseline and efficient unit – see table below)

%Dryer = Percentage of total energy consumption for dryer operation (different for baseline and

efficient unit – see table below)

			Percentage of Total Energy Consumption ²⁵					
			%CW	%DHW	%Dryer			
Baseline			6.7%	15.8%	77.5%			
ENERGY STAR		6.6%	13.0%	80.4%				
ENERGY	STAR	Most	8.2%	8.8%	82.9%			

²² Weighted average IMEF of Federal Standard rating for Front Loading and Top Loading units. Weighting is based upon the relative top v front loading percentage of available non-ENERGY STAR product in the CEC database (products accessed on 04/21/2022).

²³ Loads per week was estimated by taking the weighted average of the number of loads per week (midpoint used where loads per week is a range and the weights are the share of respondents falling into each number of loads per week response bin). This estimate was scaled to an IL-specific value by applying a ratio developed using the 2009 state specific values for the states in the East North Central portion of the Midwest Region. This value was then scaled to remain consistent with the volume of laundry completed on average each week between the 2009 RECS data and the new source.

²⁴ IMEF values are the weighted average of the new ENERGY STAR specifications. Weighting is based upon the relative top v front loading percentage of available ENERGY STAR and CEE Tier 2 products in the CEC database. See "IL TRM_CW Analysis 082024.xlsx" for the calculation.

²⁵ The percentage of total energy consumption that is used for the machine, heating the hot water or by the dryer is different depending on the efficiency of the unit. Values are based on a weighted average of top-loading and front-loading units based on data from the 2017 DOE Life-Cycle Cost and Payback Period Excel-based analytical tool. See "IL TRM_CW Analysis_082024.xlsx" for the calculation.

	Percentage of Total Energy Consumption ²⁵					
	%CW	%DHW	%Dryer			
Efficient/CEE Tier 2						
CEE Advanced Tier	8.9% 7.0% 84.1					

%Electric_DHW = Percentage of DHW savings assumed to be electric

= 100 % for Electric

= 0 % for Fossil Fuel

= If unknown²⁶, use the following table:

			Location		
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown
Ameren ²⁷	24%	25%	40%	43%	28%
ComEd ²⁸	8	3%	1	9%	
People's Gas ²⁹	2.0%	2.0%	1.7%	2.1%	2.0%
Northshore Gas ³⁰	1.3%	1.8%	10.0%	2.4%	2.3%
Nicor Gas ³¹	1.3%	1.8%	10.0%	2.4%	2.3%
All DUs ³²		·		·	25%

<u>Note</u>: If a measure is supported by a gas and electric utility through a joint program, and it is unknown whether the participant has a gas supply, the electric utility values in the table above should be used. If it is known that the participant has a gas supply, the values from the gas utility above should be applied.

%Electric_Dryer = Percentage of dryer savings assumed to be electric

Dryer fuel	%Electric_Dryer
Electric	100%
Natural Gas	0%
Unknown	69% ³³

Using the default/unknown assumptions provided above, the prescriptive savings for each configuration are presented below:

³¹ Comparable service area & customers to NSG, therefore using their survey data.

²⁶ Based on the average % electricity used for water heating in Unknown residential structure types across all utilities covered by the IL program. Residence types include: SF, SF LI, MF & MF LI. Utilities included: Ameren, ComEd, People's Gas, Northshore Gas & Nicor. Please see subsequent table and citations for specific sources.

²⁷ Provided by AEG from the 2020 Market Potential Study completed for AIC, as well as AIC Income Qualified Initiative: 2021 Participant Survey Results Memo (February 1, 2022) p. 17.

²⁸ Commonwealth Edison Residential Baseline Study (2020). p.4.4 & 4.19; Section 4-7 Water Heating. Prepared by Itron.

 $^{^{\}rm 29}$ Implementation Contractors data from Peoples Gas and North Shore Gas for PY2022-2023.

³⁰ Ihid

³² For the weighted average calculations, please see the Analysis file. PGL, NSG, Nicor & gas customers were assumed to follow the provided split. ComEd total customers, minus overlap with PGL,NSG & Nicor, therefore electric only homes. Ameren is total customers minus Nicor.

³³ Based on Applied Energy Group, 2016 'Ameren Illinois Demand Side Management Market Potential Study: Volume 4 – APPENDICES'.

		ΔkWH – Non IQ Participants										
	Electric DHW Electric Dryer	Gas DHW Electric Dryer	Electric DHW Gas Dryer	Gas DHW Gas Dryer		Gas DHW Unknown	DHW Flectric	Unknown DHW Gas Dryer	DHW Unknown			
ENERGY STAR	130.6	97.6	42.4	9.4	103.2	70.3	105.8	17.7	78.5			
ENERGY STAR Most Efficient/CEE Tier 2	238.4	177.2	72.1	11.0	186.8	125.7	192.5	26.3	141.0			
CEE Advanced Tier	257.9	189.2	79.0	10.4	197.2	144.6	218.4	22.8	157.7			

		ΔkWH –IQ Participants										
	Electric DHW Electric Dryer	Gas DHW Electric Dryer	Electric DHW Gas Dryer	Gas DHW Gas Dryer		Gas DHW Unknown	DHW Flectric	Unknown DHW Gas Dryer	DHW Unknown			
ENERGY STAR	143.4	107.2	46.5	10.3	113.3	77.1	116.2	19.4	86.2			
ENERGY STAR Most Efficient/CEE Tier 2	251.1	186.7	76.0	11.6	196.8	132.4	202.8	27.7	148.5			
CEE Advanced Tier	270.6	198.6	82.9	10.9	207.0	151.7	229.2	23.9	165.5			

Secondary kWh Savings for Water Supply and Wastewater Treatment

The following savings should be included in the total savings for this measure but should not be included in TRC tests to avoid double counting the economic benefit of water savings.

 $\Delta kWh_{water} = \Delta Water (gallons) / 1,000,000 * E_{water total}$

Where

 Δ Water (gallons) = Water saved, in gallons – as calculated below.

Ewater total = IL Total Water Energy Factor (kWh/Million Gallons)

=5,010³⁴

Using defaults provided:

ENERGY STAR $\Delta kWh_{water} = 1,595/1,000,000 * 5,010$

= 8.0 kWh [8.5 kWh for IQ]

ENERGY STAR Most Efficient/CEE Tier 2 ΔkWh_{water} = 2,500/1,000,000 * 5,010

= 12.5 kWh [13.1 kWh for IQ]

CEE Advanced Tier $\Delta kWh_{water} = 2,709/1,000,000 * 5,010$

= 13.6 kWh [14.2 kWh for IQ]

³⁴ This factor includes 2571 kWh/MG for water supply based on Illinois energy intensity data from a 2012 ISAWWA study and 2439 kWh/MG for wastewater treatment based on national energy intensity use estimates. For more information please review Elevate Energy's 'IL TRM: Energy per Gallon Factor, May 2018 paper'.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh/Hours * CF$

Where:

ΔkWh = Energy Savings as calculated above. Note do not include the secondary savings in this

calculation.

Hours = Assumed Run hours of Clothes Washer

= 276 hours³⁵

CF = Summer Peak Coincidence Factor for measure.

 $= 0.038^{36}$

Using the default assumptions provided above, the prescriptive savings for each configuration are presented below:

		ΔkW- Non IQ Participants										
	Electric DHW Electric Dryer	Gas DHW Electric Dryer	DHW	Gas DHW Gas Dryer		Gas DHW Unknown	DHW Flectric	Unknown DHW Gas Dryer	DHW Unknown			
ENERGY STAR	0.0180	0.0134	0.0058	0.0013	0.0142	0.0097	0.0146	0.0024	0.0108			
ENERGY STAR Most Efficient/CEE Tier 3	0.0328	0.0244	0.0099	0.0015	0.0257	0.0173	0.0265	0.0036	0.0194			
CEE Advanced Tier	0.0355	0.0261	0.0109	0.0014	0.0272	0.0199	0.0301	0.0031	0.0217			

		ΔkW- IQ Participants										
	Electric DHW Electric Dryer	Gas DHW Electric Dryer	DHW	Gas DHW Gas Dryer		Unknown	Flectric	Unknown DHW Gas Dryer	Unknown			
ENERGY STAR	0.0197	0.0148	0.0064	0.0014	0.0156	0.0106	0.0160	0.0027	0.0119			
ENERGY STAR Most Efficient/CEE Tier 3	0.0346	0.0257	0.0105	0.0016	0.0271	0.0182	0.0279	0.0038	0.0204			
CEE Advanced Tier	0.0373	0.0273	0.0114	0.0015	0.0285	0.0209	0.0316	0.0033	0.0228			

FOSSIL FUEL SAVINGS

Break out savings calculated in Step 1 of electric energy savings (MEF savings) and extract Natural Gas DHW and Natural Gas dryer savings from total savings:

ΔTherm = [(Capacity * IQAdj/IMEFbase * Ncycles * ((%DHWbase * %Fossil_DHW * R_eff) + (%Dryerbase * %Gas _Dryer))) - (Capacity * 1/IMEFeff * Ncycles * ((%DHWeff * %Fossil_DHW * R_eff) + (%Dryereff * %Gas_Dryer)))] * Therm_convert

Where:

³⁵ Based on a weighted average of 276 clothes washer cycles per year assuming an average load runs for one hour (Loads per week was estimated by taking the weighted average of the number of loads per week (midpoint used where loads per week is a range and the weights are the share of respondents falling into each number of loads per week response bin). This estimate was scaled to an IL-specific value by applying a ratio developed using the 2009 state specific values for the states in the East North Central portion of the Midwest Region. This value was then scaled to remain consistent with the volume of laundry completed on average each week between the 2009 RECS data and the new source.)

³⁶ Calculated from Itron eShapes, 8760 hourly data by end use for Missouri, as provided by Ameren.

Therm_convert = Convertion factor from kWh to Therm

= 0.03412

R_eff = Recovery efficiency factor

 $= 1.26^{37}$

%Fossil_DHW = Percentage of DHW savings assumed to be Fossil Fuel

= 100 % for Fossil fuel

= 0 % for Electric

= If unknown³⁸, use the following table:

		Location									
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown						
Ameren ³⁹	76%	75%	60%	57%	72%						
ComEd ⁴⁰	9:	2%	8	91%							
People's Gas ⁴¹	97.9%	98.0%	98.3%	97.6%	97.8%						
Northshore Gas ⁴²	98.5%	98.2%	90.0%	97.6%	97.6%						
Nicor Gas ⁴³	98.5%	98.2%	90.0%	97.6%	97.6%						
All DUs ⁴⁴					75%						

<u>Note</u>: If a measure is supported by a gas and electric utility through a joint program, and it is unknown whether the participant has a gas supply, the electric utility values in the table above should be used. If it is known that the participant has a gas supply, the values from the gas utility above should be applied.

%Fossil_Dryer = Percentage of dryer savings assumed to be fossil fuel

Dryer fuel	%Gas_Dryer
Electric	0%
Fossil Fuel	100%
Unknown	31% ⁴⁵

³⁷ To account for the different efficiency of electric and Natural Gas hot water heaters (gas water heater: recovery efficiencies ranging from 0.74 to 0.85 (0.78 used), and electric water heater with 0.98 recovery efficiency (see ENERGY STAR Waste Water Recovery Guidelines). Therefore, a factor of 0.98/0.78 (1.26) is applied.

2025 IL TRM v13.0 Vol. 3_September 20, 2024_FINAL

³⁸ Based on the average % electricity used for water heating in Unknown residential structure types across all utilities covered by the IL program. Residence types include: SF, SF LI, MF & MF LI. Utilities included: Ameren, ComEd, People's Gas, Northshore Gas & Nicor. Please see subsequent table and citations for specific sources.

³⁹ Provided by AEG from the 2020 Market Potential Study completed for AIC, as well as AIC Income Qualified Initiative: 2021 Participant Survey Results Memo (February 1, 2022) p. 17.

⁴⁰ Commonwealth Edison Residential Baseline Study (2020). p.4.4 & 4.19; Section 4-7 Water Heating. Prepared by Itron.

⁴¹ Residential Appliance Saturation Survey of natural gas for space heating and water heating (2021). Note, Multifamily customers have a residential billing rate code and responded on the survey that they live in an apartment or condominium in a building that has either 2-4 or 5+ units.

⁴² Ibid.

⁴³ Comparable service area & customers to NSG, therefore using their survey data.

⁴⁴ For the weighted average calculations, please see the Analysis file. PGL, NSG, Nicor & gas customers were assumed to follow the provided split. ComEd total customers, minus overlap with PGL,NSG & Nicor, therefore gas only homes. Ameren is total customers minus Nicor.

⁴⁵ Based on Applied Energy Group, 2016 'Ameren Illinois Demand Side Management Market Potential Study: Volume 4 – APPENDICES'.

Other factors as defined above.

Using the default/unknown assumptions provided above, the prescriptive savings for each configuration are presented below:

				ΔTherms -	- Non IQ Pa	articipants			
	Electric DHW Electric Dryer	Gas DHW Electric Dryer	Electric DHW Gas Dryer	Gas DHW Gas Dryer	Electric DHW Unknow n Dryer	Gas DHW Unknow n Dryer	Unknow n DHW Electric Dryer	Unknow n DHW Gas Dryer	Unknown DHW Unknown Dryer
ENERGY STAR	0.0	1.4	3.0	4.4	0.9	2.4	1.1	4.1	2.0
ENERGY STAR Most Efficient/CEE Tier 2	0.0	2.6	5.7	8.3	4.4	4.4	2.0	7.6	3.7
CEE Advanced Tier	0.0	3.0	6.1	9.1	4.3	4.3	1.7	8.4	3.8

		ΔTherms – IQ Participants									
	Electric DHW Electric Dryer	Gas DHW Electric Dryer	Electric DHW Gas Dryer	Gas DHW Gas Dryer	Electric DHW Unknow n Dryer	Gas DHW Unknow n Dryer	Unknow n DHW Electric Dryer	Unknow n DHW Gas Dryer	Unknown DHW Unknown Dryer		
ENERGY STAR	0	1.6	3.3	4.9	1.0	2.6	1.2	4.5	2.2		
ENERGY STAR Most Efficient/CEE Tier 2	0	2.8	6.0	8.7	4.6	4.6	2.1	8.1	3.9		
CEE Advanced Tier	0	3.1	6.4	9.5	4.5	4.5	1.8	8.8	4.0		

WATER IMPACT DESCRIPTIONS AND CALCULATION

ΔWater (gallons) = Capacity * ((IWFbase * IQAdjwater) - IWFeff) * Ncycles

Where

ΔWater (gallons) = Water saved, in gallons

IWFbase = Integrated Water Factor of baseline clothes washer

 $=5.59^{46}$

IQAdjwater = Baseline water consumption adjustment for IQ program participants to account for a

portion of participants who would have utilized the secondary market. 47

= 1.02, 1.0 if non-IQ

IWFeff = Water Factor of efficient clothes washer

= Actual. If unknown assume average values provided below.

Using the default assumptions provided above, the prescriptive water savings for each efficiency level are presented below:

_

⁴⁶ Weighted average IWF of Federal Standard rating for Front Loading and Top Loading units. Weighting is based upon the relative top v front loading percentage of available non-ENERGY STAR product in the CEC database (products accessed on 04/21/2022).

⁴⁷ It is assumed that a second-hand unit is on average 2/3 of a measure's EUL years old (9 years). The baseline consumption from the TRM in 2015 is assumed the second hand water consumption (note we do no assume a degradation over time for water consumption) was then weighted 1/3: 2/3 current new baseline to estimate a multiplier for IQ participants. See "IQ Appliance Calculations.xls" for information.

Efficiency Level		ΔWater (gallons per year)		
		Non-IQ	IQ	
Federal Standard	5.59	N/A	N/A	
ENERGY STAR	4.07	1,492	1,596	
ENERGY STAR Most Efficient/CEE Tier 2	3.2	2,339	2,448	
CEE Advanced Tier	3	2,535	2,644	

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-APL-ESCL-V13-250101

REVIEW DEADLINE: 1/1/2029

5.1.3 ENERGY STAR Dehumidifier

DESCRIPTION

A dehumidifier meeting the minimum qualifying efficiency standard established by the current ENERGY STAR Version 5.0 (effective 10/31/2019) and ENERGY STAR Most Efficient 2024 Criteria (effective 01/01/2024) is purchased and installed in a residential setting in place of a unit that meets the minimum federal standard efficiency.

This measure was developed to be applicable to the following program types: TOS, NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the new dehumidifier must meet the ENERGY STAR standards as defined below:

Equipment Specification	Product Capacity	ENERGY STAR Criteria	ENERGY STAR Most Efficient Criteria
	(Pints/Day)	(L/kWh)	(L/kWh)
Dowtoblo	≤ 25	≥1.57	≥1.70
Portable Dehumidifier	>25 and ≤ 50	≥1.80	≥1.90
	>50 and < 155	≥3.30	≥3.40
Whole Home	Product Case Volume	ENERGY STAR Criteria	ENERGY STAR Most Efficient Criteria
Dehumidifier	≤ 8.0	≥ 2.09	≥2.22
	> 8.0	≥ 3.30	≥3.81

Qualifying units shall be equipped with an adjustable humidistat control or shall require a remote humidistat control to operate.

DEFINITION OF BASELINE EQUIPMENT

The baseline for this measure is defined as a new dehumidifier that meets the Code of Federal Regulations appliance federal efficiency standards. As of June 13, 2019, those are as defined below for Dehumidifiers:

Equipment Specification	Capacity (pints/day)	Federal Standard Criteria (L/kWh)
Dortoblo	≤25	≥1.30
Portable Dehumidifier	>25 and ≤ 50	≥1.60
Denumumen	>50 and <155	≥2.80
	Product Case	Federal Standard
Whole Home	Volume	Criteria (L/kWh)
Dehumidifier	≤ 8.0	≥ 1.77
	> 8.0	≥ 2.41

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The assumed lifetime for Portable Dehumidifiers is 12 years.⁴⁹ and for Whole Home Humidifiers it is 17 years.⁴⁹

⁴⁸ EPA Research, 2012; ENERGY STAR Appliance Calculator,

⁴⁹ TECHNICAL SUPPORT DOCUMENT: ENERGY EFFICIENCY PROGRAM FOR CONSUMER PRODUCTS AND COMMERCIAL AND INDUSTRIAL EQUIPMENT: DEHUMIDIFIERS, October 2023. https://www.regulations.gov/document/EERE-2019-BT-STD-0043-0023, Appendix 8C. Lifetime is assumed to be the age at which there is an 80% cumulative probability that the unit has failed.

Analysis period is the same as the lifetime.

DEEMED MEASURE COST

The incremental cost is the difference in cost between a baseline and an ENERGY STAR qualified unit. Please see the table below for cost assumptions used:

Equipment Specification	Population	ENERGY STAR	ENERGY STAR Most Efficient
Portable	Non-IQ ⁵⁰	\$9	\$12
Dehumidifier	IQ ⁵¹	\$55	\$59
Whole Home	Non-IQ ²	\$143 ⁵²	\$174
Humidifier	IQ	N/A	N/A

LOADSHAPE

Loadshape R12 - Residential - Dehumidifier

COINCIDENCE FACTOR

The coincidence factor is assumed to be 50%.⁵³

Algorithm		
7 1150 11111111		

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = (((Avg Capacity * 0.473) / 24) * Hours) * (IQAdj / (L/kWh_Base) - 1 / (L/kWh_Eff))$

Where:

Capacity = Water removal capacity of the unit (pints/day)

= Actual, if unknown assume capacity in each capacity range as provided in table below,

or if capacity range unknown assume average.

0.473 = Constant to convert Pints to Liters

24 = Constant to convert Liters/day to Liters/hour

Hours = Run hours per year

 $= 2,200^{54}$

IQAdj = Baseline consumption adjustment for IQ program participants to account for a portion

⁵⁰ Incremental cost data from the TECHNICAL SUPPORT DOCUMENT: ENERGY EFFICIENCY PROGRAM FOR CONSUMER PRODUCTS AND COMMERCIAL AND INDUSTRIAL EQUIPMENT: DEHUMIDIFIERS, October 2023. https://www.regulations.gov/document/EERE-2019-BT-STD-0043-0023. See Dehumidifiers_Calculation_Sheet_05-09-24.xlsx for more detail regardinging the incremental cost data.

⁵¹ IQ Incremental costs factor in the assumption that a secondhand unit costs on average 50% of a new baseline unit, and that 1/3 of IQ participants would have purchased a unit on the secondhand market. The new baseline dehumidifier is assumed to cost \$262 based on values reported in: . See "IQ Appliance Calculations.xls" for information.

 $^{^{52}}$ ENERGY STAR Version 6.0 Dehumidifiers Draft 1 Specification Stakeholder Webinar presentation, March 28, 2024. Purchase price incremental cost between current DOE standard and Draft 1 v.6.0 for units ≤ 8.0 ft³.

⁵³ Assume usage is evenly distributed day vs. night, weekend vs. weekday and is used between April through the end of September (4392 possible hours). With 2,200 operating hours, coincidence peak during summer peak is therefore 2200/4392 = 50.1%

⁵⁴ Based on Mattison et al., "Dehumidifiers: A Major Consumer of Residential Electricity", Cautley et al., "Dehumidification and

of participants who would have utilized the secondary market. 55

= 1.096 for Portable Dehumidifiers if IQ, 1.0 if non-IQ or Whole Home Dehumidifiers

L/kWh

= Liters of water per kWh consumed, as provided in tables above

Annual kWh usage and savings, for each capacity class and product type, are presented in the four tables below:

Portable Dehumidifiers					Annu	al kWh		
Capacity Range	Capacity Used ⁵⁶	Federal Standard Criteria	ENERGY STAR Criteria / Average	ENERGY STAR Most Efficient Criteria / Average	Non-IQ Baseline: Federal Standard	IQ Baseline	ENERGY STAR	ENERGY STAR Most Efficient
(pints/day)	(pints/day)	(≥ L/kWh)	(≥ L/kWh)	(≥ L/kWh)				
≤25	22.3	1.3	1.57 / 1.64	1.75 / 1.78	744	815	590	543
>25 and ≤50	43.1	1.6	1.8 / 1.85	2.01 / 2.01	1168	1280	1010	930
>50 and <155	102.5	2.8	3.3 / NA	3.4 / NA	1587	1740	N/A	N/A
Average ⁵⁷	38.52	1.53	1.75 / 1.80	1.95 / 1.96	1075	1178	918	845
Whole Home Dehumidifiers				Annual kWh				
Product Case Volume (ft ³)								
≤ 8.0	81.85	1.77	2.09 / 2.295	2.22 / 2.35	2005	N/A	1546	1510
> 8.0	N/A	2.41	3.3 / NA	3.81 / N/A	N/A	N/A	N/A	N/A

.

Subslab Ventilation in Wisconsin Homes" and Yang et al., "Dehumidifier Use in the U.S. Residential Sector", all indicating average usage around 2,200 hours per year.

⁵⁵ It is assumed that a second-hand unit is on average 2/3 of a measure's EUL years old (8 years). In 2019 a new Federal Standard became effective and "relative to the previous standard, the current standard represents energy savings of about 15-25%". 20% was used and increased by an estimate of 0.4% * 8 years (based on review of the refrigerator/freezer regression algorithm used in the 5.1.8 Refrigerator and Freezer Recycling measure) to account for degradation of performance over time. This secondhand consumption was then weighted 1/3: 2/3 current new baseline to estimate a multiplier for IQ participants. See "IQ Appliance Calculations.xls" for information.

⁵⁶ Capacity Used in calculations for each bin is an average. See next footnote regarding overall average for Portable Dehumidifiers ⁵⁷ Weighted Overall average based on ENERGY STAR Products List 2020 for Dehumidifiers, accessed May 2020. See sheet *ESTAR-2020-5* in file "ENERGY STAR Dehumidifier TRM Analysis_2021.xlsx"

Dowtoble Debum	idifiou		Energy Sav	vings (ΔkWh)	
Portable Denum	rtable Dehumidifier Non-IQ IQ		Q		
Capacity Range	Capacity Used	ENERGY	ENERGY	ENERGY	ENERGY STAR
(pints/day)	(pints/day)	STAR	STAR Most Efficient	STAR	Most Efficient
≤25	22.3	154	201	226	272
>25 and ≤50	43.1	158	238	270	350
>50 and <155	102.5	N/A	N/A	N/A	N/A
Average	38.52	157	230	260	333
Whole Home Dehu	ımidifiers		Energy Sav	vings (ΔkWh)	
Product Case Volume (ft³)					
≤ 8.0	81.85	459	495	N/A	N/A
> 8.0	N/A	N/A	N/A	N/A	N/A

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh/Hours * CF$

Where:

CF = Summer Peak Coincidence Factor for measure

 $= 0.50^{58}$

Summer coincident peak demand results for each capacity class are presented below:

Portable Dehumidifier	Energy Savings (ΔkW)				
Portable Denumiumer	Non-	·IQ		Q	
Capacity Range	ENERGY STAR	ENERGY STAR Most	ENERGY STAR	ENERGY STAR Most	
(pints/day)		Efficient	31711	Efficient	
≤25	0.026	0.036	0.041	0.050	
>25 and ≤50	0.026	0.037	0.048	0.058	
>50 and <155	0.055	0.064	0.089	0.098	
Average	0.030	0.043	0.054	0.067	
Whole Home Dehumidifier	Energy Savings (ΔkW)				
Product Case Volume (ft³)					
≤ 8.0	81.85	459	495	N/A	
> 8.0	N/A	N/A	N/A	N/A	

_

⁵⁸ Assume usage is evenly distributed day vs. night, weekend vs. weekday and is used between April through the end of September (4392 possible hours). With 2200 operating hours, coincidence peak during summer peak is therefore 2200/4392 = 50.1%

FOSSIL FUEL SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-APL-ESDH-V11-250101

REVIEW DEADLINE: 1/1/2028

5.1.4 ENERGY STAR Dishwasher

DESCRIPTION

A standard or compact residential dishwasher meeting ENERGY STAR standards is installed in place of a model meeting the federal standard.

This measure was developed to be applicable to the following program types: TOS, NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient equipment is defined as a standard or compact dishwasher meeting the ENERGY STAR standards presented in the table below.

ENERGY STAR Requirements (Version 7.0, Effective July 19, 2023)

Dishwasher Type	Maximum kWh/year	Maximum gallons/cycle
Standard	240	
(≥ 8 place settings + six serving pieces)	240	3.2
Standard with Connected Functionality ⁵⁹	252	
Compact	155	2.0
(< 8 place settings + six serving pieces)	155	2.0

DEFINITION OF BASELINE EQUIPMENT

The baseline reflects the minimum federal efficiency standards for dishwashers effective May 30, 2013, as presented in the table below.

Dishwasher Type	Maximum kWh/year	Maximum gallons/cycle
Standard	307	5.0
Compact	222	3.5

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The assumed lifetime of the measure is 11 years. 60

DEEMED MEASURE COST

The incremental cost for standard and compact dishwashers is provided in the table below:⁶¹

2025 IL TRM v13.0 Vol. 3 September 20, 2024 FINAL

⁵⁹ The ENERGY STAR specification "establishes optional connected criteria for dishwashers. ENERGY STAR certified dishwashers with connected functionality offer favorable attributes for demand response programs to consider, since their peak energy consumption is relatively high, driven by water heating. ENERGY STAR certified dishwashers with connected functionality will offer consumers new convenience and energy-saving features, such as alerts for cycle completion and/or recommended maintenance, as well as feedback on the energy use of the product". See 'ENERGY STAR Residential Dishwasher Final Version 6.0 Cover Memo.pdf'. Calculated as per Version 6.0 specification; "ENERGY STAR Residential Dishwasher Version 6.0 Final Program Requirements.pdf". As of July 2021, Version 7.0 specification is still under development. Note that the potential for demand response and additional peak savings from units with Connected Functionality have not been explored. This could be a potential addition in a future version.

⁶⁰ Measure lifetime from California DEER. See file California DEER 2014-EUL Table - 2014 Update.xlsx.

⁶¹ Costs are based on data from U.S. DOE, Final Rule Life-Cycle Cost (LCC) Spreadsheet. See file Residential Dishwasher Analysis_2021.xlsx for cost calculation details.

Dishwasher	Baseline Cost		ENERGY	Increme	ntal Cost
Туре	Non-IQ	IQ ⁶²	STAR Cost	Non-IQ	Ŋ
Standard	\$310	\$213.03	\$340	\$30	\$118.28
Compact	\$290.13	\$241.78	\$308.62	\$18.49	\$66.85

LOADSHAPE

Loadshape R02 - Residential Dish Washer

COINCIDENCE FACTOR

The coincidence factor is assumed to be 2.6%.⁶³

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh^{64} = ((kWh_{Base} - kWh_{ESTAR}) * (%kWh_op + (%kWh_heat * %Electric_DHW)))$

Where:

kWh_{BASE}

= Baseline kWh consumption per year

Dishwasher	Maximum kWh/year		
Type	Non-IQ	IQ ⁶⁵	
Standard	307	310	
Compact	222	224	

kWhestar

= ENERGY STAR kWh annual consumption

Dishwasher Type	Maximum kWh/year
Standard	240
Standard with Connected Functionality	252
Compact	155

%kWh_op

= Percentage of dishwasher energy consumption used for unit operation

 $= 100 - 56\%^{66}$

⁶² IQ Incremental costs factor in the assumption that a secondhand unit costs on average 50% of a new baseline unit, and that 1/3 of IQ participants would have purchased a unit on the secondhand market. See "IQ Appliance Calculations.xls" for information.

⁶³ Calculated from Itron eShapes, 8760 hourly data by end use for Missouri, as provided by Ameren.

⁶⁴ The Federal Standard and ENERGY STAR annual consumption values include electric consumption for both the operation of the machine and for heating the water that is used by the machine.

⁶⁵ It is assumed that a secondhand unit is on average 2/3 of a measure's EUL years old (7 years). There has been no new Federal Standard in that period, but new unit baseline consumption is increased by an estimate of 0.4% * 7 years (based on review of the refrigerator/freezer regression algorithm used in the 5.1.8 Refrigerator and Freezer Recycling measure) to account for degradation of performance over time. This secondhand consumption was then weighted 1/3: 2/3 current new baseline to estimate a multiplier for IQ participants. See "IQ Appliance Calculations.xls" for information.

⁶⁶ ENERGY STAR Qualified Appliance Savings Calculator, last updated October 2016.

= 44%

%kWh_heat = Percentage of dishwasher energy consumption used for water heating

 $=56\%^{67}$

%Electric DHW = Percentage of DHW savings assumed to be electric

= 100 % for Electric

= 0 % for Fossil Fuel

= If unknown⁶⁸, use the following table:

			Location		
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown
Ameren ⁶⁹	24%	25%	40%	43%	28%
ComEd ⁷⁰	8%		11%		9%
People's Gas ⁷¹	2.0%	2.0%	1.7%	2.1%	2.0%
Northshore Gas ⁷²	1.3%	1.8%	10.0%	2.4%	2.3%
Nicor Gas ⁷³	1.3%	1.8%	10.0%	2.4%	2.3%
All DUs ⁷⁴					25%

<u>Note</u>: If a measure is supported by a gas and electric utility through a joint program, and it is unknown whether the participant has a gas supply, the electric utility values in the table above should be used. If it is known that the participant has a gas supply, the values from the gas utility above should be applied.

	ΔkWh - Non IQ			ΔkWh - IQ			
Dishwasher Type	With Electric DHW	With Gas DHW	With Unknown location and building type DHW	With Electric DHW	With Gas DHW	With Unknown location and building type DHW	
ENERGY STAR Standard	67	29.5	38.9	69.8	30.7	40.6	
ENERGY STAR Standard with Connected Functionality	55	24.2	31.9	57.8	25.4	33.7	
ENERGY STAR Compact	67	29.5	38.9	69.1	30.4	40.1	

Secondary kWh Savings for Water Supply and Wastewater Treatment

⁶⁸ Based on the average % electricity used for water heating in Unknown residential structure types across all utilities covered by the IL program. Residence types include: SF, SF LI, MF & MF LI. Utilities included: Ameren, ComEd, People's Gas, Northshore Gas & Nicor. Please see subsequent table and citations for specific sources.

⁷³ Comparable service area & customers to NSG, therefore using their survey data.

⁶⁷ Ibid.

⁶⁹ Provided by AEG from the 2020 Market Potential Study completed for AIC, as well as AIC Income Qualified Initiative: 2021 Participant Survey Results Memo (February 1, 2022) p. 17.

⁷⁰ Commonwealth Edison Residential Baseline Study (2020). p.4.4 & 4.19; Section 4-7 Water Heating. Prepared by Itron.

⁷¹ Implementation Contractors data from Peoples Gas and North Shore Gas for PY2022-2023.

⁷² Ihid

⁷⁴ For the weighted average calculations, please see the Analysis file. PGL, NSG, Nicor & gas customers were assumed to follow the provided split. ComEd total customers, minus overlap with PGL,NSG & Nicor, therefore electric only homes. Ameren is total customers minus Nicor.

The following savings should be included in the total savings for this measure but should not be included in TRC tests to avoid double counting the economic benefit of water savings.

$$\Delta kWh_{water} = \Delta Water (gallons) / 1,000,000 * E_{water total}$$

Where

Ewater total = IL Total Water Energy Factor (kWh/Million Gallons)

=5,010⁷⁵

Using defaults provided:

Standard $\Delta kWh_{water} = 252/1,000,000 * 5,010$

= 1.3 kWh

Compact $\Delta kWh_{water} = 67/1,000,000 * 5,010$

= 0.3 kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS⁷⁶

 $\Delta kW = \Delta kWh/Hours * CF$

Where:

ΔkWh = Annual kWh savings from measure as calculated above. Note do not include the

secondary savings in this calculation.

Hours = Annual operating hours⁷⁷

= 353 hours

CF = Summer Peak Coincidence Factor

= 2.6% ⁷⁸

		ΔkW - Non IQ			ΔkW - IQ			
Dishwasher Type	With	With	With Unknown	With	With	With Unknown		
	Electric	Gas	location and	Electric	Gas	location and		
	DHW	DHW	building type DHW	DHW	DHW	building type DHW		
ENERGY STAR Standard	0.0049	0.0022	0.0029	0.0051	0.0023	0.0030		
ENERGY STAR Standard with	0.0041	0.0018	0.0024	0.0043	0.0019	0.0025		
Connected Functionality	0.0041	0.0018	0.0024	0.0043	0.0019	0.0025		
ENERGY STAR Compact	0.0049	0.0022	0.0029	0.0051	0.0022	0.0030		

⁷⁵ This factor includes 2571 kWh/MG for water supply based on Illinois energy intensity data from a 2012 ISAWWA study and 2439 kWh/MG for wastewater treatment based on national energy intensity use estimates. For more information, please review Elevate Energy's 'IL TRM: Energy per Gallon Factor, May 2018 paper'.

⁷⁶ Note that the potential for demand response and additional peak savings from units with Connected Functionality have not been explored. This could be a potential addition in a future version.

⁷⁷ Assuming 2.1 hours per cycle and 168 cycles per year therefore 353 operating hours per year. 168 cycles per year is based on a weighted average of dishwasher usage in Illinois derived from the 2009 RECs data.

⁷⁸ End use data from Ameren representing the average DW load during peak hours/peak load.

FOSSIL FUEL SAVINGS

Δ Therm = (kWh_{Base} - kWh_{ESTAR}) * %kWh_{_}heat * %Fossil_DHW * R_{_}eff * 0.03412

Where

%kWh heat = % of dishwasher energy used for water heating

= 56%

%Fossil_DHW = Percentage of DHW savings assumed to be fossil fuel

= 100 % for Fossil Fuel

= 0 % for Electric

= If unknown⁷⁹, use the following table:

			Location		
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown
Ameren ⁸⁰	76%	75%	60%	57%	72%
ComEd ⁸¹	9:	2%	8	91%	
People's Gas ⁸²	97.9%	98.0%	98.3%	97.6%	97.8%
Northshore Gas ⁸³	98.5%	98.2%	90.0%	97.6%	97.6%
Nicor Gas ⁸⁴	98.5%	98.2%	90.0%	97.6%	97.6%
All DUs ⁸⁵					75%

<u>Note</u>: If a measure is supported by a gas and electric utility through a joint program, and it is unknown whether the participant has a gas supply, the electric utility values in the table above should be used. If it is known that the participant has a gas supply, the values from the gas utility above should be applied.

R_eff = Recovery efficiency factor

 $= 1.26^{86}$

0.03412 = factor to convert from kWh to Therm

__

⁷⁹ Based on the average % electricity used for water heating in Unknown residential structure types across all utilities covered by the IL program. Residence types include: SF, SF LI, MF & MF LI. Utilities included: Ameren, ComEd, People's Gas, Northshore Gas & Nicor. Please see subsequent table and citations for specific sources.

⁸⁰ Provided by AEG from the 2020 Market Potential Study completed for AIC, as well as AIC Income Qualified Initiative: 2021 Participant Survey Results Memo (February 1, 2022) p. 17.

⁸¹ Commonwealth Edison Residential Baseline Study (2020). p.4.4 & 4.19; Section 4-7 Water Heating. Prepared by Itron.

⁸² Residential Appliance Saturation Survey of natural gas for space heating and water heating (2021). Note, Multifamily customers have a residential billing rate code and responded on the survey that they live in an apartment or condominium in a building that has either 2-4 or 5+ units.

⁸³ Ibid.

⁸⁴ Comparable service area & customers to NSG, therefore using their survey data.

⁸⁵ For the weighted average calculations, please see the Analysis file. PGL, NSG, Nicor & gas customers were assumed to follow the provided split. ComEd total customers, minus overlap with PGL,NSG & Nicor, therefore gas only homes. Ameren is total customers minus Nicor.

⁸⁶ To account for the different efficiency of electric and natural gas hot water heaters (gas water heater: recovery efficiencies ranging from 0.74 to 0.85 (0.78 used), and electric water heater with 0.98 recovery efficiency (see ENERGY STAR Waste Water Heat Recovery Guidelines). Therefore, a factor of 0.98/0.78 (1.26) is applied.

		ΔTherms - I	Non IQ	ΔTherms - IQ			
Dishwasher Type	With Electric DHW	With Gas DHW	With Unknown location and building type DHW	With Electric DHW	With Gas DHW	With Unknown location and building type DHW	
ENERGY STAR Standard	0	1.61	1.21	0	1.68	1.26	
ENERGY STAR Standard with Connected Functionality	0	1.32	0.99	0	1.39	1.05	
ENERGY STAR Compact	0	1.61	1.21	0	1.66	1.24	

WATER IMPACT DESCRIPTIONS AND CALCULATION

 Δ Water (gallons) = Water_{Base} - Water_{EFF}

Where:

Water_{Base} = water consumption of conventional unit

Dishwasher Type	Water _{Base} (gallons) ⁸⁷
Standard	840
Compact	588

Water_{EFF} = annual water consumption of efficient unit:

Dishwasher Type	Water _{EFF} (gallons) ⁸⁸
Standard	538
Compact	336

Dishwasher Type	ΔWater (gallons)
ENERGY STAR Standard	302
ENERGY STAR Compact	252

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-APL-ESDI-V11-250101

REVIEW DEADLINE: 1/1/2029

 $^{^{87}}$ Assuming maximum allowed from specifications and 168 cycles per year based on a weighted average of dishwasher usage in Illinois derived from the 2009 RECs data.

⁸⁸ Ibid

5.1.5 ENERGY STAR Freezer

DESCRIPTION

A freezer meeting the efficiency specifications of ENERGY STAR is installed in place of a model meeting the federal standard (NAECA). Energy usage specifications are defined in the table below (note, AV is the freezer Adjusted Volume and is calculated as 1.73*Total Volume):

		Assumptions afte	r September 2014	
Product Category	Volume	Federal Baseline	ENERGY STAR	
Troduct category	(cubic feet)	Maximum Energy	Maximum Energy	
		Usage in kWh/year ⁸⁹	Usage in kWh/year ⁹⁰	
Upright Freezers with Manual	7.75 or greater	5.57*AV + 193.7	5.01*AV + 174.3	
Defrost				
Upright Freezers with	7.75 or greater	8.62*AV + 228.3	7.76*AV + 205.5	
Automatic Defrost	7.75 of greater	0.02 AV 1 220.5	7.70 AV 1 203.5	
Chest Freezers and all other				
Freezers except Compact	7.75 or greater	7.29*AV + 107.8	6.56*AV + 97.0	
Freezers				
Compact Upright Freezers	< 7.75 and 36 inches or less	0.05*41/ . 225.7	7 70*41/ . 202 1	
with Manual Defrost	in height	8.65*AV + 225.7	7.79*AV + 203.1	
Compact Upright Freezers	< 7.75 and 36 inches or less	10 17* 11 1 2 1 1	0.15*4\/ . 216.7	
with Automatic Defrost	in height	10.17*AV + 351.9	9.15*AV + 316.7	
Compact Chest Freezers	<7.75 and 36 inches or less	9.25*AV + 136.8	8.33*AV + 123.1	
Compact chest Freezers	in height	3.23 AV + 130.0	0.33 AV + 123.1	

This measure was developed to be applicable to the following program types: TOS, NC.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient equipment is defined as a freezer meeting the efficiency specifications of ENERGY STAR, as defined below and calculated above:

Equipment	Volume	Criteria
Full Size Freezer	7.75 cubic feet or greater	At least 10% more energy efficient than the minimum federal
		government standard (NAECA).
Compact Freezer	Less than 7.75 cubic feet and 36	At least 20% more energy efficient
	inches or less in height	than the minimum federal
	inches or less in neight	government standard (NAECA).

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is assumed to be a model that meets the federal minimum standard for energy efficiency. The standard varies depending on the size and configuration of the freezer (chest freezer or upright freezer, automatic or manual defrost) and is defined in the table above.

⁸⁹ See Department of Energy Federal Standards, (10 CFR Part 430.32(a)), effective September 15th, 2014.

⁹⁰ See Version 5.1 ENERGY STAR specification.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The measure life is assumed to be 21 years for standard size and 10 years for compact freezers.⁹¹

DEEMED MEASURE COST

The incremental cost for this measure is \$592 for non-IQ participants and \$104 for IQ participants.93

LOADSHAPE

Loadshape R04 - Residential Freezer

COINCIDENCE FACTOR

The summer peak coincidence factor for this measure is assumed to be 95%.94

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS:

 $\Delta kWh = (kWh_{Base} * IQAdj) - kWh_{ESTAR}$

Where:

kWh_{BASE} = Baseline kWh consumption per year as calculated in algorithm provided in table above.

IQAdj = Baseline consumption adjustment for IQ program participants to account for a portion

of participants who would have utilized the secondary market. 95

= 1.14 if IQ, 1.0 if non-IQ

kWh_{ESTAR} = ENERGY STAR kWh consumption per year as calculated in algorithm provided in table

above.

⁹¹ Based on 2021 DOE Rulemaking Technical Support Document, "Refrigerator, Refrigerator-Freezer, and Freezer Life-Cycle Cost (LCC) Analysis Spreadsheet" posted November 9, 2021.

⁹² Costs are estimated using the data provided in the Department of Energy, "Refrigerator, Refrigerator-Freezer, and Freezer Life-Cycle Cost (LCC) Analysis Spreadsheet" posted November 9, 2021 as part of the 'Energy Conservation Standards for Consumer Refrigerators, Refrigerator-Freezers, and Freezers' rulemaking docket. Install cost data was trended to provide estimates at the efficiency levels specified in this measure, and then weighted based on available product on the ENERGY STAR Freezer QPI, accessed 4/29/2022. See "DOE LCC Spreadsheet Freezer.xls" for more information.

⁹³ IQ Incremental costs factor in the assumption that a secondhand unit costs on average 50% of a new baseline unit, and that 1/3 of IQ participants would have purchased a unit on the secondhand market. See "IQ Appliance Calculations.xls" for information.

⁹⁴ Based on eShapes Residential Freezer load data as provided by Ameren.

⁹⁵ It is assumed that a second-hand unit is on average 2/3 of a measure's EUL years old (14 years). The current Federal Standard became effective in 2014 so the previous standard is used to estimate base consumption for a second hand unit, and further increased by an estimate of 0.4% * 14 years (based on review of the refrigerator/freezer regression algorithm used in the 5.1.8 Refrigerator and Freezer Recycling measure) to account for degradation of performance over time. This second hand consumption was then weighted 1/3: 2/3 current new baseline to estimate a multiplier for IQ participants. See "IQ Appliance Calculations.xls" for information.

For example for a 7.75 cubic foot Upright Freezers with Manual Defrost purchased by non-IQ participant after September 2014:

 Δ kWh = ((5.57*(7.75* 1.73)+193.7)) * 1) - (5.01*(7.75* 1.73)+174.3)

= 268.4 – 241.5

= 26.9 kWh

If volume is unknown, use the following default values:

Product Category	Adjusted Volume	kWh _{BASE}		kWhestar	ΔkWh	
3 .	Used ⁹⁶	Non-IQ	IQ		Non-IQ	IQ
Upright Freezers with Manual Defrost	15	277.3	316	249.5	27.8	66.2
Upright Freezers with Automatic Defrost	26.2	453.9	517	408.6	45.3	108.1
Chest Freezers and all other Freezers except Compact Freezers	22.5	271.9	310	244.7	27.2	64.8
Compact Upright Freezers with Manual Defrost	5.5	273.3	311	246	27.3	65.1
Compact Upright Freezers with Automatic Defrost	7.5	428.6	488	385.7	42.9	102.2
Compact Chest Freezers	9.5	224.8	256	202.4	22.5	53.5

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh/Hours * CF$

Where:

ΔkWh = Gross customer annual kWh savings for the measure

Hours = Full Load hours per year

 $=5890^{97}$

CF = Summer Peak Coincident Factor

 $= 0.95^{98}$

For example, for a 7.75 cubic foot Upright Freezers with Manual Defrost purchased by non-IQ participant:

 Δ kW = 26.9/5890 * 0.95

= 0.0043 kW

If volume is unknown, use the following default values:

Product Category	ΔkW		
	Non-IQ	IQ	
Upright Freezers with Manual Defrost	0.0045	0.0107	

⁹⁶ Volume is based on average adjusted volume of units on the ENERGY STAR QPI, accessed 4/29/2022. See "DOE LCC Spreadsheet_Freezer.xls" for more information.

-

⁹⁷ Calculated from eShapes Residential Freezer load data as provided by Ameren by dividing total annual load by the maximum kW in any one hour.

⁹⁸ Based on eShapes Residential Freezer load data as provided by Ameren.

Duradicat Catagory	ΔkW		
Product Category	Non-IQ	IQ	
Upright Freezers with Automatic Defrost	0.0073	0.0174	
Chest Freezers and all other Freezers except Compact Freezers	0.0044	0.0105	
Compact Upright Freezers with Manual Defrost	0.0044	0.0105	
Compact Upright Freezers with Automatic Defrost	0.0069	0.0165	
Compact Chest Freezers	0.0036	0.0086	

FOSSIL FUEL SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-APL-ESFR-V05-240101

REVIEW DEADLINE: 1/1/2027

5.1.6 ENERGY STAR, CEE Tier 2 or CEE Tier 3 Refrigerator

DESCRIPTION

This measure relates to:

- a) Time of Sale: the purchase and installation of a new refrigerator meeting either ENERGY STAR, CEE TIER 2 or TIER 3 specifications.
- b) Early Replacement: the early removal of an existing residential inefficient Refrigerator from service, prior to its natural end of life, and replacement with a new ENERGY STAR, CEE Tier 2 or Tier 3 qualifying unit. Savings are calculated between existing unit and efficient unit consumption during the remaining life of the existing unit, and between new baseline unit and efficient unit consumption for the remainder of the measure life.

Energy usage specifications are defined in the table below (note, Adjusted Volume is calculated as the fresh volume + (1.63 * Freezer Volume):

	Existing Unit	Assumptions after September 2014			
Product Category	Based on	Federal Baseline	ENERGY STAR		
	Refrigerator	Maximum	Maximum		
	Recycling	Energy Usage in	Energy Usage in		
	algorithm	kWh/year ⁹⁹	kWh/year ¹⁰⁰		
1. Refrigerators and Refrigerator-freezers with		6.79AV + 193.6	6.11 * AV + 174.2		
manual defrost		0.737.17 + 233.0	0.11 7.0 7.112		
2. Refrigerator-Freezerpartial automatic defrost		7.99AV + 225.0	7.19 * AV + 202.5		
3. Refrigerator-Freezersautomatic defrost with		8.07AV + 233.7			
top-mounted freezer without through-the-door			7.26 * AV + 210.3		
ice service and all-refrigeratorsautomatic defrost	Use				
4. Refrigerator-Freezersautomatic defrost with	Algorithm in		7.66 * AV + 268.0		
side-mounted freezer without through-the-door	5.1.8	8.51AV + 297.8			
ice service	Refrigerator				
5. Refrigerator-Freezersautomatic defrost with	and Freezer	8.85AV + 317.0			
bottom-mounted freezer without through-the-	Recycling		7.97 * AV + 285.3		
door ice service	measure to				
5A Refrigerator-freezer—automatic defrost with	estimate				
bottom-mounted freezer with through-the-door	existing unit	9.25AV + 475.4	8.33 * AV + 436.3		
ice service	consumption				
6. Refrigerator-Freezersautomatic defrost with	Consumption				
top-mounted freezer with through-the-door ice		8.40AV + 385.4	7.56 * AV + 355.3		
service					
7. Refrigerator-Freezersautomatic defrost with		8.54AV + 432.8			
side-mounted freezer with through-the-door ice			7.69 * AV + 397.9		
service					

This measure was developed to be applicable to the following program types: TOS, NC, EREP.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient equipment is defined as a refrigerator meeting the efficiency specifications of ENERGY STAR, CEE Tier 2 or CEE Tier 3 (defined as requiring >= 10%, >= 15% or >=20% less energy consumption than an equivalent unit

⁹⁹ See Department of Energy Federal Standards (10 CFR Part 430.32(a)), effective September 15th, 2014.

¹⁰⁰ See Version 5.1 ENERGY STAR specification.

meeting federal standard requirements respectively). The ENERGY STAR standard varies according to the size and configuration of the unit, as shown in table above.

DEFINITION OF BASELINE EQUIPMENT

Time of Sale: baseline is a new refrigerator meeting the minimum federal efficiency standard for refrigerator efficiency. The current federal minimum standard varies according to the size and configuration of the unit, as shown in table above. This Federal Standard is effective for units manufactured after September 1, 2014. Note in December 2021, the DOE presented preliminary analysis for the purposes of evaluating energy conservation standards. The review deadline will be set for one further year to review progress in standard updates.

Early Replacement: the baseline is the existing refrigerator for the assumed remaining useful life of the unit and the new baseline as defined above for the remainder of the measure life.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The measure life is assumed to be 15 years. 101

Remaining life of existing equipment is assumed to be 5 years. 102

DEEMED MEASURE COST

Time of Sale: The incremental cost for non-IQ participants is assumed to be \$9 for an ENERGY STAR unit, \$26 for a CEE Tier 2 unit and \$135 for a CEE Tier 3 unit. 103

For IQ participants the incremental cost is assumed to be \$154 for an ENERGY STAR unit, \$171 for a CEE Tier 2 unit and \$180 for a CEE Tier 3 unit. 104

Early Replacement: The measure cost is the full cost of removing the existing unit and installing a new one. The actual program cost should be used. If unavailable, assume \$878 for ENERGY STAR unit, \$895 for CEE Tier 2 unit and \$904 for CEE Tier 3 units.

The avoided replacement cost (after 5 years) of a baseline replacement refrigerator is \$869. This cost should be discounted to present value using the nominal societal discount rate.

LOADSHAPE

Loadshape R05 - Residential Refrigerator

COINCIDENCE FACTOR

A coincidence factor is not used to calculate peak demand savings for this measure, see below.

¹⁰¹ Based on 2021 DOE Rulemaking Technical Support Document, "Refrigerator, Refrigerator-Freezer, and Freezer Life-Cycle Cost (LCC) Analysis Spreadsheet" posted November 9, 2021.

¹⁰² Standard assumption of one third of effective useful life.

¹⁰³ Costs are estimated using the data provided in the Guidehouse and Leidos Technology Forecast Updates Residential and Commercial Building Technologies Reference Case presented to U.S. Energy Information Administration March 3, 2023.

¹⁰⁴ IQ Incremental costs factor in the assumption that a secondhand unit costs on average 50% of a new baseline unit, and that 1/3 of IQ participants would have purchased a unit on the secondhand market. See "IQ Appliance Calculations.xls" for information.

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS:

Time of Sale: $\Delta kWh = (UEC_{BASE} * IQAdj) - UEC_{EE}$

Early Replacement:

 Δ kWh for remaining life of existing unit (1st 5 years) = UEC_{EXIST} – UEC_{EE}

ΔkWh for remaining measure life (next 10 years) = (UEC_{BASE} * IQAdj) – UEC_{EE}

Where:

UECEXIST = Annual Unit Energy Consumption of existing unit as calculated in algorithm from 5.1.8

Refrigerator and Freezer Recycling measure.

UECBASE = Annual Unit Energy Consumption of baseline unit as calculated in algorithm provided in

table above.

IQAdj = Baseline consumption adjustment for IQ program participants to account for a portion

of participants who would have utilized the secondary market. 105

= 1.04 if IQ, 1.0 if non-IQ

UEC_{EE} = Annual Unit Energy Consumption of ENERGY STAR unit as calculated in algorithm

provided in table above. For CEE Tier 2, unit consumption is calculated as 15% lower than $\,$

baseline and for CEE Tier 3 20% lower than baseline.

If volume is unknown, use the following defaults, based on an assumed Adjusted Volume of 22.9:106

Product Category	Existing Unit UEC _{EXIST} 107	Baseline Unit UEC _{BASE}		New Efficient UEC _{EE}		
		Non-IQ	IQ	ENERGY STAR	CEE T2	CEE T3
1. Refrigerators and Refrigerator-freezers with manual defrost	998.2	349.2	363	314.2	296.8	279.4
2. Refrigerator-Freezerpartial automatic defrost	998.2	408.1	424	367.3	346.9	326.5
3. Refrigerator-Freezersautomatic defrost with top-mounted freezer without through-the-door ice service and all-refrigeratorsautomatic defrost	794.8	418.6	435	376.7	355.8	334.9
4. Refrigerator-Freezersautomatic defrost with side-mounted freezer without through-the-door ice service	1201.6	492.8	512	443.5	418.9	394.2
5. Refrigerator-Freezersautomatic defrost with bottom-mounted freezer without through-the-door ice service	794.8	519.8	540	467.9	441.8	415.8

¹⁰⁵ It is assumed that a second-hand unit is on average 2/3 of a measure's EUL years old (10 years). The current Federal Standard became effective in 2014 so the previous standard is used to estimate base consumption for a second hand unit, and further increased by an estimate of 0.4% * 10 years (based on review of the refrigerator/freezer regression algorithm used in the 5.1.8 Refrigerator and Freezer Recycling measure) to account for degradation of performance over time. This second hand consumption was then weighted 1/3: 2/3 current new baseline to estimate a multiplier for IQ participants. See "IQ Appliance Calculations.xls" for information.

¹⁰⁶ Volume is based on the average adjusted volume of applicable units on the ENERGY STAR QPI, accessed 4/29/2022.

 $^{^{107}}$ Estimates of existing unit consumption are based on using the 5.1.8 Refrigerator and Freezer Recycling algorithm and the inputs described here: Age = 10 years, Pre-1990 = 0, Size = 18.9 ft3 (average of applicably units on ENERGY STAR QPI, accessed 4/29/2022), Single Door = 0, Side by side = 1 for classifications stating side by side, 0 for classifications stating top/bottom, and 0.5 for classifications that do not distinguish, Primary appliances = 1, unconditioned = 0, Part use factor = 0.

Product Category	Existing Unit	Baselir UEC		ľ	New Efficien UECEE	t
rroduct category	UEC _{EXIST} 107	Non-IQ	IQ	ENERGY STAR	CEE T2	CEE T3
5A Refrigerator-freezer—automatic defrost with bottom- mounted freezer with through-the-door ice service	794.8	687.4	715	627.2	584.3	549.9
6. Refrigerator-Freezersautomatic defrost with top-mounted freezer with through-the-door ice service	794.8	577.9	601	528.5	491.2	462.3
7. Refrigerator-Freezersautomatic defrost with side-mounted freezer with through-the-door ice service	1201.6	628.5	653	574.1	534.2	502.8

	Early Replacement (1st 5					(last 10 ·	years)		
Product Category	yea	years) ΔkWh		Non-IQ			IQ		
	ENERGY STAR	CEE T2	CEE T3	ENERGY STAR	CEE T2	CEE T3	ENERGY STAR	CEE T2	CEE T3
Refrigerators and Refrigerator-freezers with manual defrost	684	701.4	718.9	35.0	52.4	69.8	48.9	66.3	83.7
2. Refrigerator-Freezerpartial automatic defrost	631	651.4	671.8	40.8	61.2	81.6	57.0	77.4	97.8
3. Refrigerator-Freezersautomatic defrost with top-mounted freezer without throughthe-door ice service and all-refrigeratorsautomatic defrost	418.2	439	459.9	42.00	62.8	83.7	58.5	79.4	100.3
4. Refrigerator-Freezersautomatic defrost with side-mounted freezer without throughthe-door ice service	758.1	782.7	807.4	49.3	73.9	98.6	68.9	93.5	118.2
5. Refrigerator-Freezersautomatic defrost with bottom-mounted freezer without through-the-door ice service	326.9	353	379	51.9	78	104	72.5	98.6	124.6
5A Refrigerator-freezer—automatic defrost with bottom-mounted freezer with throughthe-door ice service	167.7	210.6	244.9	60.2	103.1	137.5	87.5	130.4	164.8
6. Refrigerator-Freezersautomatic defrost with top-mounted freezer with through-the-door ice service	266.3	303.6	332.5	49.3	86.7	115.6	72.4	109.7	138.6
7. Refrigerator-Freezersautomatic defrost with side-mounted freezer with through-the-door ice service	627.5	667.4	698.8	54.4	94.3	125.7	79.4	119.3	150.7

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = (\Delta kWh/8766) * TAF * LSAF$

Where:

TAF = Temperature Adjustment Factor

 $= 1.25^{108}$

LSAF = Load Shape Adjustment Factor

 $= 1.057^{109}$

If volume is unknown, use the following defaults:

	Early Replacement (1st 5		Farly Ponlacoment (1ct F				eplacement (last 10 years) kW		
Product Category	yea	ars) Akvv			Non-IQ			IQ	
	ENERGY STAR	CEE T2	CEE T3	ENERGY STAR	CEE T2	CEE T3	ENERGY STAR	CEE T2	CEE T3
Refrigerators and Refrigerator-freezers with manual defrost	0.103	0.106	0.108	0.005	0.008	0.011	0.007	0.010	0.013
2. Refrigerator-Freezerpartial automatic defrost	0.095	0.098	0.101	0.006	0.009	0.012	0.009	0.012	0.015
3. Refrigerator-Freezersautomatic defrost with top-mounted freezer without throughthe-door ice service and all-refrigeratorsautomatic defrost	0.063	0.066	0.069	0.006	0.009	0.013	0.009	0.012	0.015
4. Refrigerator-Freezersautomatic defrost with side-mounted freezer without throughthe-door ice service	0.114	0.118	0.122	0.007	0.011	0.015	0.010	0.014	0.018
5. Refrigerator-Freezersautomatic defrost with bottom-mounted freezer without through-the-door ice service	0.049	0.053	0.057	0.008	0.012	0.016	0.011	0.015	0.019
5A Refrigerator-freezer—automatic defrost with bottom-mounted freezer with throughthe-door ice service	0.025	0.032	0.037	0.009	0.016	0.021	0.013	0.020	0.025
6. Refrigerator-Freezersautomatic defrost with top-mounted freezer with through-the-door ice service	0.04	0.046	0.05	0.007	0.013	0.017	0.011	0.017	0.021
7. Refrigerator-Freezersautomatic defrost with side-mounted freezer with through-the-door ice service	0.095	0.101	0.105	0.008	0.014	0.019	0.012	0.018	0.023

FOSSIL FUEL SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

Average temperature adjustment factor (to account for temperature conditions during peak period as compared to year as a whole) based on Blasnik, Michael, "Measurement and Verification of Residential Refrigerator Energy Use, Final Report, 2003-2004 Metering Study", July 29, 2004 (p. 47). It assumes 90 °F average outside temperature during peak period, 71°F average temperature in kitchens and 65°F average temperature in basement, and uses assumption that 66% of homes in Illinois have central cooling (CAC saturation: "Table HC7.9 Air Conditioning in Homes in Midwest Region, Divisions, and States, 2009 from Energy Information Administration", 2009 Residential Energy Consumption Survey).

 ¹⁰⁹ Daily load shape adjustment factor (average load in peak period /average daily load) also based on Blasnik, Michael,
 "Measurement and Verification of Residential Refrigerator Energy Use, Final Report, 2003-2004 Metering Study", July 29, 2004
 (p. 48, using the average Existing Units Summer Profile for hours 13 through 17)

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-APL-ESRE-V11-250101

REVIEW DEADLINE: 1/1/2027

5.1.7 ENERGY STAR and CEE Tier 2 Room Air Conditioner

DESCRIPTION

This measure relates to:

- a) Time of Sale the purchase and installation of a room air conditioning unit that meets ENERGY STAR version 5.0, which is effective October 30th 2023^{110,} or CEE Tier 2 minimum qualifying efficiency specifications, in place of a baseline unit. The baseline is based on the Federal Standard effective June 1st, 2014.
- b) Assumptions for IQ participants: This measure can be used by programs supporting the installation of efficient Room AC in income qualified households. It is assumed that the Room AC's installed in IQ households are being used less as a luxury and more as a necessity and that access to a single AC unit per household will result in run hours more consistent with central AC usage.

Produc	ct Type and Class (Btu/hr)	Federal Standard with louvered sides (CEER) 111	Federal Standard without louvered sides (CEER)	ENERGY STAR v5.0 with louvered sides (CEER) 112	ENERGY STAR v5.0 without louvered sides (CEER)	CEE Tier 2 (CEER) ¹¹³
	< 6,000	11.0	10.0	13.1	12.8	14.85
	6,000 - 7,999	11.0	10.0	13.7	12.8	14.65
Without	8,000 to 10,999	10.9	9.6	14.7	13.0	14.72
Reverse	11,000 to 13,999	10.9	9.5	14.7	12.8	14.72
Cycle	14,000 to 19,999	10.7	9.3	14.4	12.6	14.45
	20,000 to 27,999	9.4	9.4	12.7	12.7	12.69
	>=28,000	9.0	9.4	12.2	12.7	12.15
With	<14,000	9.8	9.3	13.2	12.6	N/A
Reverse	14,000 to 19,999	9.8	8.7	13.2	11.7	N/A
Cycle	>=20,000	9.3	8.7	12.6	11.7	N/A
Ca	Casement only 9.5		.5	12.8		
Cas	ement-Slider	10).4	14	.0	

Side louvers extend from a room air conditioner model in order to position the unit in a window. A model without louvered sides is placed in a built-in wall sleeve and are commonly referred to as "through-the-wall" or "built-in" models.

Casement-only refers to a room air conditioner designed for mounting in a casement window of a specific size.

Casement-slider refers to a room air conditioner with an encased assembly designed for mounting in a sliding or casement window of a specific size.

Reverse cycle refers to the heating function found in certain room air conditioner models.

a) Early Replacement: the early removal of an existing residential inefficient Room AC unit from service, prior to its natural end of life, and replacement with a new ENERGY STAR qualifying unit. Savings are calculated between existing unit and efficient unit consumption during the remaining life of the existing unit, and between new baseline unit and efficient unit consumption for the remainder of the measure life.

¹¹⁰ ENERGY STAR Version 5.0 Room Air Conditioners Program Requirements

¹¹¹ See DOE's Appliance and Equipment Standards for Room AC;

¹¹² ENERGY STAR Version 5.0 Room Air Conditioners Program Requirements

¹¹³ The Consortium for Energy Efficiency Super Efficient Home Appliance Initiative, Room Air Conditioner Specification, CEE Advanced Tier (CEER), effective May 17, 2022. Please see file "CEE_RoomAC_Specification_17May2022.pdf". https://cee1.org/images/pdf/CEE_RoomAC_Specification_17May2022.pdf

This measure was developed to be applicable to the following program types: TOS, NC, EREP.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the new room air conditioning unit must meet the ENERGY STAR version 5.0, which is effective October 30th 2023^{114,} efficiency standards presented above.

DEFINITION OF BASELINE EQUIPMENT

Time of Sale: the baseline assumption is a new room air conditioning unit that meets the Federal Standard (effective June 1^{st} , 2014)¹¹⁵ efficiency standards as presented above.

Early Replacement: the baseline is the existing Room AC for the assumed remaining useful life of the unit and the new baseline as defined above for the remainder of the measure life.

For Income Qualified units, the baseline assumption is an inefficient unit either existing in the home or being purchased or acquired via the secondary market.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The measure life is assumed to be 12 years. 116

Remaining life of existing equipment is assumed to be 4 years. 117

For Income Qualified units, because the baseline unit is assumed to be purchased from the secondary market, it is assumed that the remaining life of the baseline unit is 6 years and would need to be replaced with another unit from the secondary market at that point.

DEEMED MEASURE COST

Non-IQ Participants:

Time of Sale: The incremental cost for this measure is assumed to be \$40 for an ENERGY STAR unit and \$261 for a CEE Tier 2 unit.¹¹⁸

Early Replacement: The measure cost is the full cost of removing the existing unit and installing a new one. The actual program cost should be used. If unavailable assume \$448 for ENERGY STAR unit and \$669 for CEE Tier 2 unit. 119

The avoided replacement cost (after 4 years) of a baseline replacement unit is \$432.120 This cost should be discounted to present value using the nominal societal discount rate.

Income Qualified participants:

The actual full cost of the ENERGY STAR unit should be used. If unavailable assume \$300.¹²¹ If a CEE Tier 2 unit is installed assume \$508. The cost of the inefficient secondary market unit is assumed to be \$50. Therefore, where the new unit replaces an existing unit the measure cost is \$300 for ENERGY STAR or \$508 for CEE Tier 2, and where

2025 IL TRM v13.0 Vol. 3 September 20, 2024 FINAL

¹¹⁴ ENERGY STAR Version 5.0 Room Air Conditioners Program Requirements

¹¹⁵ See DOE's Appliance and Equipment Standards for Room AC.

¹¹⁶ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

¹¹⁷ Standard assumption of one third of effective useful life.

¹¹⁸ ENERGY STAR cost based on field study conducted by Efficiency Vermont and Tier 2 based on Efficiency Vermont's characterization of the NEEP Mid-Atlantic TRM's (version 9.0, October 2019) incremental cost analysis. See 'room-ac-cost-analysis-10.2023.xlsx.'

¹¹⁹ ENERGY STAR based on IL PHA Efficient Living Program Data for 810 replaced units showing \$416 per unit plus \$32 average recycling/removal cost. Differential in cost for the CEE Tiers is \$221, therefore CEE Tier 2 is \$448 + 221 = \$669.

¹²⁰ Estimate based upon Time of Sale incremental costs and applying inflation rate of 1.91%.

¹²¹ To promote improved cost effectiveness, it is assumed that the lower cost ENERGY STAR Room AC units would be used. Units between \$200-\$400 are available dependent on capacity.

there is no existing unit the measure cost is assumed to be \$250 for ENERGY STAR or \$458 for CEE Tier 2.

The avoided replacement cost (after 6 years) of the replacement secondary market unit is \$50. This cost should be discounted to present value using the nominal societal discount rate.

LOADSHAPE

Loadshape R08 - Residential Cooling

COINCIDENCE FACTOR

For non-IQ participants, the coincidence factor for this measure is assumed to be 0.3.¹²²

For Income Qualified units, where use is likely to be more consistent with central cooling, the summer peak coincidence factor is provided in two different ways below. The first is used to estimate peak savings during the utility peak hour and is most indicative of actual peak benefits, and the second represents the *average* savings over the defined summer peak period and is presented so that savings can be bid into PJM's capacity market.

CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C (during system peak hour)

 $=68\%^{123}$

CF_{PJM} = PJM Summer Peak Coincidence Factor for Central A/C (average during PJM peak period)

 $=46.6\%^{124}$

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Non-IQ Participants:

Time of Sale: $\Delta kWh = (FLH_{RoomAC} * Btu/H * (1/CEERbase - 1/CEERee))/1000$

Early Replacment:

 Δ kWh for remaining life of existing unit (1st 4 years) = (FLH_{RoomAC} * Btu/H * (1/(EERexist/1.01) - 1/CEERee))/1000

ΔkWh for remaining measure life (next 8 years) = (FLH_{RoomAC} * Btu/H * (1/CEERbase - 1/CEERee))/1000

Where:

FLH_{RoomAC} = Full Load Hours of room air conditioning unit

= dependent on location: 125

¹²² Consistent with coincidence factors found in: RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008.

¹²³ Based on metering of 24 homes with central AC during PY4 and PY5 in Ameren Illinois service territory.

¹²⁴ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

¹²⁵ Full load hours for room AC is significantly lower than for central AC. The average ratio of FLH for Room AC (provided in RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008) to FLH for Central Cooling for the same location is 31%. This ratio is applied to those IL cities that have FLH for Central Cooling provided in the ENERGY STAR calculator. For other cities this is extrapolated using the FLH assumptions VEIC have developed for Central AC. There is a county mapping table in Volume 1, Section 3.7 providing the appropriate city to use for each county of Illinois.

Climate Zone (City based upon)	FLH _{RoomAC}
1 (Rockford)	235
2 (Chicago)	261
3 (Springfield)	340
4 (Belleville)	447
5 (Marion)	396
Weighted Average ¹²⁶	
ComEd	256
Ameren	364
Statewide	286

Btu/H = Size of rebated unit

= Actual. If unknown assume 8500 Btu/hr¹²⁷

EERexist =Efficiency of existing unit

= Actual. If unknown assume 7.7 ¹²⁸

1.01 = Factor to convert EER to CEER (CEER includes standby and off power consumption)¹²⁹

CEERbase = Combined Energy Efficiency Ratio of baseline unit

= As provided in tables above

CEERee = Combined Energy Efficiency Ratio of CEE Tier 1 or ENERGY STAR unit

= Actual. If unknown, assume minimum qualifying standard as provided in tables above

Time of Sale:

For example, for an 8,500 Btu/H capacity unit, with louvered sides, in an unknown location:

$$\Delta$$
kWH_{ENERGY STAR} = (286 * 8500 * (1/10.9 – 1/14.7)) / 1000
= 57.7 kWh

Early Replacement:

For example, a 7.7EER, 9000Btu/h unit is removed from a home in Springfield and replaced with an ENERGY STAR unit with louvered sides:

 Δ kWh for remaining life of existing unit (1st 4 years) = (340 * 9000 * (1/(7.7/1.01) - 1/14.7))/1000

= 193.2 kWh

 Δ kWh for remaining measure life (next 8 years) = (340 * 9000 * (1/10.9 - 1/14.7))/1000

= 72.6 kWh

¹²⁶ Weighting for Ameren is based on electric accounts in each of the cooling zones. Weighting for ComEd and Statewide average is based on number of occupied residential housing units in each zone. ComEd is weighted average of Zones 1-2. Alternative program-weighted assumptions can be used if appropriate.

 $^{^{127}}$ Based on maximum capacity average from the RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008

¹²⁸ Based on Nexus Market Research Inc, RLW Analytics, December 2005; "Impact, Process, and Market Study of the Connecticut Appliance Retirement Program: Overall Report."

¹²⁹ Since the existing unit will be rated in EER, this factor is used to appropriately compare with the new CEER rating. Version 3.0 of the ENERGY STAR specification provided equivalent EER and CEER ratings and for the most popular size band the EER rating is approximately 1% higher than the CEER. See 'ENERGY STAR Version 3.0 Room Air Conditioners Program Requirements'.

Income Qualified Participants:

 Δ kWh = (FLH_{RoomAC} * Btu/H * (1/(EERbase/1.01) - 1/CEERee))/1000

Where:

FLH_{RoomAC} = Full Load Hours of room air conditioning unit

= dependent on location 130 131:

Climate Zone (City based upon)	FLHcool (single family)	FLHcool (multifamily)	FLH_cooling (weatherized multifamily)
1 (Rockford)	547	499	320
2 (Chicago)	709	629	403
3 (Springfield)	779	707	453
4 (Belleville)	1082	982	630
5 (Marion/ Murphysboro)	956	868	557
Weighted Average ¹³³			
ComEd	676	603	386
Ameren	875	791	507
Statewide	731	655	420

Btu/H = Size of installed unit

= Actual. If unknown assume 8500 Btu/hr¹³⁴

EERbase = Efficiency of existing / baseline unit

= Actual. If unknown assume 7.7 135

1.01 = Factor to convert EER to CEER (CEER includes standby and off power consumption) 136

_

¹³⁰ Full load hours for Chicago, Moline and Rockford are provided in "Final Evaluation Report: Central Air Conditioning Efficiency Services (CACES), 2010, Navigant Consulting", p.33. An average FLH/Cooling Degree Day (from NCDC) ratio was calculated for these locations and applied to the CDD of the other locations in order to estimate FLH. There is a county mapping table in Volume 1, Section 3.7 providing the appropriate city to use for each county of Illinois. Note, full load hours for IQ homes are estimated to be higher than non-IQ homes and are assumed consistent with the Central AC FLH assumption. In a non-IQ home, it is expected that there be multiple Room AC units, many in bedrooms, and therefore the usage for each one would likely be lower. However in an IQ home it is assumed that the Room AC is being used as the main cooling system for the home are run more like a CAC.

¹³¹ Applied percent change of CDD65, NCEI Annual Normals from 30 yr data set (1981-2010) to more recent 15 yr data (2006-2020) to all FLHcool values.

¹³² All-Electric Homes PY6 Metering Results: Multifamily HVAC Systems, Cadmus, October 2015. The multifamily units within this study had undergone significant shell improvements (air sealing and insulation) and therefore this set of assumptions is only appropriate for units that have recently participated in a weatherization or other shell program. Note that the FLHcool where recalculated based on existing efficiencies consistent with the TRM rather than from the metering study.

¹³³ Weighting for Ameren is based on electric accounts in each of the cooling zones. Weighting for ComEd and Statewide average is based on number of occupied residential housing units in each zone. ComEd is weighted average of Zones 1-2. Alternative program-weighted assumptions can be used if appropriate.

¹³⁴ Based on maximum capacity average from the RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008

¹³⁵ Based on Nexus Market Research Inc, RLW Analytics, December 2005; "Impact, Process, and Market Study of the Connecticut Appliance Retirement Program: Overall Report."

¹³⁶ Since the existing unit will be rated in EER, this factor is used to appropriately compare with the new CEER rating. Version 3.0 of the ENERGY STAR specification provided equivalent EER and CEER ratings and for the most popular size band the EER rating is approximately 1% higher than the CEER. See 'ENERGY STAR Version 3.0 Room Air Conditioners Program Requirements'.

CEERee = Combined Energy Efficiency Ratio of ENERGY STAR unit

= Actual. If unknown assume minimum qualifying standard as provided in tables above

For Example, for an 8,500 Btu/H capacity unit, with louvered sides, in an unknown multifamily location:

$$\Delta$$
kWh_{ENERGYSTAR} = (655 * 8500 * (1 / (7.7 / 1.01) – 1 / 14.7)) / 1000

= 352 kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

Non-IQ Participants:

Time of Sale: $\Delta kW = Btu/H * ((1/(CEERbase *1.01) - 1/(CEERee * 1.01)))/1000) * CF$

Early Replacement: $\Delta kW = Btu/H * ((1/EERexist - 1/(CEERee * 1.01)))/1000) * CF$

Where:

CF = Summer Peak Coincidence Factor for measure

 $= 0.3^{137}$

1.01 = Factor to convert CEER to EER (CEER includes standby and off power consumption)¹³⁸

Other variable as defined above

Time of Sale:

For example, for an 8,500 Btu/H capacity unit, with louvered sides, for an unknown location:

$$\Delta kW_{ENERGY STAR}$$
 = ((8500 * (1/(10.9 * 1.01) - 1/(14.7*1.01))) / 1000) * 0.3
= 0.060 kW

Early Replacement:

For example, a 7.7 EER, 9000Btu/h unit is removed from a home in Springfield and replaced with an ENERGY STAR unit with louvered sides:

 Δ kW for remaining life of existing unit (1st 4 years) = ((9000 * (1/7.7 - 1/(14.7 * 1.01)))/1000) * 0.3

= 0.169 kW

 Δ kW for remaining measure life (next 8 years) = ((9000 * (1/(10.9 * 1.01) - 1/(14.7 *

1.01)))/1000) * 0.3

= 0.063 kW

IQ Participants:

 $\Delta kW = Btu/H * ((1/EERexist - 1/(CEERee * 1.01)))/1000) * CF$

Where:

CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C (during system peak hour)

¹³⁷ Consistent with coincidence factors found in: RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008

¹³⁸ Since the new CEER rating includes standby and off power consumption, for peak calculations it is more appropriate to apply the EER rating, but it appears as though new units will only be rated with a CEER rating. Version 3.0 of the ENERGY STAR specification provided equivalent EER and CEER ratings and for the most popular size band the EER rating is approximately 1% higher than the CEER. See 'ENERGY STAR Version 3.0 Room Air Conditioners Program Requirements'.

 $=68\%^{139}$

 CF_{PJM} = PJM Summer Peak Coincidence Factor for Central A/C (average during PJM peak period)

 $=46.6\%^{140}$

= Factor to convert CEER to EER (CEER includes standby and off power consumption)¹⁴¹ 1.02

Other variable as defined above

For Example, for an 8,500 Btu/H capacity unit, with louvered sides, for an unknown multifamily location:

$$\Delta$$
kW _{SSP} = (8500 * (1/7.7- 1/(14.7*1.01))) / 1000 * 0.68
= 0.3613 kW Δ kW _{PJM} = (8500 * (1/7.7- 1/(14.7*1.01))) / 1000 * 0.466

= 0.2476 kW

FOSSIL FUEL SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-APL-ESRA-V11-250101

REVIEW DEADLINE: 1/1/2028

¹³⁹ Based on metering of 24 homes with central AC during PY4 and PY5 in Ameren Illinois service territory.

¹⁴⁰ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

¹⁴¹ Since the new CEER rating includes standby and off power consumption, for peak calculations it is more appropriate to apply the EER rating, but it appears as though new units will only be rated with a CEER rating. Version 3.0 of the ENERGY STAR specification provided equivalent EER and CEER ratings and for the most popular size band the EER rating is approximately 1% higher than the CEER. See 'ENERGY STAR Version 3.0 Room Air Conditioners Program Requirements'.

5.1.8 Refrigerator and Freezer Recycling

DESCRIPTION

This measure describes savings from the retirement and recycling of inefficient but operational refrigerators and freezers. Savings are provided based on a 2013 workpaper provided by Cadmus that used data from a 2012 ComEd metering study and metering data from a Michigan study, to develop a regression equation that uses key inputs describing the retired unit. The savings are equivalent to the Unit Energy Consumption of the retired unit and should be claimed for the assumed remaining useful life of that unit. A part use factor is applied to account for those secondary units that are not in use throughout the entire year. The reader should note that the regression algorithm is designed to provide an accurate portrayal of savings for the population as a whole and includes those parameters that have a significant effect on the consumption. The precision of savings for individual units will vary.

For Net to Gross factor considerations, please refer to section 4.2 Appliance Recycling Protocol of Appendix A: Illinois Statewide Net-to-Gross Methodologies of Volume 4.0 Cross Cutting Measures and Attachments.

This measure was developed to be applicable to the following program types: ERET.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

N/A

DEFINITION OF BASELINE EQUIPMENT

The existing inefficient unit must be operational and have a capacity of between 10 and 30 cubic feet.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The estimated remaining useful life of the recycling units is 6.5 years. 142

DEEMED MEASURE COST

Measure cost includes the customer's value placed on their lost amenity, any customer transaction costs, and the cost of pickup and recycling of the refrigerator/freezer and should be based on actual costs of running the program. The payment (bounty) a Program Administrator makes to the customer serves as a proxy for the value the customer places on their lost amenity and any customer transaction costs. If unknown assume \$170 per unit.¹⁴³

LOADSHAPE

Loadshape R05 - Residential Refrigerator

COINCIDENCE FACTOR

The coincidence factor is assumed 1.081 for Refrigerators and 1.028 for Freezers¹⁴⁴.

2025 IL TRM v13.0 Vol. 3 September 20, 2024 FINAL

¹⁴² DOE refrigerator and freezer survival curves are used to calculate RUL for each equipment age and develop a RUL schedule. The RUL of each unit in the ARCA database is calculated and the average RUL of the dataset serves as the final measure RUL. Refrigerator recycling data from ComEd (PY7-PY9) and Ameren (PY6-PY8) were used to determined EUL with the DOE survival curves from the 2009 TSD. A weighted average of the retailer ComEd data and the Ameren data results in an average of 6.5 years. See Navigant 'ComEd Effective Useful Life Research Report', May 2018.

¹⁴³ The \$170 default assumption is based on \$120 cost of pickup and recycling per unit and \$50 proxy for customer transaction costs and value customer places on their lost amenity. \$120 is cost of pickup and recycling based on similar Efficiency Vermont program. \$50 is bounty, based on Ameren and ComEd program offerings as of 7/27/15.

¹⁴⁴ Cadmus memo, February 12, 2013; "Appliance Recycling Update"

Algorithm

CALCULATION OF SAVINGS

ENERGY SAVINGS¹⁴⁵

Refrigerators:

Energy savings for refrigerators are based upon a linear regression model using the following coefficients: 146

Independent Variable Description	Estimate Coefficient
Intercept	83.324
Age (years)	3.678
Pre-1990 (=1 if manufactured pre-1990)	485.037
Size (cubic feet)	27.149
Dummy: Side-by-Side (= 1 if side-by-side)	406.779
Dummy: Primary Usage Type (in absence of the program) (= 1 if primary unit)	161.857
Interaction: Located in Unconditioned Space x CDD/365.25	15.366
Interaction: Located in Unconditioned Space x HDD/365.25	-11.067

ΔkWh = [83.32 + (Age * 3.68) + (Pre-1990 * 485.04) + (Size * 27.15) + (Side-by-side * 406.78) + (Proportion of Primary Appliances * 161.86) + (CDD/365.25 * unconditioned * 15.37) + (HDD/365.25 *unconditioned *-11.07)] * Part Use Factor

Where:

Age = Age of retired unit

Pre-1990 = Pre-1990 dummy (=1 if manufactured pre-1990, else 0)

Size = Capacity (cubic feet) of retired unit

Side-by-side = Side-by-side dummy (= 1 if side-by-side, else 0)

Primary Usage = Primary Usage Type (in absence of the program) dummy

(= 1 if Primary, else 0)

Interaction: Located in Unconditioned Space x CDD/365.25

(=1 * CDD/365.25 if in unconditioned space)

CDD = Cooling Degree Days

= Dependent on location: 147

Climate Zone (City based upon)	CDD 65	CDD/365.25
1 (Rockford)	877	2.40

¹⁴⁵ Based on the specified regression, a small number of units may have negative energy and demand consumption. These are a function of the unit size and age, and should comprise a very small fraction of the population. While on an individual basis this result is counterintuitive it is important that these negative results remain such that as a population the average savings is appropriate.

2025 IL TRM v13.0 Vol. 3_September 20, 2024_FINAL

¹⁴⁶ Energy savings are based on an average 30-year TMY temperature of 51.1 degrees. Coefficients provided in July 30, 2014 memo from Cadmus: "Appliance Recycling Update no single door July 30, 2014".

 $^{^{147}}$ National Centers for Environmental Information (NCEI) Annual Normals, from 2006 - 2020, calculated with a base temp of 65° F.

Climate Zone (City based upon)	CDD 65	CDD/365.25
2 (Chicago)	1047	2.87
3 (Springfield)	1183	3.24
4 (Belleville)	1641	4.49
5 (Marion/Murphysboro)	1450	3.97

Interaction: Located in Unconditioned Space x HDD/365.25

(=1 * HDD/365.25 if in unconditioned space)

HDD = Heating Degree Days

= Dependent on location: 148

Climate Zone (City based upon)	HDD 65	HDD/365.25
1 (Rockford)	6414	17.56
2 (Chicago)	5963	16.33
3 (Springfield)	5368	14.70
4 (Belleville)	4162	11.39
5 (Marion/Murphysboro)	4413	12.08

Part Use Factor = To account for those units that are not running throughout the entire year. The most recent part-use factor participant survey results available at the start of the current program year shall be used. 149 For illustration purposes, this example uses 0.93. 150

For example, the program averages for AIC's ARP in PY4 produce the following equation:

$$\Delta$$
kWh = [83.32 + (22.81 * 3.68) + (0.45 * 485.04) + (18.82 * 27.15) + (0.17 * 406.78) + (0.34 * 161.86) + (1.29 * 15.37) + (6.49 * -11.07)] * 0.93 = 969 * 0.93 = 900.9 kWh

Freezers:

Energy savings for freezers are based upon a linear regression model using the following coefficients:151

Independent Variable Description	Estimate Coefficient
Intercept	132.122
Age (years)	12.130
Pre-1990 (=1 if manufactured pre-1990)	156.181
Size (cubic feet)	31.839
Chest Freezer Configuration (=1 if chest freezer)	-19.709
Interaction: Located in Unconditioned Space x	9.778

¹⁴⁸ National Climatic Data Center, calculated from 1981-2010 climate normals with a base temp of 65°F.

2025 IL TRM v13.0 Vol. 3 September 20, 2024 FINAL

¹⁴⁹ For example, the part-use factor that shall be applied to the current program year t (PYt) for savings verification purposes should be determined through the PYt-2 participant surveys conducted in the respective utility's service territory, if available. If an evaluation was not performed in PYt-2 the latest available evaluation should be used.

¹⁵⁰ Most recent refrigerator part-use factor from Ameren Illinois PY5 evaluation.

¹⁵¹ Energy savings are based on an average 30-year TMY temperature of 51.1 degrees. Coefficients provided in January 31, 2013 memo from Cadmus: "Appliance Recycling Update".

Independent Variable Description	Estimate Coefficient
CDD/365.25	
Interaction: Located in Unconditioned Space x HDD/365.25	-12.755

Where:

Age = Age of retired unit

Pre-1990 = Pre-1990 dummy (=1 if manufactured pre-1990, else 0)

Size = Capacity (cubic feet) of retired unit

Chest Freezer = Chest Freezer dummy (= 1 if chest freezer, else 0)

Interaction: Located in Unconditioned Space x CDD/365.25

(=1 * CDD/365.25 if in unconditioned space)

CDD = Cooling Degree Days (see table above)

Interaction: Located in Unconditioned Space x HDD/365.25

(=1 * HDD/365.25 if in unconditioned space)

HDD = Heating Degree Days (see table above)

Part Use Factor

= To account for those units that are not running throughout the entire year. The most recent part-use factor participant survey results available at the start of the current program year shall be used. 152 For illustration purposes, the example uses 0.85. 153

For example, the program averages for AIC's ARP in PY4 produce the following equation:

 Δ kWh = [132.12 + (26.92 * 12.13) + (0.6 * 156.18) + (15.9 * 31.84) + (0.48 * -19.71) + (6.61 * 9.78) + (1.3 * -12.75)] * 0.825 = 977 * 0.825 = 905 kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = kWh/8766 * CF$

Where:

kWh = Savings provided in algorithm above

CF = Coincident factor defined as summer kW/average kW

= 1.081 for Refrigerators = 1.028 for Freezers¹⁵⁴

¹⁵² For example, the part-use factor that shall be applied to the current program year t (PYt) for savings verification purposes should be determined through the PYt-2 participant surveys conducted in the respective utility's service territory, if available. If an evaluation was not performed in PYt-2 the latest available evaluation should be used.

 $^{^{\}rm 153}$ Most recent freezer part-use factor from Ameren Illinois Company PY5 evaluation.

¹⁵⁴ Cadmus memo, February 12, 2013; "Appliance Recycling Update"

For example, the program averages for AIC's ARP in PY4 produce the following equation:

 $\Delta kW = 806/8766 * 1.081$

= 0.099 kW

FOSSIL FUEL SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-APL-RFRC-V09-240101

REVIEW DEADLINE:

Note: No active programs utilizing this measure in IL as of 2023. Reliability update is required if measure if to be taken up again.

5.1.9 Room Air Conditioner Recycling

DESCRIPTION

This measure describes the savings resulting from running a drop off service taking existing residential, inefficient Room Air Conditioner units from service, prior to their natural end of life. This measure assumes that though a percentage of these units will be replaced this is not captured in the savings algorithm since it is unlikely that the incentive made someone retire a unit that they weren't already planning to retire. The savings therefore relate to the unit being taken off the grid as opposed to entering the secondary market. The Net to Gross factor applied to these units should incorporate adjustments that account for those participants who would have removed the unit from the grid anyway.

This measure was developed to be applicable to the following program types: ERET. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

N/A. This measure relates to the retiring of an existing inefficient unit.

DEFINITION OF BASELINE EQUIPMENT

The baseline condition is the existing inefficient room air conditioning unit.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The assumed remaining useful life of the existing room air conditioning unit being retired is 4 years. 155

DEEMED MEASURE COST

The actual implementation cost for recycling the existing unit should be used.

LOADSHAPE

Loadshape R08 - Residential Cooling

COINCIDENCE FACTOR

The coincidence factor for this measure is assumed to be 30%. 156

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = ((FLH_{RoomAC} * Btu/hr * (1/EERexist))/1000)$

Where:

FLH_{RoomAC} = Full Load Hours of room air conditioning unit

= dependent on location: 157

¹⁵⁵ A third of assumed measure life for Room AC.

¹⁵⁶ Consistent with coincidence factors found in: RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008.

¹⁵⁷ Full load hours for room AC is significantly lower than for central AC. The average ratio of FLH for Room AC (provided in RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008) to FLH for Central Cooling for

Climate Zone (City based upon)	FLH _{RoomAC}
1 (Rockford)	235
2 (Chicago)	261
3 (Springfield)	340
4 (Belleville)	447
5 (Marion)	396
Weighted Average ¹⁵⁸	
ComEd	256
Ameren	364
Statewide	286

Btu/H = Size of retired unit

= Actual. If unknown assume 8500 Btu/hr 159

EERexist = Efficiency of existing unit

 $=9.8^{160}$

For example, for an 8500 Btu/h unit in Springfield:

 Δ kWh = ((340 * 8500 * (1/9.8)) / 1000)

= 295 kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = (Btu/hr * (1/EERexist))/1000) * CF$

Where:

CF = Summer Peak Coincidence Factor for measure

 $= 0.3^{161}$

For example, an 8500 Btu/h unit:

 $\Delta kW = (8500 * (1/9.8)) / 1000) * 0.3$

= 0.26 kW

FOSSIL FUEL SAVINGS

N/A

the same location is 31%. This ratio is applied to those IL cities that have FLH for Central Cooling provided in the ENERGY STAR calculator. For other cities this is extrapolated using the FLH assumptions VEIC have developed for Central AC. There is a county mapping table in Volume 1, Section 3.7 providing the appropriate city to use for each county of Illinois.

RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008.

¹⁵⁸ Weighting for Ameren is based on electric accounts in each of the cooling zones. Weighting for ComEd and Statewide average is based on number of occupied residential housing units in each zone. ComEd is weighted average of Zones 1-2. Alternative program-weighted assumptions can be used if appropriate.

¹⁵⁹ Based on maximum capacity average from the RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008

 $^{^{160}}$ Minimum Federal Standard for most common room AC type (8000-14,999 capacity range with louvered sides) per federal standards from 10/1/2000 to 5/31/2014. Note that this value is the EER value, as CEER were introduced later.

 $^{^{\}rm 161}$ Consistent with coincidence factors found in:

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-APL-RARC-V04-240101

REVIEW DEADLINE: 1/1/2025

5.1.10 ENERGY STAR Clothes Dryer

DESCRIPTION

This measure relates to the installation of a residential clothes dryer meeting the ENERGY STAR criteria. ENERGY STAR qualified clothes dryers save energy through a combination of more efficient drying and reduced runtime of the drying cycle. More efficient drying is achieved through heat pump technology, increased insulation, modifying operating conditions such as air flow and/or heat input rate, improving air circulation through better drum design or booster fans, and improving efficiency of motors. Reducing the runtime of dryers through automatic termination by temperature and moisture sensors is believed to have the greatest potential for reducing energy use in clothes dryers. ENERGY STAR provides criteria for both gas and electric clothes dryers.

This measure was developed to be applicable to the following program types: TOS, NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

Clothes dryer must meet the ENERGY STAR or ENERGY STAR Most Efficient criteria, as required by the program. Units utilizing the Heat Pump designation must meet the same ENERGY STAR criteria and be classified as Heat Pump or Hybrid Heat Pump units.

DEFINITION OF BASELINE EQUIPMENT

The baseline condition is a clothes dryer meeting the minimum federal requirements for units manufactured on or after January 1, 2015. Note that the DOE Federal Standards utilize the Appendix D1 testing procedure whereas the ENERGY STAR specifications use the Appendix D2 test. In order to compare relative efficiencies, this measure uses adjusted baseline CEF values that were developed by ENERGY STAR to convert CEF-D1 values in to equivalent CEF-D2 values.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 16 years. 163

DEEMED MEASURE COST

For non-IQ participants, the incremental cost for an ENERGY STAR clothes dryer is assumed to be \$152 and \$405 for an ENERGY STAR Most Efficient dryer. 164

For IQ participants, the incremental cost for an ENERGY STAR clothes dryer is assumed to be \$246 and \$499 for an ENERGY STAR Most Efficient dryer. ¹⁶⁵

LOADSHAPE

Loadshape R17 - Residential Electric Dryer

COINCIDENCE FACTOR

The coincidence factor for this measure is 3.8%. 166

¹⁶² ENERGY STAR Market & Industry Scoping Report. Residential Clothes Dryers. Table 8. November 2011.

¹⁶³ Based on DOE Rulemaking Technical Support Document, LCC Chapter, 2011, as recommended in Navigant 'ComEd Effective Useful Life Research Report', May 2018.

¹⁶⁴ Based on the difference in installed cost for an efficient dryer (\$716) and standard dryer (\$564) (see "ACEEE Clothes Dryers.pdf").

¹⁶⁵ IQ Incremental costs factor in the assumption that a secondhand unit costs on average 50% of a new baseline unit, and that 1/3 of IQ participants would have purchased a unit on the secondhand market. See "IQ Appliance Calculations.xls" for information.

¹⁶⁶ Based on coincidence factor of 3.8% for clothes washers

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

Non Fuel Switch Measures

ΔkWh = ((Load/CEFbase * IQAdj) – Load/CEFeff) * Ncycles * %Electric

ΔTherm = ((Load/CEFbase * IQAdj) – Load/CEFeff) * Ncycles * Therm_convert * %Gas

Fuel Switch/Electrification Measures

Fuel switch / electrification measures must produce positive total energy savings (i.e., reduction in Btus at the premises) in order to qualify. This is determined as follows:

SiteEnergySavings (MMBTUs) = [FuelSwitchSavings] + [NonFuelSwitchSavings]

FuelSwitchSavings = $[((Load/CEFbase_{Gas} * IQAdj) * Ncycles * MMBtu_convert * %Gas_{Gas}] -$

[Load/CEFeff_{Elec} * Ncycles * MMBtu_convert * %Gas_{Gas}]

NonFuelSwitchSavings = [((Load/CEFbase_{Gas} * IQAdj) * Ncycles * MMBtu_convert *

 $\% Electric_{Gas}] \quad - \quad [Load/CEFeff_{Elec} \quad * \quad Ncycles \quad * \quad MMBtu_convert \quad * \quad \\$

%Electric_{Gas}]

If SiteEnergySavings calculated above is positive, the measure is eligible.

The appropriate savings claim is dependent on which utilities are supporting the measure as provided in a table below:

Measure supported by:	Electric Utility claims (kWh):	Gas Utility claims (therms):
Electric utility only	SiteEnergySavings * 1,000,000/3,412	N/A
Electric and gas utility (Note utilities may make alternative agreements to how savings are allocated as long as total MMBtu savings remains the same).	%IncentiveElectric * SiteEnergySavings * 1,000,000/3,412	%IncentiveGas * SiteEnergySavings * 10
Gas utility only	N/A	SiteEnergySavings * 10

Where:

Load

= The average total weight (lbs) of clothes per drying cycle. If dryer size is unknown, assume standard.

Dryer Size	Load (lbs) ¹⁶⁷
Standard	8.45
Compact	3

CEFbase

= Combined energy factor (CEF) (lbs/kWh) of the baseline unit is based on existing federal

¹⁶⁷ Based on ENERGY STAR test procedures.

standards energy factor and adjusted to CEF-D2 (equivalent to as if tested under Appendix D2) as performed in the ENERGY STAR analysis. ¹⁶⁸ If product class unknown, assume electric, standard.

Product Class	CEF (lbs/kWh) under Appendix D2
Vented Electric, Standard (≥ 4.4 ft³)	3.11
Vented Electric, Compact (120V) (< 4.4 ft ³)	3.01
Vented Electric, Compact (240V) (<4.4 ft ³)	2.73
Ventless Electric, Compact (240V) (<4.4 ft ³)	2.13
Vented Gas	2.84 ¹⁶⁹
Electric Heat Pump, Standard (≥ 4.4 ft³)	3.11
Electric Heat Pump, Compact (120V) (< 4.4 ft ³)	3.01

IQAdj

= Baseline consumption adjustment for IQ program participants to account for a portion of participants who would have utilized the secondary market. ¹⁷⁰

= 1.033 if IQ, 1.0 if non-IQ

CEFeff

= CEF (lbs/kWh) of the ENERGY STAR unit based on ENERGY STAR or ENERGY STAR Most Efficient requirements.¹⁷¹ If product class unknown, assume electric, standard.

	ENERGY STAR	ENERGY STAR Most Efficient
Product Class	CEF (lbs/kWh)	CEF (lbs/kWh)
Vented or Ventless Electric, Standard (≥ 4.4 ft³)	3.93	4.3
Vented or Ventless Electric, Compact (120V) (< 4.4 ft ³)	3.80	4.3
Vented Electric, Compact (240V) (< 4.4 ft ³)	3.45	4.3
Ventless Electric, Compact (240V) (< 4.4 ft ³)	2.68	3.7
Vented Gas	3.48 ¹⁷²	3.8
Electric Heat Pump, Standard (≥ 4.4 ft³)	3.93	6.5 ¹⁷³
Electric Heat Pump, Compact (< 4.4 ft ³)	3.36	6.2 ¹⁷⁴

¹⁶⁸ ENERGY STAR Draft 2 Version 1.0 Clothes Dryers Data and Analysis

¹⁶⁹ Federal standards report CEF for gas clothes dryers in terms of lbs/kWh. To determine gas savings, this number is later converted to therms.

¹⁷⁰ It is assumed that a second-hand unit is on average 2/3 of a measure's EUL years old (11 years). The current Federal Standard became effective in 2015 so the previous standard is used to estimate base consumption for a second hand unit, and further increased by an estimate of 0.4% * 11 years (based on review of the refrigerator/freezer regression algorithm used in the 5.1.8 Refrigerator and Freezer Recycling measure) to account for degradation of performance over time. This second hand consumption was then weighted 1/3: 2/3 current new baseline to estimate a multiplier for IQ participants. See "IQ Appliance Calculations.xls" for information.

¹⁷¹ ENERGY STAR Clothes Dryers Key Product Criteria.

¹⁷² Federal standards report CEF for gas clothes dryers in terms of lbs/kWh. To determine gas savings, this number is later converted to therms.

¹⁷³ Average CEF of available standard ENERGY STAR Clothes Dryers with Heat Pump technology. EPA ENERGY STAR. May 2022. https://www.energystar.gov/productfinder/product/certified-clothes-dryers/.

¹⁷⁴ Average CEF of available compact ENERGY STAR Clothes Dryers with Heat Pump technology. EPA ENERGY STAR. May 2022. https://www.energystar.gov/productfinder/product/certified-clothes-dryers/.

Ncycles = Number of dryer cycles per year. Use actual data if available. If unknown, use 259 cycles

per year. 175

%Electric = The percent of overall savings coming from electricity

= 100% for electric dryers, 16% for gas dryers 176

Therm_convert = Conversion factor from kWh to Therm

= 0.03412

= Percent of overall savings coming from gas %Gas

= 0% for electric units and 84% for gas units¹⁷⁷

MMBtu_convert = Conversion factor from kWh to MMBtu

= 0.003412

¹⁷⁵ Loads per week was estimated by taking the weighted average of the number of loads per week (midpoint used where loads per week is a range and the weights are the share of respondents falling into each number of loads per week response bin). This estimate was scaled to an IL-specific value by applying a ratio developed using the 2009 state specific values for the states in the East North Central portion of the Midwest Region. Reduced by 6% to maintain prior ratio of dryer to clothes washer loads of 94%.

¹⁷⁶ %Electric accounts for the fact that some of the savings on gas dryers comes from electricity (motors, controls, etc). 16% was determined using a ratio of the electric to total savings from gas dryers given by ENERGY STAR Draft 2 Version 1.0 Clothes Dryers Data and Analysis.

^{177 %}Gas accounts for the fact that some of the savings on gas dryers comes from electricity (motors, controls, etc). 84% was determined using a ratio of the gas to total savings from gas dryers given by ENERGY STAR Draft 2 Version 1.0 Clothes Dryers Data and Analysis.

Electric examples, for a non- IQ Time of Sale, standard, vented, electric ENERGY STAR clothes dryer:

$$\Delta$$
kWh = (((8.45/3.11 * 1) – 8.45/3.93) * 259 * 100%)
= 147 kWh

For an IQ Time of Sale, standard, vented, electric ENERGY STAR clothes dryer:

$$\Delta$$
kWh = (((8.45/3.11 * 1.033) - 8.45/3.93) * 259 * 100%)
= 170 kWh

Gas example, for a non-IQ Time of Sale, a standard, vented, gas ENERGY STAR clothes dryer:

$$\Delta$$
Therm = ((8.45/2.84 * 1) - 8.45/3.48) * 259 * 0.03412 * 0.84
= 4.06 therms
 Δ kWh = (((8.45/2.84 * 1) - 8.45/3.48) * 259 * 0.16)
= 22.7 kWh

Fuel switch example, for a non-IQ Time of Sale, ENERGYSTAR Most Efficient Heat Pump clothes dryer in place of a baseline gas dryer:

%Electric_{Gas}]
= ((8.45/2.84 * 1) * 259 * 0.003412 * 0.16) - (8.45/5.7 * 259 * 0.003412 * 0.16)
= 0.21 MMBtu

SiteEnergySavings (MMBTUs) = 1.11 + 0.21

= 1.32 MMBtu

If supported by an electric utility: Δ kWh = Δ SiteEnergySavings * 1,000,000 / 3,412 = 1.32 * 1,000,000/3412

= 386.9 kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

For non-fuel switch measures:

```
ΔkW = (((Load/CEFbase * IQAdj) – Load/CEFeff) * Ncycles * %Electric)/Hours * CF
```

For fuel switch measures:

 $\Delta kW = ([(Load/CEFeff_{Gas} * IQAdj) * Ncycles * %Electric_{Gas}] - [Load/CEFeff_{Elec} * Ncycles * Mcycles * Mcyc$

%Electric_{Electric}])/Hours * CF

Where:

Hours = Annual run hours of clothes dryer. Use actual data if available. If unknown, use 259

hours per year.¹⁷⁸

CF = Summer Peak Coincidence Factor for measure

 $=3.8\%^{179}$

For example, for a non-IQ Time of Sale, standard, vented, electric ENERGY STAR clothes dryer:

 Δ kW = (((8.45/3.11 * 1) – 8.45/3.93) * 259 * 100%)/259 * 3.8%

= 0.0215 kW

FOSSIL FUEL SAVINGS

Calculation provided together with Electric Energy Savings above.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

COST EFFECTIVENESS SCREENING AND LOAD REDUCTION FORECASTING WHEN FUEL SWITCHING

This measure can involve fuel switching from fossil fuel to electric.

For the purposes of forecasting load reductions due to fuel switch projects per Section 16-111.5B, changes in site energy use at the customer's meter (using ΔkWh algorithm below) adjusted for utility line losses (at-the-busbar savings), customer switching estimates, NTG, and any other adjustment factors deemed appropriate, should be used.

The inputs to cost effectiveness screening should reflect the actual impacts on the electric and fuel consumption at the customer meter and, for fuel switching measures, this will not match the output of the calculation/allocation methodology presented in the "Electric Energy Savings" and "Fossil Fuel Savings" sections above. Therefore in addition to the calculation of savings claimed, the following values should be used to assess the cost effectiveness of the measure.

ΔTherms = [Gas Dryer Consumption Replaced]

= [((Load/CEFbase_{Gas} * IQAdj) * Ncycles * Therm_convert * %Gas_{Gas}]

ΔkWh = [Gas Dryer Electric Consumption Replaced] - [Electric Dryer Consumption Added]

= [(Load/CEFbaseGas * IQAdj) * Ncycles * %ElectricGas] – [Load/CEFeffElec * Ncycles *

 $\%Electric_{Electric}$

¹⁷⁸ ENERGY STAR qualified dryers have a maximum test cycle time of 80 minutes. Assume one hour per dryer cycle.

¹⁷⁹ Based on coincidence factor of 3.8% for clothes washers.

MEASURE CODE: RS-APL-ESDR-V07-250101

REVIEW DEADLINE: 1/1/2026

5.1.11 ENERGY STAR Water Coolers

DESCRIPTION

Water coolers are a home appliance that offer consumers the ability to enjoy hot and/or cold water on demand. This measure is the characterization of the purchasing and use of an ENERGY STAR certified water cooler in place of a conventional water cooler.

This measure was developed to be applicable to the following program types: TOS, NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The high efficiency equipment is an ENERGY STAR certified water cooler meeting the ENERGY STAR 3.0 efficiency criteria.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a standard or conventional, non-ENERGY STAR certified water cooler.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The estimated useful life for a water cooler is 10 years. 180

DEEMED MEASURE COST

The incremental cost for this measure is estimated at \$60.181

LOADSHAPE

Loadshape C53: Flat

COINCIDENCE FACTOR

The summer peak coincidence factor is assumed to be 1.0.

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

$$\Delta kWh = (kWh_{base} - kWh_{ee}) * Days$$

Where:

kWh_{base} = Daily energy use (kWh/day) for baseline water cooler¹⁸²

Type of Water Cooler	kWhbase
Hot and Cold Water – Storage	0.875
Hot and Cold Water – On Demand	0.811
Cold Water Only	0.826

kWh_{ee} = Daily energy use (kWh/day) for ENERGY STAR water cooler¹⁸³

15

¹⁸⁰ Savings Calculator for ENERGY STAR Certified Water Coolers, last updated 2009.

¹⁸¹ VEIC analysis using cost data collected from retail vendor. Supporting calculations in "5.1.11_ES Water Coolers_Analysis_April 2023.xlsx"

¹⁸² CEC Product list accessed April 2023. Supporting calculations in "5.1.11_ES Water Coolers_Analysis_April 2023.xlsx".

¹⁸³ Energy Star QPL accessed July 2023. Supporting calculations in "5.1.11_ES Water Coolers_Analysis_April 2023.xlsx".

Type of Water Cooler	kWhee
Hot and Cold Water – Storage	0.689
Hot and Cold Water – On Demand	0.138
Cold Water Only	0.139

Days = Number of days per year that the water cooler is in use

 $= 365 \text{ days}^{184}$

Energy Savings:

Type of Water Cooler	ΔkWh
Hot and Cold Water – Storage	68.2
Hot and Cold Water – On Demand	245.7
Cold Water Only	250.8

DEMAND SAVINGS

 $\Delta kW = \Delta kWh / Hours * CF$

Where:

Hours = Number of hours per year water cooler is in use

= 8760 hours 185

CF = Summer Peak Coincidence Factor for measure

= 1.0

Demand Savings:

Type of Water Cooler	ΔkW
Hot and Cold Water - Storage	0.0078
Hot and Cold Water – On Demand	0.0280
Cold Water Only	0.0286

FOSSIL FUEL SAVINGS

N/A

WATER AND OTHER NON-ENERGY IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-APL-WTCL-V02-240101

REVIEW DEADLINE: 1/1/2029

¹⁸⁴ Assumed 365 days per year and 24 hours per day as utilized in daily energy consumption from ENERGY STAR Program Requirements Product Specification 3.0 for Water Coolers Test Method.

¹⁸⁵ Assumed 365 days per year and 24 hours per day as utilized in daily energy consumption from ENERGY STAR Program Requirements Product Specification 3.0 for Water Coolers Test Method.

5.1.12 Ozone Laundry

DESCRIPTION

A new ozone laundry system is added-on to new or existing residential clothes washing machine(s) or washing machines located in multifamily building common areas. The system generates ozone (O₃), a naturally occurring molecule, which helps clean fabrics by chemically reacting with soils in cold water. Adding an ozone laundry system(s) eliminate the use of chemicals, detergents, and hot water by residential washing machine(s).

Energy savings will be achieved at the domestic hot water heater as it will no longer supply hot water to the washing machine. Cold water usage by the clothes washer will increase, but overall water usage will stay constant.

This measure was developed to be applicable to the following program types: TOS, RNC, RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

A new, single-unit ozone laundry system(s) rated for residential clothes washing machines is added-on to new or existing residential clothes washing machines. The ozone laundry system must be connected to both the hot and cold water inlets of the clothes washing machine so that hot water from the domestic hot water heater is no longer provided to the clothes washer.

The ozone laundry system(s) must transfer ozone into the water through:

- Venturi injection
- Bubble diffusion
- Additional applications may be considered upon program review and approval on a case by case basis

DEFINITION OF BASELINE EQUIPMENT

The base case equipment is a conventional residential washing machine with no ozone generator installed. The washing machine is provided hot water from a domestic hot water heater.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The measure equipment effective useful life (EUL) is estimated at 8 years based on the typical lifetime of products currently available in the market. 186

DEEMED MEASURE COST

The deemed measure cost is \$300 for a new single-unit ozone laundry system. 187

LOADSHAPE

Loadshape R01 – Residential Clothes Washer

COINCIDENCE FACTOR

The coincidence factor for this measure is 3.8%. 188

¹⁸⁶ Average based on conversations with manufacturers and distributors of the four residential ozone laundry systems tested in the 2018 GTI Residential Ozone Laundry Field Demonstration (O3 Pure, Pure Wash, Eco Washer, Scent Crusher).

¹⁸⁷ 2018 GTI Residential Ozone Laundry Field Demonstration (May 2018).

¹⁸⁸ Calculated from Itron eShapes, 8760 hourly data by end use for Missouri, as provided by Ameren.

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

ΔkWh = kWhHotWash * (%HotWash_{base} - %HotWash_{Ozone})

Where:

kWhHotWash = (%ElectricDHW * Capacity * IWF * %HotWater * (Tout - Tin) * 8.33 * 1.0 * Ncycles) /

(RE_electric * 3.412)

%ElectricDHW = Proportion of water heating supplied by electric heating

= 100 % for Electric

= 0 % for Fossil Fuel

			Location		
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown
Ameren ¹⁸⁹	24%	25%	40%	43%	28%
ComEd ¹⁹⁰	8	3%	1	.1%	9%
People's Gas ¹⁹¹	2.0%	2.0%	1.7%	2.1%	2.0%
Northshore Gas ¹⁹²	1.3%	1.8%	10.0%	2.4%	2.3%
Nicor Gas ¹⁹³	1.3%	1.8%	10.0%	2.4%	2.3%
All DUs ¹⁹⁴					25%

<u>Note</u>: If a measure is supported by a gas and electric utility through a joint program, and it is unknown whether the participant has a gas supply, the electric utility values in the table above should be used. If it is known that the participant has a gas supply, the values from the gas utility above should be applied.

Capacity = Clothes washer capacity (cubic feet).

= Actual. If unknown, assume 5.0 cubic feet. 195

IWF = Integrated water factor (gallons/cycle/ft³).

= Actual. If unknown, use the following values

Efficiency Level	IWF (gallons/cycle/ft3)		
Efficiency Level	Top loading > 2.5 Cu ft	Front Loading > 2.5 Cu ft	

¹⁸⁹ Provided by AEG from the 2020 Market Potential Study completed for AIC, as well as AIC Income Qualified Initiative: 2021 Participant Survey Results Memo (February 1, 2022) p. 17.

192 Ibid.

¹⁹⁰ Commonwealth Edison Residential Baseline Study (2020). p.4.4 & 4.19; Section 4-7 Water Heating. Prepared by Itron.

¹⁹¹ Implementation Contractors data from Peoples Gas and North Shore Gas for PY2022-2023.

¹⁹² Ibid.

 $^{^{193}}$ Comparable service area & customers to NSG, therefore using their survey data.

¹⁹⁴ For the weighted average calculations, please see the Analysis file. PGL, NSG, Nicor & gas customers were assumed to follow the provided split. ComEd total customers, minus overlap with PGL,NSG & Nicor, therefore electric only homes. Ameren is total customers minus Nicor.

¹⁹⁵ Average data from GTI Residential Ozone Laundry Field Demonstration (May 2018). As an add on to existing equipment it is assumed this is a larger capacity than the assumption for new Clothes Washers as old machines tended to have larger capacities. See 'Residential Ozone Summary Calcs_2019.xlsx' and 'Multifamily Ozone Summary Calcs_2019.xlsx' for more information. If utilities have specific evaluation results providing a more appropriate assumption for homes in a particular market or geographical area then that should be used.

Federal Standard (up to January 1, 2018)	8.4	4.7
Federal Standard (after January 1, 2018) – Use if unit level is unknown.	6.5	4.7
ENERGY STAR (as of February 2018)	4.3	3.2
CEE Tier 2	3.2	3.2

%HotWater

= Percentage of water usage that is supplied by the domestic hot water heater when the hot or warm wash cycles are selected. 196

Single-Family Home	Multifamily
0.1759	0.2960

T_{OUT} = Tank temperature

= 125°F

T_{IN} = Incoming water temperature from well or municipal system

= 50.7°F 197

8.33 = Specific weight of water (lbs/gallon)

1.0 = Heat capacity of water (Btu/lb °F)

Ncycles = Number of Cycles per year

Single-Family Home	Multifamily
276 ¹⁹⁸	1,243 ¹⁹⁹

RE_electric = Recovery efficiency of electric water heater

= 0.98²⁰⁰ for Electric Resistance

= 3.51²⁰¹ for Electric HPWH

3412 = Btus to kWh conversion (Btu/kWh)

%HotWash_{base} = Average percentage of loads that use hot or warm water with baseline equipment. ²⁰²

_

¹⁹⁶ Averaged data from GTI Residential Ozone Laundry Field Demonstration (May 2018). Hot and warm wash cycles were combined because data from the EIA Residential Energy Consumption Survey (RECS) 2015 East North Central Region show that, of the total hot and warm washes that occur, over 96% are warm washes. See 'Residential Ozone Summary Calcs_2019.xlsx' and 'Multifamily Ozone Summary Calcs_2019.xlsx' for more information.

¹⁹⁷ Table 4 in Chen, et. al., "Calculating Average Hot Water Mixes of Residential Plumbing Fixtures", June 2020, reports a value of 50.7°F for inlet water temperature for U.S. Census Division 3.

¹⁹⁸ Loads per week was estimated by taking the weighted average of the number of loads per week (midpoint used where loads per week is a range and the weights are the share of respondents falling into each number of loads per week response bin). This estimate was scaled to an IL-specific value by applying a ratio developed using the 2009 state specific values for the states in the East North Central portion of the Midwest Region.

If utilities have specific evaluation results providing a more appropriate assumption for single-family or Multifamily homes, in a particular market, or geographical area then that should be used.

¹⁹⁹ DOE Technical Support Document Chapter 6, 2010 https://www.regulations.gov/contentStreamer?documentId=EERE-2006-STD-0127-0118&attachmentNumber=8&disposition=attachment&contentType=pdf

²⁰⁰ Review of AHRI database shows that electric water heaters have a recovery efficiency of 98%.

²⁰¹ Review of AHRI database shows that Electric Heat Pump Water Heaters support this recovery efficiency. For the raw data, and calculations, please see AHRI_RES Water Heaters 2022.xlsx.

²⁰² GTI Residential Ozone Laundry Field Demonstration (May 2018). See 'Residential Ozone Summary Calcs_2019.xlsx' and 'Multifamily Ozone Summary Calcs_2019.xlsx' for more information.

Single-Family Home	Multifamily
0.7743	0.7438

%HotWash_{Ozone} = Percentage of loads that use hot or warm water with efficient equipment.

= 0.0

For example, a residential ozone laundry system is installed in a single-family home with an electric domestic hot water heater. The capacity and IWF of the baseline equipment is unknown.

$$\Delta$$
kWh = (1 * 5.0 * 6.5 * 0.1759 * (125 – 50.7) * 8.33 * 1.0 * 276) / (0.98 * 3,412) * (0.7743 – 0)
= 226 kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh/Hours * CF$

Where:

ΔkWh = Energy Savings as calculated above

Hours = Assumed Run hours of Clothes Washer²⁰³

Single-Family Home Multifamily
276 1,243

CF = Summer Peak Coincidence Factor for measure.

 $= 0.038^{204}$

For example, a residential ozone laundry system is installed in a single-family home with an electric domestic hot water heater. The capacity and IWF of the baseline equipment is unknown.

 Δ kW = 226/276 * 0.038 = 0.0311kW

FOSSIL FUEL SAVINGS

ΔTherm = ThermHotWash * (%HotWash_{base} - %HotWash_{Ozone})

Where:

ThermHotWash = (%FossilDHW * Capacity * IWF * %HotWater * $(T_{OUT} - T_{IN})$ * 8.33 * 1.0 * Ncycles) / (RE gas * 100,000)

%FossilDHW = Percentage of DHW savings assumed to be fossil fuel

= 100 % for Fossil Fuel

= 0 % for Electric

= If unknown²⁰⁵, use the following table:

²⁰³ Based on a weighted average of 276 clothes washer cycles per year assuming an average load runs for one hour.

²⁰⁴ Calculated from Itron eShapes, 8760 hourly data by end use for Missouri, as provided by Ameren.

²⁰⁵ Based on the average % electricity used for water heating in Unknown residential structure types across all utilities covered by the IL program. Residence types include: SF, SF LI, MF & MF LI. Utilities included: Ameren, ComEd, People's Gas, Northshore Gas & Nicor. Please see subsequent table and citations for specific sources.

	Location				
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown
Ameren ²⁰⁶	76%	75%	60%	57%	72%
ComEd ²⁰⁷	92%		89%		91%
People's Gas ²⁰⁸	97.9%	98.0%	98.3%	97.6%	97.8%
Northshore Gas ²⁰⁹	98.5%	98.2%	90.0%	97.6%	97.6%
Nicor Gas ²¹⁰	98.5%	98.2%	90.0%	97.6%	97.6%
All DUs ²¹¹					75%

<u>Note</u>: If a measure is supported by a gas and electric utility through a joint program, and it is unknown whether the participant has a gas supply, the electric utility values in the table above should be used. If it is known that the participant has a gas supply, the values from the gas utility above should be applied.

RE gas

= Recovery efficiency of gas water heater

Single-Family Homes	Multifamily
79% ²¹²	67% ²¹³

100.000

= Btus to Therms conversion (Btu/Therm).

For example, a residential ozone laundry system is installed in a single-family home with a gas domestic hot water heater. The capacity and IWF of the baseline equipment is unknown.

$$\Delta$$
Therms = $(1 * 5.0 * 6.5 * 0.1759 * (125 - 50.7) * 8.33 * 1.0 * 276)/(0.79 * 100,000)*(0.7743 - 0)$
= 9.6 Therms

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

²⁰⁶ Provided by AEG from the 2020 Market Potential Study completed for AIC, as well as AIC Income Qualified Initiative: 2021 Participant Survey Results Memo (February 1, 2022) p. 17.

²⁰⁷ Commonwealth Edison Residential Baseline Study (2020). p.4.4 & 4.19; Section 4-7 Water Heating. Prepared by Itron.

²⁰⁸ Residential Appliance Saturation Survey of natural gas for space heating and water heating (2021). Note, Multifamily customers have a residential billing rate code and responded on the survey that they live in an apartment or condominium in a building that has either 2-4 or 5+ units.

²⁰⁹ Ibid.

²¹⁰ Comparable service area & customers to NSG, therefore using their survey data.

²¹¹ For the weighted average calculations, please see the Analysis file. PGL, NSG, Nicor & gas customers were assumed to follow the provided split. ComEd total customers, minus overlap with PGL,NSG & Nicor, therefore gas only homes. Ameren is total customers minus Nicor.

²¹² DOE Final Rule discusses Recovery Efficiency with an average around 0.76 for Gas Fired Storage Water heaters and 0.78 for standard efficiency gas fired tankless water heaters up to 0.95 for the highest efficiency gas fired condensing tankless water heaters. These numbers represent the range of new units however, not the range of existing units in stock. Review of AHRI Directory suggests range of recovery efficiency ratings for new Gas DHW units of 70-87%. Average of existing units is estimated at 79%.

²¹³ Water heating in Multifamily buildings is often provided by a larger central boiler. This suggests that the average recovery efficiency is somewhere between a typical central boiler efficiency of 0.59 and the 0.75 for single family homes. An average efficiency of 0.67 is used for this analysis as a default for Multifamily buildings.

DEEMED O&M COST ADJUSTMENT CALCULATION

LAUNDRY DETERGENT SAVINGS

Annual savings from not purchasing laundry detergent that are realized by efficient equipment end-user(s) (\$/year).

Detergent savings per year = Detergent_cost * Ncycles

Where:

Detergent_cost = Average laundry detergent cost per load (\$/load).

 $= 0.16^{214}$

For example, a residential ozone laundry system is installed in a single-family home.

Detergent savings per year = 0.16 * 276

= \$44.16

MEASURE CODE: RS-APL-OZNE-V07-250101

REVIEW DEADLINE: 1/1/2026

²¹⁴ Based on cost analysis of products available on <u>www.Jet.com</u> and <u>www.Amazon.com</u>.

5.1.13 Income Qualified: ENERGY STAR and CEE Tier 2 Room Air Conditioner - Retired 12/31/2014

Measure combined with 5.1.7 ENERGY STAR and CEE Tier 2 Room Air Conditioner.

5.1.14 Residential Induction Cooking Appliances

DESCRIPTION

A fully electric range with an electric oven and an induction cooktop or a freestanding induction cooktop installed in place of an electric range with an electric resistance cooktop, natural gas range, or a freestanding electric resistance cooktop.

This measure was developed to be applicable to the following program types: TOS, NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient equipment is defined as a freestanding cooktop that heats cooking vessels using electrical induction or a range with an electric resistance oven and an electric induction cooktop for residential applications.

DEFINITION OF BASELINE EQUIPMENT

The baseline reflects the cooking efficiencies of electric resistance cooktops and gas cooktops. Cooking efficiency is defined as the ratio of energy absorbed by the object being heated (food, water, etc.) and the energy consumed by the appliance.

Cooktop Type	Cooking Efficiency ²¹⁵
Electric Resistance	77%
Natural Gas	32%

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The assumed lifetime of the measure is 16 years.²¹⁶

DEEMED MEASURE COST

The incremental cost for ovens with induction cooktops compared to a baseline oven with resistance or gas cooktop is assumed to be \$949 and the incremental cost for induction cooktop only over resistance or gas cooktop is \$687²¹⁷. In addition, assume \$100 additional labor from an electric baseline to install additional power/socket requirements, and an additional \$200 labor from a gas baseline to also cap the gas line.²¹⁸

LOADSHAPE

Loadshape R20 - Residential Induction Cooktop

COINCIDENCE FACTOR

The coincidence factor is assumed to be 29%.²¹⁹

²¹⁵ The cooking efficiencies of electric resistance, gas, and induction cooktops are tested and calculated in the *Residential Cooktop Performance and Energy Comparison Study* conducted by Frontier Energy, July 2019.

²¹⁶ The EUL was developed for the U.S. Department of Energy (DOE) Energy Conservation Program, Energy Conservation Standards for Residential Conventional Cooking Products as part of the 2016 supplemental notice of proposed rulemaking (SNOPR).

²¹⁷ Southern California Edison (SCE). 2019. "SWAP015-01 Costs.xlsx". This reference only looked at electric ovens/cooktops, but VEIC compared baseline electric and gas units and found very little difference in cost.

²¹⁸ Additional labor costs are an estimate.

²¹⁹ Calculated from ResStock, 15 minute interval data by end use for Illinois, as provided by NREL.

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY AND FOSSIL FUEL SAVINGS

Non Fuel Switch Measures (baseline is electric cooktop or range)

 $\Delta kWh = CooktopAEC_{base} - CooktopIAEC_{ee}$

Fuel switch measure (baseline is natural gas cooktop or range):

Fuel switch / electrification measures must produce positive total energy savings (i.e., reduction in Btus at the premises) in order to qualify. This is determined as follows:

 Δ SiteEnergySavings (MMBtu) = [Δ CookingSavings] + [HVACImpacts]

ΔCookingSavings = FuelSwitchSavings + NonFuelSwitchSavings

FuelSwitchSavings = [GasConsumptionReplaced] - [ElectricConsumptionAdded]

NonFuelSwitchSavings = [ElectricConsumptionReplaced]

GasConsumptionReplaced = $AEC_{baseGas}/10$

ElectricConsumptionAdded = $IAEC_{ee} * 3,412/1,000,000$

ElectricConsumptionReplaced = AEC_{baseElectric} * 3,412/1,000,000

HVACImpacts [counted as non-fuel switch savings] = [CoolingImpact] - [ElecHeatImpact]

[FuelHeatImpact]

CoolingImpact = ΔCookingSavings * %Cool * HCF_{COOL} * VentFactor / COP_{COOL}

ElecHeatImpact = ΔCookingSavings * %ElectricHeat * HCF_{HEAT} * VentFactor / COP_{HEAT}

FuelHeatImpact = Δ CookingSavings * %FossilHeat * HCF_{HEAT} * VentFactor / η Heat

If $\Delta Site Energy Savings$ calculated above is positive, the measure is eligible.

The appropriate savings claim is dependent on which utilities are supporting the measure as provided in a table below:

Measure supported by:	Electric Utility claims (kWh):	Gas Utility claims (therms):
Electric utility only	ΔSiteEnergySavings * 1,000,000/3,412	N/A
Electric and gas utility (Note utilities may make alternative agreements to how savings are allocated as long as total MMBtu savings remains the same).	%IncentiveElectric * ΔSiteEnergySavings * 1,000,000/3,412	%IncentiveGas * ΔSiteEnergySavings * 10
Gas utility only	N/A	ΔSiteEnergySavings * 10

Where:

CooktopIAECee = Integrated Annual Energy Consumption of an induction cooktop²²⁰ in kWh/yr

= Actual if IAEC is unknown, if unknown assume 111 kWh/yr²²¹.

CooktopAEC_{baseElec} = Annual Energy Consumption of a baseline electric cooktop in kWh/yr

= CooktopIAECee * (Effee / Effbase)

= If values unknown, assume 111 * 0.85/0.77 = 122.5 kWh/yr

Eff_{ee} = cooking efficiency of the induction cooktop

= Actual. If unknown, assume 85%²²².

Eff_{base} = cooking efficiency of baseline cooktop

= Actual. If unknown, assume 77%²²³ for electric resistance cooktop.

IAEC_{ee} = Integrated Annual Energy Consumption of induction cooking appliance in kWh/yr

= CooktopIAECee + OvenIAECee

OvenIAECee = Annual Energy Consumption of electric oven in kWh/yr

= 0 for standalone cooktop appliances

For ranges, if actual OvenIAECee is unknown, assume a value of 171.6 kWh/yr²²⁴

AEC_{baseElec} = Annual Electric Energy Consumption of baseline gas cooking appliance in kWh/yr, for

standby and ignition energy

= 0 for standalone cooktop appliances

For ranges, if AECbaseElec is unknown, assume a value of 54.3 kWh/yr²²⁵

AEC_{baseGas} = Annual Energy Consumption of a baseline gas cooking appliance in therms/yr

= CooktopAEC_{base} + OvenAEC_{base}

For ranges, if unknown, assume 21.3 therms. 226

CooktopAEC_{baseGas} = Annual Energy Consumption of baseline gas cooktop in therms/yr

If unknown, assume 12.7 therms²²⁷

OvenAEC_{baseGas} = Annual Energy Consumption of baseline gas oven in therms/yr

= 0 for standalone cooktop appliances

For ranges, if actual OvenAEC_{baseGas} is unknown, assume a value of 8.6 therms²²⁸.

²²⁶ DOE EIA Energy Outlook estimates 21.3 therms per household for fuel cooking.

²²⁰ The energy measurements are performed at an ISO/IEC 17025 accredited lab as specified in the application process for the ENERGY STAR Emerging Technology Award. Approved products on the <u>ENERGY STAR Qualified Products List</u> have IAEC values listed.

²²¹ Average Integrated Annual Energy Consumption (IAEC) of an induction cooktop on the ENERGY STAR Emerging Technology Award Qualified Products List, accessed June 2022, is 111 kWh.

²²² The cooking efficiencies of electric resistance, gas, and induction cooktops are tested and calculated in the *Residential Cooktop Performance and Energy Comparison Study* conducted by Frontier Energy.

²²³ Ibid

²²⁴ Annual energy consumption for ovens calculated in SWAP013-01 *Residential Cooking Appliances – Fuel Substitution* workpaper.

²²⁵ Ibid

²²⁷ DOE EIA estimates 21.3 therms per household for fuel cooking, minus estimated 8.6 therms for oven usage.

²²⁸ IAEC for ovens calculated in SWAP013-01 Residential Cooking Appliances – Fuel Substitution workpaper

%ElectricHeat

- = Percentage of homes that have electric heating
- = 100% if electrically heated home, 0% if gas, or
- = If unknown²²⁹, use the following table:

	Location				
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown
Ameren	18%	26%	38%	39%	29%
ComEd	14%	22%	43%	48%	21%
PGL	1.0%	1.5%	4.0%	2.8%	2.2%
NSG	1.3%	0.8%	32.5%	1.2%	3.3%
Nicor	1.3%	0.8%	32.5%	1.2%	3.3%
All DUs ²³⁰					26%

<u>Note</u>: If a measure is supported by a gas and electric utility through a joint program, and it is unknown whether the participant has a gas supply, the electric utility values in the table above should be used. If it is known that the participant has a gas supply, the values from the gas utility above should be applied.

%FossilHeat

- = Percentage of homes that have fossil fuel heating
- = 100% if fossil heated home, 0% if electric, or
- = If unknown²³¹, use the following table:

	Location				
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown
Ameren	82%	74%	62%	61%	71%
ComEd	86%	78%	57%	52%	79%
PGL	98.9%	98.5%	96.0%	96.9%	97.7%
NSG	98.3%	99.2%	67.5%	98.8%	96.6%
Nicor	98.3%	99.2%	67.5%	98.8%	96.6%
All DUs ²³²					74%

<u>Note</u>: If a measure is supported by a gas and electric utility through a joint program, and it is unknown whether the participant has a gas supply, the electric utility values in the table above should be used. If it is known that the participant has a gas supply, the values from the gas utility above should be applied.

²²⁹ Based on the average % Natural Gas used for space heating in Unknown residential structure types across all utilities covered by the IL program. Residence types include: SF, SF LI, MF & MF LI. Utilities included: Ameren, ComEd, People's Gas, Northshore Gas & Nicor. Data provided from 2016 Ameren Illinois Demand Side Management (DSM) Market Potential Study by Applied Energy Group, ComEd's 2019 Baseline Survey on residential space heating share, and PY2022-2023 Implementation Contractors Data for People's Gas, Northshore Gas & Nicor .

²³⁰ For the weighted average calculations, please see the Analysis file. PGL, NSG, Nicor & gas customers were assumed to follow the provided split. ComEd total customers, minus overlap with PGL,NSG & Nicor, therefore electric only homes. Ameren is total customers minus Nicor.

²³¹ Based on the average % Natural Gas used for space heating in Unknown residential structure types across all utilities covered by the IL program. Residence types include: SF, SF LI, MF & MF LI. Utilities included: Ameren, ComEd, People's Gas, Northshore Gas & Nicor. Data provided from 2016 Ameren Illinois Demand Side Management (DSM) Market Potential Study by Applied Energy Group, ComEd's 2019 Baseline Survey on residential space heating share, and PY2022-2023 Implementation Contractors Data for People's Gas, Northshore Gas & Nicor.

²³² For the weighted average calculations, please see the Analysis file. PGL, NSG, Nicor & gas customers were assumed to follow the provided split. ComEd total customers, minus overlap with PGL,NSG & Nicor, therefore gas only homes. Ameren is total customers minus Nicor.

%Cool = Percent of homes that have cooling

= 100% if home has central cooling, 0% if not, or if unknown 66%²³³

HCF_{COOL} = 21%, Portion of reducted waste heat that is coincident with home cooling load²³⁴

VentFactor = $50\%^{235}$

COPCOOL = COP of central air conditioning

= Assume 3.3 if unknown²³⁶

HCF_{HEAT} = 34.8%, portion of reduced waste heat that is coincident with home heating load²³⁷

COP_{HEAT} = COP of electric heating system

= actual. If not available use:238

System Type	HSPF2 Estimate	COP _{HEAT} (COP Estimate) = (HSPF/3.412)*0.85
Heat Pump	7.5	1.87
Resistance	N/A	1.00
Unknown electric ²³⁹	N/A	1.30

ηHeat = Efficiency of heating system

 $= 0.70^{240}$

²³³ Percentage of homes in Illinois that have central cooling from "Table HC7.9 Air Conditioning in Homes in Midwest Region, Divisions, and States, 2009" from Energy Information Administration, 2009 Residential Energy Consumption Survey

²³⁴ Additional cooling savings from HVAC interactive effects of 21% of appliance savings, estimated using average result from BEOPT simulation modeling comparing two different home configurations and two locations. Ratio compares the changes in home HVAC loads to changes in appliance energy consumption.

²³⁵ This factor approximates the effectiveness of kitchen ventilation systems in exhausting waste heat from the home. Reference reviewed include 1. Kile et al. Environmental Health 2014, 13:71 (http://www.ehjournal.net/content/13/1/71) which showed 221 of 445 surveyed used exhaust during cooktop cooking; also 2. Cooking Appliance Use in CA Homes. Victoria L. Klug, Agnes B. Lobscheid, Brett C. Singer Environmental Energy Technologies Division Lawrence Berkeley National Laboratory, Berkeley, California, USA August 2011 which showed 44% of respondents use the range hood during dinner cooking and an additional 37% of respondents open windows during dinner cooking.

²³⁶ To reduce complexity of the measure and since this relates to a small waste heat impact, instead of assuming actual existing unit HVAC efficiency and a mid-life adjustment to account for future replacement efficiency, the code minimum baseline should be applied. Starting from federal baseline of SEER 13 central AC unit, converted to 11.1 EER using algorithm (-0.02 * SEER2) + (1.12 * SEER) (from Wassmer, M. (2003). A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations. Masters Thesis, University of Colorado at Boulder), converted to COP = EER/3.412 = 3.3COP.

²³⁷ Heating penalty of 34.8% of appliance savings, estimated using average result from BEOPT simulation modeling comparing two different home configurations and two locations. Ratio compares the changes in home HVAC loads to changes in appliance energy consumption.

²³⁸ To reduce complexity of the measure and since this relates to a small waste heat impact, instead of assuming actual existing unit HVAC efficiency and a mid-life adjustment to account for future replacement efficiency, the code minimum baseline should be applied. Note efficiency includes duct losses. Defaults provided assume 15% duct loss for heat pumps.

²³⁹ Calculation assumes 35% Heat Pump and 65% Resistance, which is based upon data from Energy Information Administration, 2009 Residential Energy Consumption Survey, see "HC6.9 Space Heating in Midwest Region.xls", using average for East North Central Region. Program or evaluation data should be used to improve this assumption if available.

²⁴⁰ This has been estimated assuming that natural gas central furnace heating is typical for Illinois residences (66% of Illinois homes have a Natural Gas Furnace (based on Energy Information Administration, 2009 Residential Energy Consumption Survey) In 2000, 24% of furnaces purchased in Illinois were condensing (based on data from GAMA, provided to Department of Energy during the federal standard setting process for residential heating equipment - see Furnace Penetration.xls). Furnaces tend to

Non-fuel switch example, a residential induction cooktop will replace an electric resistance cooktop. The annual energy consumption of the induction cooktop has not been measured. The electric savings are calculated below:

 $\Delta kWh = CooktopAEC_{base} - CooktopIAEC_{ee}$ CooktopIAECee = 111 kWh/yr CooktopAEC_{base} = 111 * (0.85 / 0.77)= 122.5 kWh/yr Δ kWh = 122.5 – 111 = 11.5 kWh/yr

last up to 20 years and so units purchased 10 years ago provide a reasonable proxy for the current mix of furnaces in the State. Assuming typical efficiencies for condensing and non-condensing furnaces and duct losses, the average heating system efficiency is estimated as follows:

Fuel switch example: a residential induction cooktop will replace a natural gas cooktop. The annual energy consumption of the induction cooktop has not been measured and the homes heating fuel and presence of central cooling is unknown. The savings for a measure supported by an electric utility are calculated below:

 Δ SiteEnergySavings (MMBtu) = [Δ CookingSavings] + [HVACImpacts]

 Δ CookingSavings = [GasConsumptionReplaced] - [ElectricConsumptionAdded]

= [CooktopAEC_{base} /10] - [CooktopIAEC_{ee} * 3,412/1,000,000]

= [12.7/10] **-** [111 * 3412/1000000]

= 1.27 – 0.379 =0.891 MMBtu

CoolingImpact = ΔCookingSavings * %Cool * HCFcool * VentFactor / COPcool

= 0.891 * 0.66 * 0.21 * 0.5 / 3.3

= 0.019 MMBtu

ElecHeatImpact = Δ CookingSavings * %ElecHeat * HCF_{HEAT} * VentFactor /

 $\mathsf{COP}_{\mathsf{HEAT}}$

= 0.891 * 0.26 * 0.348 * 0.5 / 1.3

= 0.031 MMBtu

FuelHeatImpact = Δ CookingSavings * %GasHeat *HCF_{HEAT} * VentFactor / η Heat

= 0.891 * 0.74 * 0.348 * 0.5 / 0.7

= 0.164 MMBtu

HVAC Impacts = [CoolingImpact] - [ElecHeatImpact] - [FuelHeatImpact]

= 0.019 - 0.031 - 0.164

= -0.176 MMBtu

 Δ SiteEnergySavings (MMBtu) = 0.891 + (- 0.176)

= 0.715 MMBtu

SUMMER COINCIDENT PEAK DEMAND SAVINGS

For Non-Fuel Switching measures:

 $\Delta kW = (CooktopAEC_{base} - CooktopIAEC_{ee})/Hours * WHFd * CF$

For Fuel Switching measures:

Where:

ΔkW = ((AEC_{baseElectric} - IAEC_{ee} + [CoolingImpact] – [ElecHeatImpact]) * 1,000,000/3,412) /Hours * WHFd * CF

willa

Hours = Annual operating hours²⁴¹

²⁴¹ Assuming 1 hours per cycle and 239 cycles per year therefore 239 operating hours per year. 239 cycles per year is based on a 2016 CASE study for PG&E modeling Plug Loads.

= 239 hours

WHFd = Waste heat factor for demand to account for cooling savings from efficient appliance.

 $= 1.11^{242}$

CF = Summer Peak Coincidence Factor

 $= 29\%^{243}$

All other variables as presented above

FOSSIL FUEL SAVINGS

Calculation provided together with Electric Energy Savings above.

WATER AND OTHER NON-ENERGY IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

COST EFFECTIVENESS SCREENING AND LOAD REDUCTION FORECASTING WHEN FUEL SWITCHING

This measure can involve fuel switching from fossil fuel to electric.

For the purposes of forecasting load reductions due to fuel switch projects per Section 16-111.5B, changes in site energy use at the customer's meter (using ΔkWh algorithm below) adjusted for utility line losses (at-the-busbar savings), customer switching estimates, NTG, and any other adjustment factors deemed appropriate, should be used.

The inputs to cost effectiveness screening should reflect the actual impacts on the electric and fuel consumption at the customer meter and, for fuel switching measures, this will not match the output of the calculation/allocation methodology presented in the "Electric Energy Savings" and "Fossil Fuel Savings" sections above. Therefore in addition to the calculation of savings claimed, the following values should be used to assess the cost effectiveness of the measure.

ΔTherms = ([Gas Cooking Consumption Replaced] – [FuelHeatImpact]) * 10

= (AEC_{baseGas} - FuelHeatImpact) * 10

ΔkWh = ([Electric Cooking Replaced] - [Electric Cooking Consumption Added] + [CoolingImpact]

- [ElecHeatImpact]) * 1,000,000/3,412

= (AEC_{baseElectric} - IAEC_{ee} + [CoolingImpact] - [ElecHeatImpact]) * 1,000,000/3,412

MEASURE CODE: RS-MSC-INDC-V03-250101

 $^{^{242}}$ The value is estimated at 1.11 (calculated as 1 + (0.66 * 0.466 / 2.8)). See footnote relating to WHFe for details. Note the 46.6% factor represents the average Residential cooling coincidence factor calculated by dividing average load during the peak hours divided by the maximum cooling load.

²⁴³ Calculated from ResStock, 15 minute interval data by end use for Illinois, as provided by NREL.

5.1.15 Residential Bolt-On Smart Dryer Sensor

DESCRIPTION

This measure relates to the installation of a bolt-on smart wifi enabled dryer sensor with cloud data storage access on a residential gas-fired or electric dryer. A smart dryer sensor is an add-on device, which turns any residential dryer into a smart dryer. The device consists of

- 1) a sensor that detects temperature and humidity in the dryer
- 2) a connected hub with a built-in auto shut-off mechanism

The sensor monitors the temperature and humidity inside the clothes dryer to determine when a load is dry. When the humidity levels in the dryer fall below a pre-set cut-off at steady state, the device determines that a load is dry. The sensor then notifies the connected auto shut-off mechanism, cutting off power to the dryer and turning it off.

Residential clothes dryers have not changed significantly in their operation for many years. They typically offer either a time-dry setting (which uses a set timer) or an auto-dry setting (which uses a built-in moisture sensor to determine when the clothes are dry). Most built-in manufacturer moisture sensors do not work well, and users tend to predominantly use the time-dry setting. This measure does not apply to dryers with coin operated mechanical timers, laundromat facilities or commercial clothes dryers. This measure was developed to be applicable to the following program types: TOS, RF, NC, DI and KITS.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

Natural gas-fired or electric resistance dryers with a residential bolt-on smart dryer sensor installed.

DEFINITION OF BASELINE EQUIPMENT

The base case equipment is a conventional gas-fired or electric resistance residential dryer without a bolt-on smart dryer sensor installed. The dryer may have a built-in moisture sensor installed. The gas-fired dryer has a natural gas fuel-fired burner element and an electric powered drum motor.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be same as that of the clothes dryer, which is 16 years.²⁴⁴

DEEMED MEASURE COST

The deemed measure cost is \$60 for a new residential bolt-on smart dryer sensor when installed on a gas-fired dryer. This applies to a non-intrusive bolt-on sensor installed with a magnetically attachable sensor inside the drum and a wirelessly connected plug with an auto shut-off.²⁴⁵

When attached to an electric dryer the deemed measure cost is $$150^{246}$.

Actual costs should be used when available or if the smart sensor setup is different from the above.

LOADSHAPE

Loadshape R17 - Residential Electric Dryer

COINCIDENCE FACTOR

N/A

²⁴⁴ Based on DOE Rulemaking Technical Support Document, LCC Chapter, 2011, as recommended in Navigant 'ComEd Effective Useful Life Research Report', May 2018.

 $^{^{\}rm 245}$ Based on Nicor Gas ETP field demonstration of Residential IoT Smart Dryer Sensors.

²⁴⁶ Based on current market cost for TickleStar DryerSaver Model #TS2201.

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

For all dryers, please use the following equation for calculating energy savings, related to the motor:

 ΔkWh_{motor} = N_{cycles} * (Motor_{runtimesavings})* Motor_{kW}

Where:

N_{cycles} = Number of dryer cycles per year. Use actual data if available. If unknown:

= 259 cycles per year.²⁴⁷

Motor_{runtimesavings} = Runtime savings for dryer drum motor

= 0.39 hrs/load²⁴⁸

Motor_{kw} = Rated electric power draw of drum motor. Use actual nameplate data. If unknown,

= 0.25 kW.²⁴⁹

For electric resistance dryers, please use the following equation for calculating energy savings, related to the heating element:

 Δ kWh_{heating} = N_{cycles} * RunTimeSavings * Dryer Draw Rate / 1,000

Where:

RunTimeSavings = Runtime savings for dryer heating element

= 0.08 hrs/load²⁵⁰

Dryer Draw Rate = Draw of electric resistance dryer heaters.

= Use actual nameplate data if available. If unknown, 5,250 Watts.²⁵¹

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh/Hours * CF$

Where:

ΔkWh = Electric Energy Savings as calculated above

For gas-fired dryers = ΔkWh_{motor}

²⁴⁷ Loads per week was estimated by taking the weighted average of the number of loads per week (midpoint used where loads per week is a range and the weights are the share of respondents falling into each number of loads per week response bin). This estimate was scaled to an IL-specific value by applying a ratio developed using the 2009 state specific values for the states in the East North Central portion of the Midwest Region. Reduced by 6% to maintain prior ratio of dryer to clothes washer loads of 94%.

²⁴⁸ Average data based on Nicor Gas ETP field demonstration of Residential IoT Smart Dryer Sensors. Please see Analysis file.

²⁴⁹ Average Residential dryer drum motors, which typically range between 200 W and 300 W. Please see ENERGY STAR Scoping Reporting for Residential Clothes Dryers file, Table 2, page 3.

²⁵⁰ Average data based on Nicor Gas ETP field demonstration of Residential IoT Smart Dryer Sensors. Based on natural-gas fired dryer data, and assuming similar savings will be seen for electric dryer.

²⁵¹Average Residential electric resistance heaters typically draw about 5,000 - 5,500 watts. Please see ENERGY STAR Scoping Reporting for Residential Clothes Dryers file, Table 2, page 3.

For electric dryers = $\Delta kWh_{motor} + \Delta kWh_{heating}$

Hours = Annual run hours of clothes dryer.

= Use actual data, if available. If unknown, use 259 hours per year. 252

CF = Summer Peak Coincidence Factor for measure

 $=3.8\%^{253}$

FOSSIL FUEL SAVINGS

For natural gas-fired dryers, please use the following equation for calculating energy savings:

ΔTherm = N_{cycles} * Therm_{convert} * RunTimeSavings * Dryer Firing Rate

Where:

 N_{cycles} = Number of dryer cycles per year.

= Use actual data, if available. If unknown, use 259 cycles per year. 254

Therm_{convert} = Conversion factor from Btu to Therm

= 0.00001

RunTimeSavings = Runtime savings for gas dryer burner element

= 0.08 hrs/load²⁵⁵

Dryer Firing Rate = Firing rate of the natural gas-fired dryer burner.

= Use actual nameplate data, if available. If unknown, use 22,500 Btu/hr.²⁵⁶

For example, A single-family home in Chicago is retrofitting a residential bolt-on smart dryer sensor on a 22,500 Btu/hr natural gas-fired dryer with 400 loads annually. The annual savings for the installation would be:

Electric Energy Savings

 $= 400 \times 0.39 \times 0.25$

= 39 kWh

Natural Gas Savings

= 400 x 0.00001 x 0.08 x 22,500

= 7.2 therms

²⁵² ENERGY STAR qualified dryers have a maximum test cycle time of 80 minutes. Assume one hour per dryer cycle from existing TRM measure 5.1.10.

²⁵³ Based on coincidence factor of 3.8% for clothes washers from existing Illinois TRM measure 5.1.10.

²⁵⁴Loads per week was estimated by taking the weighted average of the number of loads per week (midpoint used where loads per week is a range and the weights are the share of respondents falling into each number of loads per week response bin). This estimate was scaled to an IL-specific value by applying a ratio developed using the 2009 state specific values for the states in the East North Central portion of the Midwest Region. Reduced by 6% to maintain prior ratio of dryer to clothes washer loads of 94%...

²⁵⁵ Average data based on Nicor Gas ETP field demonstration of Residential IoT Smart Dryer Sensors. See Analysis file for details. ²⁵⁶ Residential dryer burners typically range between 20,000 Btu/hr – 25,000 Btu/hr. Please see ENERGY STAR Scoping Reporting for Residential Clothes Dryers file, Table 2, page 3.

WATER AND OTHER NON-ENERGY IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-APL-SCDS-V02-250101

5.1.16 Electric Lawn and Garden Equipment

DESCRIPTION

This measure identifies the claimed savings associated with residential lawn equipment electrification. This measure was developed to be applicable to the following program types: TOS.

Time of Sale (TOS):

- The use of an all-electric equipment in place of an equipment with a spark-ignition gasoline-powered engine.
- Note that the baseline in this case is an equivalent replacement system to that which exists currently in the home.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient condition is an all-electric lawn or garden equipment sized to be equivalent to the baseline equipment.

DEFINITION OF BASELINE EQUIPMENT

The baseline condition is new gasoline-powered lawn or garden equipment.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life varies based on the equipment type (displayed in the table below).

Equipment Type	Measure Life (years) ²⁵⁷
Riding Lawn Mower	9
Push Lawn Mower	9
Leaf Blower	5
Trimmer	5
Chainsaw	7

DEEMED MEASURE COST

For Time of Sale (TOS) the incremental cost should be used. Actual costs can also be used although care should be taken as costs can vary significantly. Defaults are provided below.

Equipment Type	Incremental Cost ²⁵⁸
Riding Lawn Mower	\$3,890
Push Lawn Mower	\$419
Leaf Blower	\$206
Trimmer	\$272
Chainsaw	\$384

-

²⁵⁷ CARB (2022). CCI Emission Factor Database, "Fuel-Specific GHG" worksheet, available at <u>cci emissionfactordatabase 2022-</u> 11-30.xlsx (live.com).

²⁵⁸ Vermont Act 56 Tier III Technical Advisory Group 2021 ANNUAL REPORT

LOADSHAPE

Loadshape R08 – Residential Cooling²⁵⁹

COINCIDENCE FACTOR

The summer Peak Coincidence Factor is assumed to be 30%.²⁶⁰

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY AND FOSSIL FUEL SAVINGS

Fuel switch measure (baseline is gas equipment):

Fuel switch / electrification measures must produce positive total energy savings (i.e., reduction in Btus at the premises) in order to qualify. This is determined as follows:

ΔSiteEnergySavings (MMBtu) = [GasConsumptionReplaced] – [ElectricConsumptionAdded]

= $[Fuel_{baseline} * 120,238/1,000,000] - [Fuel_{baseline} * ED_{gasoline} / (ED_{electricity} * ED_{gasoline})]$

 $EER_{G\to E}$) * 3,412/1,000,000]

Fuel_{baseline} = (BSFC_{baseline} * hp_{baseline} * LF_{baseline} * Hours) / (Fuel Density_{gasoline})

If SiteEnergySavings calculated above is positive, the measure is eligible.

The appropriate savings claim is dependent on which utilities are supporting the measure as provided in a table below:

Measure supported by:	Electric Utility claims (kWh):	Gas Utility claims (therms):
Electric utility only	SiteEnergySavings * 1,000,000/3,412	N/A
Electric and gas utility (Note utilities may make alternative agreements to how savings are allocated as long as total MMBtu savings remains the same).	%IncentiveElectric * SiteEnergySavings * 1,000,000/3,412	%IncentiveGas * SiteEnergySavings * 10
Gas utility only	N/A	SiteEnergySavings * 10

Where:

BSFC_{baseline} = Brake Specific Fuel (Gasoline) Consumption Factor (lbs/hp-hr)

= If unknown, use default values in the table below

 $hp_{baseline}$ = Horsepower of the lawn equipment

= If unknown, use default values in the table below

LF_{baseline} = The load factor is the average operational level of an engine as a fraction or

²⁵⁹ Residential cooling loadshape is used as an estimate of likely usage pattern for electric lawn equipment. This methodology is used in other jurisdictions offering electric lawn care equipment savings.

²⁶⁰ Consistent with coincidence factors found in: RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008.

percentage of the engine manufacturer's maximum rated horsepower. Load factor is difficult to characterize since it is a strong function of the equipment use and operation. Load factors for various equipment types are presented in the table below.

Hours = Annual operating hours of the lawn or garden equipment.

= Values for various equipment types are presented in the table below.

Fuel Density_{gasoline} = Gasoline fuel density (assume 6.15 lbs/gal) 261

ED_{gasoline} = Energy density of gasoline (assume 115.83 MJ/gal)²⁶²

ED_{electricity} = Energy density of electricity = 3.6 MJ/kWh

 $EER_{G \to E}$ = Energy Economy Ratio = 3.4 (for switching from gasoline to electricity)²⁶³

120,238 = Btu content in one gallon of finished gasoline²⁶⁴

1,000,000 = Btu to MMBtu conversion

Equipment Type	BSFC _{baseline} (lbs/hp-hr) ²⁶⁵	hp _{baseline} ²³⁴	LF baseline ²³⁴	Hours (hrs/year) ²³⁴	ΔkWh	ΔMMBtu	Site Energy Savings (MMBtu)
Riding Lawn Mower	0.779	21.4	38%	36	-350.9	4.5	3.3
Push Lawn Mower	0.830	3.9	33%	25	-41.1	0.5	0.4
Leaf Blower	0.874	2.0	94%	10	-25.3	0.3	0.2
Trimmer	0.922	1.2	91%	9	-13.9	0.2	0.1
Chainsaw	0.770	1.9	70%	13	-20.5	0.3	0.2

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta kW = -1 * kW_{hattery,draw} * CF$$

Where:

kW_{battery draw}

= The electric draw by the battery during charging. This varies based on the battery and charger specifications. If unknown use values in the table below.

Equipment Type	kW _{battery} draw
Riding Lawn Mower	0.57 ²⁶⁶
Push Lawn Mower	0.42 ²⁶⁷
Leaf Blower	0.20^{236}
Trimmer	0.00^{236}
Chainsaw	0.00^{236}

²⁶¹ CARB (2022). CCI Emission Factor Database, "Fuel-Specific GHG" worksheet, available at <u>cci_emissionfactordatabase_2022-</u>11-30.xlsx (live.com).

²⁶² Ibid.

²⁶³ Energy Economy Ratio (EER) dimensionless value that represents the efficiency of a fuel as used in a powertrain as compared to a reference fuel used in the same powertrain. Source: CARB (2018), Low Carbon Fuel Standard Regulations: Table 5. EER Values for Fuels Used in Light- and Medium- Duty, and Heavy-Duty Applications. RESO 18-34 LCFS Attachment A Final Reg Order (ca.gov)

²⁶⁴ Energy conversion calculators - U.S. Energy Information Administration (EIA)

²⁶⁵ CARB (2022). CCI Emission Factor Database, "Fuel-Specific GHG" worksheet, available at <u>cci_emissionfactordatabase_2022-</u>11-30.xlsx (live.com).

²⁶⁶ Vermont Act 56 Tier III Technical Advisory Group 2021 ANNUAL REPORT

²⁶⁷ Massachusetts Residential Baseline Study, Guidehouse, 2020

WATER AND OTHER NON-ENERGY IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

COST EFFECTIVENESS SCREENING AND LOAD REDUCTION FORECASTING WHEN FUEL SWITCHING

This measure can involve fuel switching from fossil fuel to electric.

For the purposes of forecasting load reductions due to fuel switch projects per Section 16-111.5B, changes in site energy use at the customer's meter (using ΔkWh algorithm below) adjusted for utility line losses (at-the-busbar savings), customer switching estimates, NTG, and any other adjustment factors deemed appropriate, should be used.

The inputs to cost effectiveness screening should reflect the actual impacts on the electric and fuel consumption at the customer meter and, for fuel switching measures, this will not match the output of the calculation/allocation methodology presented in the "Electric Energy Savings" and "Fossil Fuel Savings" sections above. Therefore in addition to the calculation of savings claimed, the following values should be used to assess the cost effectiveness of the measure.

```
ΔTherms = [Gas Consumption Replaced]
= (BSFC<sub>baseline</sub> * hp<sub>baseline</sub> * LF<sub>baseline</sub> * Hours) / (Fuel Density<sub>gasoline</sub>) * 120,238/100,000
ΔkWh = [Electric Consumption Added]
```

= (BSFC_{baseline} * hp_{baseline} * LF_{baseline} * Hours) / (Fuel Density_{gasoline}) * ED_{gasoline} / (ED_{electricity} * EER_G \rightarrow E)

MEASURE CODE: RS-APL-ELGE-V01-240101

²⁶⁸ Consistent with coincidence factors found in: RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008.

5.1.17 ENERGY STAR All-in-One Clothes Washer-Dryer

DESCRIPTION

This measure relates to the installation of a residential combination all-in-one clothes washer-dryer meeting the ENERGY STAR criteria. ENERGY STAR qualified combination all-in-one clothes washer-dryers save energy through a combination of more efficient drying and reduced runtime of the drying cycle. More efficient washing and drying is achieved through heat pump technology, modifying operating conditions such as air flow and/or heat input rate, improving air circulation through better drum design, and improving efficiency of motors. ENERGY STAR provides criteria for electric clothes washer-dryers with heat pump technology.

This measure was developed to be applicable to the following program types: Time of Sale, New Construction, Retrofit. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

All-in-one clothes washer-dryer must meet the ENERGY STAR or ENERGY STAR Most Efficient criteria, as required by the program. Units utilizing the Heat Pump designation must meet the same ENERGY STAR criteria and be classified as Heat Pump units.

DEFINITION OF BASELINE EQUIPMENT

The baseline condition for a washing cycle is a clothes washer meeting the minimum federal baseline as of January 2018²⁶⁹.

Federal Standard	≥1.57 IMEF, ≤6.5 IWF	≥1.84 IMEF, ≤4.7 IWF

The baseline condition used for a washing cycle for this measure is a weighted average of 1.7 IMEF.²⁷⁰

The baseline condition for a drying cycle is a clothes dryer meeting the minimum federal requirements for units manufactured on or after January 1, 2015.

Efficiency Level	Front Loading ≥4.5 Cu ft
Federal Standard for Clothes Dryer	3.11 ²⁷¹ CEF for Vented Electric,
	2.84 ²⁷² CEF for Vented Gas

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 14 years²⁷³.

DEEMED MEASURE COST

The average cost of the ENERGY STAR combination all-in-one clothes washer-dryer \$2,331 with no additional installation cost for a total measure cost of \$2,331.²⁷⁴

2025 IL TRM v13.0 Vol. 3_September 20, 2024_FINAL

²⁶⁹DOE Energy Conservation Standards for Clothes Washers, Appliance and Equipment Standard, 10 CFR Part 430.32(g)

²⁷⁰ Weighted average IMEF of Federal Standard rating for Front Loading and Top Loading units. Weighting is based upon the relative top v front loading percentage of available non-ENERGY STAR product in the CEC database (products accessed on 04/21/2022).

²⁷¹ ENERGY STAR Draft 2 Version 1.0 Clothes Dryers Data and Analysis

²⁷² Federal standards report CEF for gas clothes dryers in terms of lbs/kWh. To determine gas savings, this number is later converted to therms.

²⁷³ Lifetime of 14 years per Residential Clothes Washers Life-Cycle Cost Analysis Spreadsheet posted by the Energy Efficiency and Renewable Energy Office on Sep 23, 2021.

²⁷⁴ The cost of buying a new market available all-in-one clothes washer-dryer with HP technology from Home Depot have been

For a non-IQ participant, the incremental cost is assumed to be \$1,328.275

For an IQ participant, the incremental cost is assumed to be \$1,224.276

LOADSHAPE

Loadshape R17 - Residential Electric Dryer

COINCIDENCE FACTOR

The coincidence factor for this measure is 3.8%.²⁷⁷

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

Non Fuel Switch Measures

```
\Delta kWh_{total}{}^{278} = \Delta kWh_{clothes\ washer} + \Delta kWh_{dryer} \Delta kWh_{clothes\ washer} = [Capacity\ *\ IQAdjcw/IMEFbase\ *\ Ncycles\ *\ (\%CWbase\ +\ (\%DHWbase\ *\ (\%CWeff\ +\ (\%DHWeff\ *\ \%Electric\_DHW))] \Delta kWh_{dryer} = ((Load/CEFbase\ *\ IQAdj_D)\ -\ Load/CEFeff)\ *\ Ncycles\ *\ \%Electric
```

Fuel Switch/Electrification Measures

Total Site Energy Savings (MMBTUs) = Site Energy Savings (MMBTUs)_{clothes washer} + Site Energy Savings (MMBTUs)_{dryer}

Break out savings calculated for the washing cycle for a basline clothes washer with gas DHW replaced with an all-in-one clothes washer-dryer with electric DHW

```
SiteEnergySavings(MMBTUs)clothes washer = [(NonFuelConsumptionBaseline clothes washer + GasConsumptionBaseline clothes washer) - EfficientConsumptionefficient clothes washer]

ElectricConsumption<sup>279</sup>Baseline clothes washer = [Capacity * IQAdjcw/IMEFbase * Ncycles * %CWbase* MMBtu_convert]

GasConsumptionBaseline clothes washer = [Capacity * IQAdjcw/IMEFbase * Ncycles * (%DHWbase * %Fossil_DHW * R_eff) * MMBtu_convert]
```

2025 IL TRM v13.0 Vol. 3_September 20, 2024_FINAL

averaged for three different manufacturers. These products are ENERGY STAR certified. See "Incremental Cost R&D.xls" for information.

²⁷⁵ The baseline cost is assumed to be the cost of a standard efficiency clothes washer in addition to the cost of a standard efficiency clothes dryer. A standard clothes washer cost (\$763.98) is based on analysis of cost data provided in the Retail Price Data from DOE Analytical Tool (Lifecycle Cost and Payback Period Analysis) for Negotiated Standards, 2017, and weighted by a market share of 49.4% Top-Loading to 50.6% Front-Loading machines. The cost of a standard dryer (\$564) is from "ACEEE Clothes Dryers.pdf."

²⁷⁶ IQ Incremental costs factor in the assumption that a secondhand unit costs on average 50% of a new baseline unit, and that 1/3 of IQ participants would have purchased a unit on the secondhand market. See "IQ Appliance Calculations.xls" for information.

²⁷⁷ Calculated from Itron eShapes, 8760 hourly data by end use for Missouri, as provided by Ameren.

²⁷⁸ The energy savings algorithm from the clothes dryer and clothes washer has been calculated individually to create the final algorithm for the Energy Star Combination All-in-One Clothes Washer-Dryer. The dryer section from the clothes washer algorithm has been excluded. See "Energy Star Combination All-in-One Clothes Washer-Dryer Calculations.xls" for information.

²⁷⁹ Electric consumption that accounts for the fact that some of the consumption on gas DHW Clothes Washer comes from electricity (motors, controls, etc).

```
= [Capacity * 1/IMEFeff * Ncycles * (%CWbase + (%DHWbase *
ElectricConsumptionefficient clothes washer
                                      %Electric_DHW) * MMBtu_convert]
```

Break out savings calculated for the drying cycle for a basline gas dryer replaced with an all-in-one clothes washerdryer.

Site Energy Savings (MMBTUs)_{dryer}²⁷⁸ = [FuelSwitchSavings_{dryer}] + [NonFuelSwitchSavings_{dryer}]

FuelSwitchSavings_{dryer} = [Load/CEFbase_{Gas} * IQAdj_D * Ncycles * MMBtu_convert * %Gas_{Gas}] -

[Load/CEFeffElec * Ncycles * MMBtu convert * %GasGas]

= [Load/CEFbaseGas * IQAdjD * Ncycles* MMBtu convert * %ElectricGas] -NonFuelSwitchSavings_{dryer}

[Load/CEFeffElec * Ncycles * MMBtu convert * %ElectricGas]

If Total Site Energy Savings (MMBTUs) calculated above is positive, the measure is eligible.

The appropriate savings claim is dependent on which utilities are supporting the measure as provided in a table below:

Measure supported by:	Electric Utility claims (kWh):	Gas Utility claims (therms):
Electric utility only	SiteEnergySavings * 1,000,000/3,412	N/A
Gas utility only	N/A	SiteEnergySavings * 10

Where:

= Unit capacity (cubic feet) Capacity

= Actual. If capacity is unknown assume 4.9 cubic feet²⁸⁰

= Integrated Modified Energy Factor of baseline clothes washer unit **IMEFbase**

 $= 1.71^{281}$

IQAdj_{CW} =Baseline consumption adjustment for IQ program participants to account for a

portion of participants who would have utilized the secondary market.²⁸²

= 1.02 if IQ, 1.0 if non-IQ

IMEFeff = Integrated Modified Energy Factor of Efficient Combination All-in-One Washer-

Dryer unit

= Actual. If unknown assume average values provided below.

²⁸⁰ Average of ENERGY STAR & ENERGY STAR MOST EFFICIENT Residential Combination All-in-One Washer-Dryer. April 2024. https://www.energystar.gov/productfinder/product/certified-clothes-washers.

²⁸¹ Weighted average IMEF of Federal Standard rating for Front Loading and Top Loading units. Weighting is based upon the relative top v front loading percentage of available non-ENERGY STAR product in the CEC database (products accessed on 04/21/2022).

²⁸² It is assumed that a second-hand unit is on average 2/3 of a measure's EUL years old (9 years). The baseline consumption of a unit meeting the pre 03/2015 Federal Standard was increased by an estimate of 0.4% * 9 years (based on review of the refrigerator/freezer regression algorithm used in the 5.1.8 Refrigerator and Freezer Recycling measure) to account for degradation of performance over time. For 2025 on, the post 03/2015 Federal Standard is utilized. This second hand consumption was then weighted 1/3: 2/3 current new baseline to estimate a multiplier for IQ participants. See "IQ Appliance Calculations.xls" for information.

Efficiency Class	IMEFeff ²⁸³
ENERGY STAR	2.76
ENERGY STAR Most Efficient	2.92

Ncycles

= Number of cycles per year

 $= 276^{284}$

%CW

= Percentage of total energy consumption for Clothes Washer operation (different for baseline and efficient unit – see table below)

%DHW

= Percentage of total energy consumption used for water heating (different for baseline and efficient unit – see table below)

	Percentage of Total Energy Consumption of Clothes Washer ²⁸⁵		
	%CW %DHV		
Baseline	6.7%	15.8%	
Efficient	6.6%	13.0%	

%Electric DHW

= Percentage of DHW savings assumed to be electric

= 100 % for Electric

= 0 % for Fossil Fuel

= If unknown²⁸⁶, use the following table:

	Location				
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown
Ameren ²⁸⁷	24%	25%	40%	43%	28%
ComED ²⁸⁸	8%		11%		9%
People's Gas ²⁸⁹	2.0%	2.0%	1.7%	2.1%	2.0%
Northshore Gas ²⁹⁰	1.3%	1.8%	10.0%	2.4%	2.3%

²⁸³ The energy measurements are performed at an ISO/IEC accredited lab as specified in the application process for the ENERGY STAR & ENERGY STAR Most Efficient. Approved products on the ENERGY STAR Qualified Products List 2024-04-23 have IMEF, IWF values listed for clothes washer and CEF values for clothes dryer.

_

²⁸⁴ Loads per week was estimated by taking the weighted average of the number of loads per week (midpoint used where loads per week is a range and the weights are the share of respondents falling into each number of loads per week response bin). This estimate was scaled to an IL-specific value by applying a ratio developed using the 2009 state specific values for the states in the East North Central portion of the Midwest Region. This value was then scaled to apply to a consistent amount of laundry washed over time.

²⁸⁵ The percentage of total energy consumption that is used for the machine, heating the hot water or by the dryer is different depending on the efficiency of the unit. Values are based on a weighted average of top loading and front loading units based on data from the 2017 DOE Life-Cycle Cost and Payback Period Excel-based analytical tool. See "IL TRM_CW Analysis_082024.xlsx" for the calculation.

²⁸⁶ Based on the average % electricity used for water heating in Unknown residential structure types across all utilities covered by the IL program. Residence types include: SF, SF LI, MF & MF LI. Utilities included: Ameren, ComEd, People's Gas, Northshore Gas & Nicor. Please see subsequent table and citations for specific sources.

²⁸⁷ Provided by AEG from the 2020 Market Potential Study completed for AIC, as well as AIC Income Qualified Initiative: 2021 Participant Survey Results Memo (February 1, 2022) p. 17.

²⁸⁸ Commonwealth Edison Residential Baseline Study (2020). p.4.4 & 4.19; Section 4-7 Water Heating. Prepared by Itron.

²⁸⁹ Implementation Contractors data from Peoples Gas and North Shore Gas for PY2022-2023.

²⁹⁰ Ibid.

	Location				
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown
Nicor Gas ²⁹¹	1.3%	1.8%	10.0%	2.4%	2.3%
All DUs ²⁹²					25%

Note: If a measure is supported by a gas and electric utility through a joint program, and it is unknown whether the participant has a gas supply, the electric utility values in the table above should be used. If it is known that the participant has a gas supply, the values from the gas utility above should be applied.

Load

= The average total weight (lbs) of clothes per drying cycle. If unit size is unknown, assume standard.

Unit Size	Load (lbs) ²⁹³	
Standard	8.45	

CEFbase

= Combined energy factor (CEF) (lbs/kWh) of the baseline unit is based on existing federal standards energy factor as performed in the ENERGY STAR analysis²⁷¹. If product class unknown, assume electric, standard.

Product Class	CEFbase (lbs/kWh)	
Vented Electric, Standard (≥ 4.4 ft3)	3.11	
Vented Gas	2.84 ²⁷²	

IQAdj_D

= Baseline consumption adjustment for IQ program participants to account for a portion of participants who would have utilized the secondary market. 294

= 1.033 if IQ, 1.0 if non-IQ

CEFeff

= CEF (lbs/kWh) of ENERGY STAR or ENERGY STAR Most Efficient requirements Combination All-in-One Washer-Dryer.

= Actual. If unknown assume values provided below.

Efficiency Class	CEFeff (lbs/kWh) ²⁸³
ENERGY STAR	4.97
ENERGY STAR Most Efficient	6.9

%Electric

= The percent of overall savings coming from electricity.

²⁹¹ Comparable service area & customers to NSG, therefore using their survey data.

²⁹² For the weighted average calculations, please see the Analysis file. PGL, NSG, Nicor & gas customers were assumed to follow the provided split. ComEd total customers, minus overlap with PGL,NSG & Nicor, therefore electric only homes. Ameren is total customers minus Nicor.

²⁹³ Based on ENERGY STAR test procedures

²⁹⁴ It is assumed that a second-hand unit is on average 2/3 of a measure's EUL years old (11 years). The current Federal Standard became effective in 2015 so the previous standard is used to estimate base consumption for a second hand unit, and further increased by an estimate of 0.4% * 11 years (based on review of the refrigerator/freezer regression algorithm used in the 5.1.8 Refrigerator and Freezer Recycling measure) to account for degradation of performance over time. This second hand consumption was then weighted 1/3: 2/3 current new baseline to estimate a multiplier for IQ participants. See "IQ Appliance Calculations.xls" for information.

= 100% for electric dryers, 16% for gas dryers²⁹⁵.

%Fossil_DHW = Percentage of DHW savings assumed to be Fossil Fuel

= 100 % for Fossil fuel

= 0 % for Electric

= If unknown²⁹⁶, use the following table:

	Location				
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown
Ameren ²⁹⁷	76%	75%	60%	57%	72%
ComED ²⁹⁸	92%		89%		91%
People's Gas ²⁹⁹	97.9%	98.0%	98.3%	97.6%	97.8%
Northshore Gas ³⁰⁰	98.5%	98.2%	90.0%	97.6%	97.6%
Nicor Gas ³⁰¹	98.5%	98.2%	90.0%	97.6%	97.6%
All DUs ³⁰²					75%

<u>Note</u>: If a measure is supported by a gas and electric utility through a joint program, and it is unknown whether the participant has a gas supply, the electric utility values in the table above should be used. If it is known that the participant has a gas supply, the values from the gas utility above should be applied.

R_eff = Recovery efficiency factor

=1.26303

MMBtu convert = Conversion factor from kWh to MMBtu.

= 0.003412

%Gas = Percent of overall savings coming from gas.

= 0% for electric dryers and 84% for gas dryers³⁰⁴.

_

²⁹⁵ %Electric accounts for the fact that some of the savings on gas dryers comes from electricity (motors, controls, etc). 16% was determined using a ratio of the electric to total savings from gas dryers given by ENERGY STAR Draft 2 Version 1.0 Clothes Dryers Data and Analysis.

²⁹⁶ Based on the average % electricity used for water heating in Unknown residential structure types across all utilities covered by the IL program. Residence types include: SF, SF LI, MF & MF LI. Utilities included: Ameren, ComEd, People's Gas, Northshore Gas & Nicor. Please see subsequent table and citations for specific sources.

²⁹⁷ Provided by AEG from the 2020 Market Potential Study completed for AIC, as well as AIC Income Qualified Initiative: 2021 Participant Survey Results Memo (February 1, 2022) p. 17.

²⁹⁸ Commonwealth Edison Residential Baseline Study (2020). p.4.4 & 4.19; Section 4-7 Water Heating. Prepared by Itron.

²⁹⁹ Implementation Contractors data from Peoples Gas and North Shore Gas for PY2022-2023.

³⁰¹ Comparable service area & customers to NSG, therefore using their survey data.

³⁰² For the weighted average calculations, please see the Analysis file. PGL, NSG, Nicor & gas customers were assumed to follow the provided split. ComEd total customers, minus overlap with PGL,NSG & Nicor, therefore gas only homes. Ameren is total customers minus Nicor.

³⁰³ To account for the different efficiency of electric and Natural Gas hot water heaters (gas water heater: recovery efficiencies ranging from 0.74 to 0.85 (0.78 used), and electric water heater with 0.98 recovery efficiency (see ENERGY STAR Waste Water Recovery Guidelines). Therefore a factor of 0.98/0.78 (1.26) is applied.

³⁰⁴ %Gas accounts for the fact that some of the savings on gas dryers comes from electricity (motors, controls, etc). 84% was determined using a ratio of the gas to total savings from gas dryers given by ENERGY STAR Draft 2 Version 1.0 Clothes Dryers Data and Analysis.

For example:

Non Fuel Switch example, for a non- IQ Time of Sale, standard, ventless, ENERGY STAR All-in-One Clothes Washer-Dryer:

$$\Delta kWh_{total} = \Delta kWh_{clothes\ washer} + \Delta kWh_{dryer}$$

$$\Delta kWh_{clothes\ washer} = [Capacity\ *\ 1/IMEFbase\ *\ Ncycles\ *\ (\%CWbase\ +\ (\%DHWbase\ *\ (\%CWeff\ +\ (\%DHWeff\ *\ \%Electric_DHW))] - [Capacity\ *\ 1/IMEFeff\ *\ Ncycles\ *\ (\%CWeff\ +\ (\%DHWeff\ *\ \%Electric_DHW))]$$

$$\Delta kWh_{dryer} = ((Load/CEFbase\ *\ IQAdj)\ -\ Load/CEFeff)\ *\ Ncycles\ *\ \%Electric$$

ENERGY STAR

$$\Delta k W h_{clothes \, washer} = (4.9 \, * \, 1/1.71 \, * \, 276 \, * \, (6.7\% + (15.8\% \, * \, 100\%))) - (4.9 \, * \, 1/2.76 \, * \, 276 \, * (6.6\% + (13\% \, * \, 100\%))) \\ = 81.9 \, k W h$$

$$\Delta k W h_{dryer} = ((8.45/3.11 \, * \, 1) - 8.45/4.97) \, * \, 276 \, * \, 100\% \\ = 280.6 \, k W h$$

$$\Delta k W h_{Total} = 280.6 + 81.9 \\ = 363 \, k W h$$

ENERGY STAR Most Efficient/CEE Tier 2

$$\Delta$$
kWh_{clothes washer} = (4.9 * 1/1.71 * 276 * (6.7% + (15.8% * 100%))) – (4.9 * 1/2.92 * 276 * (6.6% + (13% * 100%))) = 87.2 kWh

$$\Delta$$
kWh_{dryer} = ((8.45/3.11*1) - 8.45/6.9) * 276 *100%
= 411.9 kWh
 Δ kWh_{Total} = 411.9 + 87.2
= 499 kWh

Fuel switch example, for a Time of Sale, an ENERGY STAR All-in-One Clothes Washer-Dryer in place of a clothes washer with gas DHW and vented gas dryer:

Total SiteEnergySavings (MMBTUs) = SiteEnergySavings (MMBTUs)_{clothes washer} + SiteEnergySavings (MMBTUs)_{dryer}

SiteEnergySavings (MMBTUs)_{clothes washer} = [(NonFuelConsumptionBaseline clothes washer + GasConsumptionBaseline clothes washer) - EfficientConsumptionefficient clothes washer]

NonFuelConsumption_{clothes washer} = [(Capacity * 1/IMEFbase * Ncycles * ((%CWbase + %Electric_DHW) *MMBtu_convert]

```
= (4.9 * 1/1.71 * 276 * (6.7\% + (15.8\% * 0\%)) * 0.003412)
                                             = 0.18 MMBTU
        GasConsumptionBaseline clothes washer = [Capacity * 1/IMEFbase * Ncycles * (%DHWbase * %Fossil DHW *
                                                R_eff) * MMBtu_convert ]
                                             = (4.9 * 1/1.71 * 276 * (15.8% * 1 * 1.26))* 0.003412)
                                             = 0.54 MMBTU
       EfficientConsumptionefficient clothes washer = [Capacity * 1/IMEFbase * Ncycles * (%CWbase + (%DHWbase *
                                                   %Electric_DHW) * MMBtu_convert]
                                             = (4.9 * 1/2.8 * 276 * (6.6\% + (13\% * 100\%)) * 0.003412)
                                             = 0.32 MMBTU
       SiteEnergySavings (MMBTUs)clothes washer
                                              = (0.18 + 0.54) - 0.32
                                              = 0.40 MMBTU
            SiteEnergySavings (MMBTUs)<sub>dryer</sub> = [FuelSwitchSavings<sub>dryer</sub>] + [NonFuelSwitchSavings<sub>dryer</sub>]
                     FuelSwitchSavingsdryer = [Load/CEFbaseGas * IQAdj * Ncycles * MMBtu convert * %GasGas] -
                                                [Load/CEFeffElec * Ncycles * MMBtu_convert * %GasGas]
                                              = (8.45/2.84 * 1 * 276 * 0.003412 * 84%) - (8.45/4.97 * 276 *
                                                 0.003412 * 84%)
                                              = 1.01 MMBTU
                NonFuelSwitchSavings<sub>dryer</sub> = [Load/CEFbase<sub>Gas</sub> * IQAdj * Ncycles * MMBtu_convert * %Electric<sub>Gas</sub>]
                                                 - [Load/CEFeffElec * Ncycles * MMBtu convert * %ElectricGas]
                                              = (8.45/2.84 * 1 * 276 * 0.003412 * 16%) - (8.45/4.97 * 276 *
                                                 0.003412 * 16%)
                                              = 0.19 MMBTU
            SiteEnergySavings (MMBTUs)dryer
                                              = 1.01 + 0.19
                                              = 1.2 MMBTU
Total SiteEnergySavings (MMBTUs) = SiteEnergySavings (MMBTUs)<sub>clothes washer</sub>
                                               = 0.40 + 1.2
                                               = 1.6 MMBTU
If supported by an electric utility: ΔkWh = ΔTotal SiteEnergySavings(MMBTUs) * 1,000,000 / 3,412
                                              = 1.6 * 1,000,000 / 3,412
                                              = 469 kWh
```

If supported by a gas utility: Δ Therms = Δ Total SiteEnergySavings(MMBTUs) * 10

= 1.6 * 10 = 16 Therms

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW_{Total}^{305} = ((\Delta kWh_{clothes washer} + \Delta kWh_{dryer})/ Hours) * CF$

Where:

ΔkWh_{clothes washer} = Energy Savings as calculated above for clothes washer. Note: do not include

the secondary savings in this calculation.

Hours = Assumed run hours of unit

 $= 630 \text{ hours}^{306}$

ΔkWh_{dryer} = Energy Savings as calculated above for dryer. Note: do not include the

secondary savings in this calculation.

CF = Summer Peak Coincidence Factor for measure.

 $= 0.038^{277}$

For example, for a Time of Sale, an ENERGYSTAR All-in-One Clothes Washer-Dryer

ENERGY STAR

 Δ kW = ((81.9 + 280.6) / 630) *0.038

= 0.02 kW

FOSSIL FUEL SAVINGS

Calculation provided together with Electric Energy Savings above.

WATER AND OTHER NON-ENERGY IMPACT DESCRIPTIONS AND CALCULATION

ΔWater (gallons) = Capacity * ((IWFbase * IQAdjwater) – IWFeff) * Ncycles

Where:

 Δ Water (gallons) = Water saved, in gallons

IWFbase = Integrated Water Factor of baseline clothes washer

 $=5.59^{307}$

IQAdjwater = Baseline water consumption adjustment for IQ program participants to

account for a portion of participants who would have utilized the secondary

³⁰⁵ The peak energy savings algorithm from the clothes dryer and clothes washer has been calculated individually to create the final algorithm for the Energy Star Combination All-in-One Clothes Washer-Dryer. The dryer section from the clothes washer algorithm has been excluded. See "Energy Star Combination All-in-One Clothes Washer-Dryer Calculations.xls" for information.

³⁰⁶ Based on an average of reported cycle times for a normal load of models on the ENERGY STAR QPL.

³⁰⁷ Weighted average IWF of Federal Standard rating for Front Loading and Top Loading units. Weighting is based upon the relative top v front loading percentage of available non-ENERGY STAR product in the CEC database (products accessed on 04/21/2022).

market.308

=1.02 if IQ, 1.0 if non-IQ

IWFeff = Water Factor of Efficient Combination All-in-One Washer-Dryer unit

= Actual. If unknown assume average values provided below

Using the default assumptions provided above, the prescriptive water savings for each efficiency level are presented below:

Effciency Class	IWFeff ²⁸³	ΔWater ³⁰⁹ (gallons per year)
ENERGY STAR	3.1	3,367.5
ENERGY STAR Most Efficient	2.9	3,638.0

Other factors as defined above.

For example, for a non- IQ Time of Sale, standard, ventless, ENERGY STAR All-in-One Clothes Washer-Dryer:

ENERGY STAR

$$\Delta$$
Water = 4.9 * ((5.59 * 1) - 3.10) * 276

= 3,367.5 Gallons per year

ENERGY STAR Most Efficient/CEE Tier 2

= 3,638.0 Gallons per year

Secondary kWh Savings for Clothes Washer Water Supply and Wastewater Treatment

The following savings should be included in the total savings for this measure but should not be included in TRC tests to avoid double counting the economic benefit of water savings.

 Δ kWhwater = Δ Water (gallons) / 1,000,000 * E_{water total}

Where:

 Δ Water (gallons) = Water saved, in gallons – as calculated below.

E_{water total} = IL Total Water Energy Factor (kWh/Million Gallons)

 $=5010^{310}$

³⁰⁸ It is assumed that a second-hand unit is on average 2/3 of a measure's EUL years old (9 years). The baseline consumption from the TRM in 2015 is assumed the second hand water consumption (note we do no assume a degradation over time for water consumption) was then weighted 1/3: 2/3 current new baseline to estimate a multiplier for IQ participants. See "IQ Appliance Calculations.xls" for information.

³⁰⁹ Baseline clothes washer capacity is assumed to have 4.9 cu.ft. with 233 wash cycles for clothes washer.

³¹⁰ This factor includes 2571 kWh/MG for water supply based on Illinois energy intensity data from a 2012 ISAWWA study and 2439 kWh/MG for wastewater treatment based on national energy intensity use estimates. For more information, please review Elevate Energy's 'IL TRM: Energy per Gallon Factor, May 2018 paper'.

For example, for a non- IQ Time of Sale, standard, ventless, ENERGY STAR All-in-One Clothes Washer-Dryer:

ENERGY STAR

ΔkWhwater = 3367.5/1,000,000 * 5,010 = 16.9 kWh

ENERGY STAR Most Efficient/CEE Tier 2

ΔkWhwater = 3638.0/1,000,000 * 5,010 = 18.2 kWh

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

COST EFFECTIVENESS SCREENING AND LOAD REDUCTION FORECASTING WHEN FUEL SWITCHING

This measure can involve fuel switching from fossil fuel to electric.

For the purposes of forecasting load reductions due to fuel switch projects per Section 16-111.5B, changes in site energy use at the customer's meter (using ΔkWh algorithm below) adjusted for utility line losses (at-the-busbar savings), customer switching estimates, NTG, and any other adjustment factors deemed appropriate, should be used.

The inputs to cost effectiveness screening should reflect the actual impacts on the electric and fuel consumption at the customer meter and, for fuel switching measures, this will not match the output of the calculation/allocation methodology presented in the "Electric Energy Savings" and "Fossil Fuel Savings" sections above. Therefore, in addition to the calculation of savings claimed, the following values should be used to assess the cost effectiveness of the measure.

- ΔTherms = [Clothes Washer with Gas DHW Consumption Replaced + Gas Dryer Consumption Replaced] [All-in-One Clothes Washer-Dryer Consumption Added]
 - = [(Capacity * IQAdj/IMEFbase * Ncycles * (%DHWbase * %Fossil_DHW * R_eff)) + ((Load/CEFbase_{Gas} * IQAdj) * Ncycles * Therm_convert * %Gas_{Gas}) + ((Load/CEFeff_{Elec} * IQAdj) * Ncycles * Therm_convert * %Gas_{Gas}))] [(Capacity * 1/IMEFeff * Ncycles * (%CWeff + (%DHWeff * %Electric_DHW) * Therm_convert) + (Load/CEFeff * Ncycles * %Gas_{gas}* Therm_convert)]
 - ΔkWh = [Clothes Washer with Gas DHW Electric Consumption Replaced + Gas Dryer Electric Consumption Replaced] [All-in-One Clothes Washer-Dryer Consumption Added]
 - = [((Load/CEFbase_{Gas} * IQAdj) * Ncycles * %Electric_{Gas}) + (Capacity * 1/IMEFbase * Ncycles * (%CWbase + (%DHWbase * %Electric_DHW_{base})] [((Load/CEFeff * Ncycles * %Gas_{gas}) + (Load/CEFeff * Ncycles * %Electric_{gas})) + (Capacity * 1/IMEFeff * Ncycles * (%CWeff + (%DHWeff * %Electric DHW_{efficient})]

MEASURE CODE: RS-APL-ACWD-V01-250101

5.2 Consumer Electronics End Use

5.2.1 Advanced Power Strip – Tier 1

DESCRIPTION

This measure relates to Advanced Power Strips – Tier 1 which are multi-plug surge protector power strips with the ability to automatically disconnect specific connected loads depending upon the power draw of a control load, also plugged into the strip. Power is disconnected from the switched (controlled) outlets when the control load power draw is reduced below a certain adjustable threshold, thus turning off the appliances plugged into the switched outlets. By disconnecting, the standby load of the controlled devices, the overall load of a centralized group of equipment (i.e. entertainment centers and home office) can be reduced. Uncontrolled outlets are also provided that are not affected by the control device and so are always providing power to any device plugged into it. This measure characterization provides savings for a 5-plug strip and a 7-plug strip.

This measure was developed to be applicable to the following program types: TOS, NC, DI, KITS. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient case is the use of a 5 or 7-plug advanced power strip.

DEFINITION OF BASELINE EQUIPMENT

For time of sale or new construction applications, the assumed baseline is a standard power strip that does not control connected loads.

For direct install and kits, the baseline is the existing equipment utilized in the home.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The assumed lifetime of the advanced power strip is 7 years.³¹¹

DEEMED MEASURE COST

For time of sale or new construction the incremental cost of an advanced Tier 1 power strip over a standard power strip with surge protection is assumed to be \$10.312

For direct install the actual full equipment and installation cost (including labor) and for kits the actual full equipment cost should be used.

Equipment cost if unknown³¹³:

Baseline Efficient Cost Cost		Incremental Equipment Cost	
\$20	\$30	\$10	

LOADSHAPE

Loadshape R13 - Residential Standby Losses – Entertainment

Loadshape R14 - Residential Standby Losses - Home Office

³¹¹ This is a consistent assumption with 5.2.2 Advanced Power Strip – Tier 2.

³¹² Price survey performed by Illume Advising LLC for IL TRM workpaper, see "Current Surge Protector Costs and Comparison 7-2016" spreadsheet.

³¹³ Price survey performed by Illume Advising LLC for IL TRM workpaper, see "Current Surge Protector Costs and Comparison 7-2016" spreadsheet.

COINCIDENCE FACTOR

The summer peak coincidence factor for this measure is assumed to be 80%. 314

Algorithm

CALCULATION OF SAVINGS ELECTRIC ENERGY SAVINGS

 $\Delta kWh = kWh * ISR$

Where:

kWh = Assumed annual kWh savings per unit

= 56.5 kWh for 5-plug units or 103 kWh for 7-plug units³¹⁵

ISR = In Service Rate, dependent on delivery mechanism

³¹⁴ Efficiency Vermont 2016 TRM coincidence factor for advanced power strip measure –in the absence of empirical evaluation data, this was based on assumptions of the typical run pattern for televisions and computers in homes.

³¹⁵ NYSERDA Measure Characterization for Advanced Power Strips. Study based on review of:

Smart Strip Electrical Savings and Usability, Power Smart Engineering, October 27, 2008.

Final Field Research Report, Ecos Consulting, October 31, 2006. Prepared for California Energy Commission's PIER Program. Developing and Testing Low Power Mode Measurement Methods, Lawrence Berkeley National Laboratory (LBNL), September 2004. Prepared for California Energy Commission's Public Interest Energy Research (PIER) Program.

²⁰⁰⁵ Intrusive Residential Standby Survey Report, Energy Efficient Strategies, March 2006.

Smart Strip Portfolio of the Future, Navigant Consulting for San Diego G&E, March 31, 2009.

[&]quot;Smart strip" in this context refers to the category of Advanced Power Strips, does not specifically signify Smart Strip® from BITS Limited, and was used without permission. Smart Strip® is a registered trademark of BITS Smart Strip, LLC.

An additional more recent study in Massachusetts by NMR Group, Inc., "RLPNC 17-3: Advanced Power Strip Metering Study", March 19, 2019 provides a consistent result to the final savings presented here. On p77 the average savings found was 78 kWh which includes accounting for In Service Rate, Short Term Retention Rate and Realization Rate.

Delivery Mechanism	ISR
Multifamily Energy Efficiency Kit, Leave	47% ³¹⁶
behind	4770
Single Family Energy Efficiency Kit,	55% ³¹⁷
Leave behind	33/0
Income Qualified Energy Efficiency Kit,	69% ³¹⁸
Mailed	05/0
Community Distributed Kit	91% ³¹⁹
Direct Install (installations should be	
limited to high use locations such as	100%
office or entertainment centers)	
Time of Sale	71% ³²⁰

Using assumptions above:

# Plugs	Delivery Mechanism	ΔkWh
	Multifamily Energy Efficiency Kit, Leave behind	22.6
	Single family Energy Efficiency Kit, Leave behind	31.1
5- plug	Income Qualified Energy Efficiency Kit, Mailed	39.0
	Community Distributed Kit	51.4
	Direct Install	56.5
	Time of Sale	40.1
	Multifamily Energy Efficiency Kit, Leave behind	41.2
	Single family Energy Efficiency Kit, Leave behind	56.7
7-plug	Income Qualified Energy Efficiency Kit, Mailed	71.1
	Community Distributed Kit	93.8
	Direct Install	103.0
	Time of Sale	73.1
Unknown ³²¹ Multifamily Energy Efficiency Leave behind		31.9

³¹⁶ Opinion Dynamics and Navigant. Impact Evaluation for ComEd 2018 site visit efforts for leave-behind measures in public housing multi-family units. The Evaluation Team completed site visits for 72 apartment units across seven of the ten participating properties in which advanced power strips were installed. The Evaluation Team attempted a census using all data provided at the time of site visit planning (Fall 2018). The program distributed a total of 476 advanced power strips, with 471 distributed amongst the seven properties with completed site visits. The Team performed intrasite sampling within each property and verified a total of 37 advanced power strips of the 92 within the sample. Opinion Dynamics conducted primary research with tenants of participating multifamily buildings in 2023 to study their usage behavior after Program Allies left advanced power strips in their units. Opinion Dynamics, "2023 AIC Multifamily Initiatives Tenant Survey Findings Memo," Ameren Illinois, Multifamily Initiatives, April 24, 2024. 54% of survey respondents reported that the Advanced Power Strip was properly installed and in use properly. An average of these two sources results in an overall ISR of 47%.

³¹⁷ Research from 2018 ComEd Home Energy Assessment participant survey.

³¹⁸ Research from 2021 Ameren Illinois Income Qualified participant survey (customer self-report), available on IL SAG website: https://ilsag.s3.amazonaws.com/AIC-Income-Qualified-Initiative-Participant-Survey-Results-Memo-FINAL-2022-02-01.pdf

³¹⁹ Research from 2018 Ameren Illinois Income Qualified participant survey.

³²⁰ Research from 2019 ComEd Appliance Rebate Program- Online Marketplace participant survey

³²¹ Calculated as average of 5 and 7 plug savings assumptions.

# Plugs	Delivery Mechanism	ΔkWh
	Single family Energy Efficiency Kit, Leave behind	43.9
	Income Qualified Energy Efficiency Kit, Mailed	55.0
	Community Distributed Kit	72.6
	Direct Install	80.0
	Time of Sale	56.6

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh / Hours * CF$

Where:

Hours = Annual number of hours during which the controlled standby loads are turned off by

the Tier 1 Advanced power Strip.

= 7,129 322

CF = Summer Peak Coincidence Factor for measure

 $= 0.8^{323}$

# Plugs	Delivery Mechanism	ΔkW
5- plug	Multifamily Energy Efficiency Kit, Leave behind	0.0025
	Single family Energy Efficiency Kit, Leave behind	0.0035
	Income Qualified Energy Efficiency Kit, Mailed	0.0044
	Community Distributed Kit	0.0058
	Direct Install	0.0063
	Time of Sale	0.0045
7-plug	Multifamily Energy Efficiency Kit, Leave behind	0.0046
	Single family Energy Efficiency Kit, Leave behind	0.0064
	Income Qualified Energy Efficiency Kit, Mailed	0.0080
	Community Distributed Kit	0.0105
	Direct Install	0.0116
	Time of Sale	0.0082
Unknown ³²⁴	Multifamily Energy Efficiency Kit, Leave behind	0.0036
	Single family Energy Efficiency Kit, Leave behind	0.0049
	Income Qualified Energy Efficiency	0.0062

³²² Average of hours for controlled TV and computer from; NYSERDA Measure Characterization for Advanced Power Strips

_

³²³ Efficiency Vermont 2016 TRM coincidence factor for advanced power strip measure –in the absence of empirical evaluation data, this was based on assumptions of the typical run pattern for televisions and computers in homes.

³²⁴ Calculated as average of 5 and 7 plug savings assumptions.

# Plugs	Delivery Mechanism	ΔkW
	Kit, Mailed	
	Community Distributed Kit	0.0081
	Direct Install	0.0090
	Time of Sale	0.0064

FOSSIL FUEL SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-CEL-SSTR-V10-250101

5.2.2 Tier 2 Advanced Power Strips (APS) – Residential Audio Visual

DESCRIPTION

This measure relates to the installation of a Tier 2 Advanced Power Strip / surge protector for household audio visual environments (Tier 2 AV APS). Tier 2 AV APS are multi-plug power strips that remove power from audio visual equipment through intelligent control and monitoring strategies.

By utilizing advanced control strategies such as a countdown timer, external sensors (e.g. of infra-red remote usage and/or occupancy sensors, true RMS (Root Mean Square) power sensing; both active power loads and standby power loads of controlled devices are managed by Tier 2 AV APS devices.³²⁵ Monitoring and controlling both active and standby power loads of controlled devices will reduce the overall load of a centralized group of electrical equipment (i.e. the home entertainment center). This more intelligent sensing and control process has been demonstrated to deliver increased energy savings and demand reduction compared with 'Tier 1 Advanced Power Strips'.

This measure was developed to be applicable to the following program types: DI. If applied to other program delivery types, the installation characteristics including the number of AV devices under control and an appropriate in service rate should be verified through evaluation.

Current evaluation is limited to Direct Install applications. Through a Direct Install program it can be assured that the APS is appropriately set up and the customer is knowledgeable about its function and benefit. It is encouraged that additional implementation strategies are evaluated to provide an indication of whether the units are appropriately set up, used with AV equipment and that the customer is knowledgeable about its function and benefit. This will then facilitate a basis for broadening out the deployment methods of the APS technology category beyond Direct Install.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient case is the use of a Tier 2 AV APS in a residential AV (home entertainment) environment that includes control of at least 2 AV devices with one being the television.³²⁶

The minimum product specifications for Tier 2 AV APS are:

Safety & longevity

- Product and installation instructions shall comply with 2012 International Fire Code and 2000 NFPA 101 Life Safety Code (IL Fire Code).
- Third party tested to all applicable UL Standards.
- Contains a resettable circuit breaker
- Incorporates power switching electromechanical relays rated for 100,000 switching cycles at full 15 amp load (equivalent to more than 10 years of use).

Energy efficiency functionality

- Calculates real power as the time average of the instantaneous power, where instantaneous power is the product of instantaneous voltage and current.
- Delivers a warning when the countdown timer begins before an active power down event and maintains the warning until countdown is concluded or reset by use of the remote or other specified signal
- Uses an automatically adjustable power switching threshold.

³²⁵ Tier 2 AV APS identify when people are not engaged with their AV equipment and then remove power, for example a TV and its peripheral devices that are unintentionally left on when a person leaves the house or for instance where someone falls asleep while watching television.

³²⁶ Given this requirement, an AV environment consisting of a television and DVD player or a TV and home theater would be eligible for a Tier 2 AV APS installation.

DEFINITION OF BASELINE EQUIPMENT

The assumed baseline equipment is the existing equipment being used in the home (e.g. a standard power strip or wall socket) that does not control loads of connected AV equipment.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The default deemed lifetime value for Tier 2 AV APS is assumed to be 7 years. 327

DEEMED MEASURE COST

Direct Installation: The actual installed cost (including labor) of the new Tier 2 AV APS equipment should be used. Baseline equipment cost if unknown is assumed to be \$20³²⁸.

LOADSHAPE

Loadshape R13 - Residential Standby Losses - Entertainment

COINCIDENCE FACTOR

The summer peak coincidence factor for this measure is assumed to be 80%.³²⁹

³²⁷ There is little evaluation to base a lifetime estimate upon. Based on review of assumptions from other jurisdictions and the relative treatment of In Service Rates and persistence, an estimate of 7 years was agreed by the Technical Advisory Committee, but further evaluation is recommended.

³²⁸ Price survey performed by Illume Advising LLC for IL TRM workpaper, see "Current Surge Protector Costs and Comparison 7-2016" spreadsheet.

³²⁹ In the absence of empirical evaluation data, this was based on assumptions of the typical run pattern for televisions and computers in homes.

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = ERP * BaselineEnergy_{AV} * ISR$

Where:

ERP

= Energy Reduction Percentage of qualifying Tier2 AV APS product range as provided below. Savings are based upon independent field trials of two product manufacturers and the savings differences are assumed to relate to the product classifications provided below. Additional evaluation will be reviewed in future cycles to confirm if additional classification categories are appropriate.

Product Type	ERP used
Infrared Only	40% ³³⁰
Infrared and	25% ³³¹
Occupancy Sensor	

BaselineEnergy_{AV} = 466 kWh³³²

ISR = In Service Rate.

Product Type	ISR ³³³
Infrared Only	73%
Infrared and	83%
Occupancy Sensor	

Deemed savings for each product type are provided below:

³³⁰ Representative savings assumption based on the following independent field tests on Embertec's IR-only product. This includes both simulated saving results (based on recording what action the APS would have taken, but where equipment is not actually switched off allowing evaluation of the expected length of savings), and pre/post metering studies.

AESC (page 30) - Valmiki, MM., Corradini, Antonio PE. 2015. Tier 2 Advanced Power Strips in Residential and Commercial Applications. Prepared for San Diego Gas & Electric by Alternative Energy Systems Consulting, Inc. (Simulated 50%, pre/post 32%).

[•] AESC- Valmiki, MM., Corradini, Antonio PE., Feb 2016. Energy Savings of Tier 2 Advanced Power Strips in Residential AV Systems. (Simulated 50%, pre/post 29%)

[•] CalPlug research (Page 12) - Wang, M. e. 2014. "Tier 2 Advanced Power Strip Evaluation for Energy Saving Incentive". California Plug Load Research Center (CalPlug), UC Irvine. (Simulated 51%)

[•] NMR Group Inc., *RLPNC 17-3: Advanced Power Strip Metering Study*, Revised March 18, 2019, submitted to Massachusetts Program Administrators and EEAC. (Pre/post with regression 50%, Pre/post only 20%).

³³¹ Representative savings assumption based on the following independent field tests on TrickeStar IR-OS product and reflect both simulated and pre/post meter study results.

[•] AESC- Valmiki, MM., Corradini, Antonio PE., Feb 2016. Energy Savings of Tier 2 Advanced Power Strips in Residential AV Systems. (Simulated 27%, pre/post 25%)

[•] NMR Group Inc., *RLPNC 17-3: Advanced Power Strip Metering Study*, Revised March 18, 2019, submitted to Massachusetts Program Administrators and EEAC. (Pre/post with regression 37%, Pre/post only 11%)

³³² Average of baseline energy in Regional Technical Form survey of Tier 2 APS pre-post methodology studies, see 'RTF T2 APS.ppt'.

³³³ Weighted average of evaluation results from AESC, Inc, "Energy Savings of Tier 2 Advanced Power Strips in Residential AC Systems", p35. These assumptions include "adjustments in weighting based on the persistence sensitivity to demographics" and NMR Group Inc., RLPNC 17-3: Advanced Power Strip Metering Study, Revised March 18, 2019.

Product Type	ΔkWh
Infrared Only	136.1
Infrared and	96.7
Occupancy Sensor	

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh / Hours * CF$

Where:

ΔkWh = Energy savings as calculated above

Hours = Annual number of hours during which the APS provides savings.

 $= 4,380^{334}$

CF = Summer Peak Coincidence Factor for measure

 $= 0.8^{335}$

Deemed savings for each product type are provided below:

Product Type	ΔkW
Infrared Only	0.0249
Infrared and	0.0177
Occupancy Sensor	

FOSSIL FUEL SAVINGS

 N/A^{336}

WATER AND OTHER NON-ENERGY IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-CEL-APS2-V06-240101

³³⁴ This is estimate based on assumption that approximately half of savings are during active hours (supported by AESC study) (assumed to be 5.3 hrs/day, 1936 per year (NYSERDA 2011. "Advanced Power Strip Research Report")) and half during standby hours (8760-1936 = 6824 hours). The weighted average is 4380.

³³⁵ In the absence of empirical evaluation data, this was based on assumptions of the typical run pattern for televisions and computers in homes. This appears to be supported by the Average Weekday AV Demand Profile and Reduction charts in the AESC study (p33-34). These show that the average demand reduction is relatively flat.

³³⁶ Interactive effects of Tier 2 APS on space conditioning loads has not yet been adequately studied.

5.2.3 ENERGY STAR Television

DESCRIPTION

An ENERGY STAR Certified television installed in place of a standard television.

This measure was developed to be applicable to the following program types: [TOS]. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient equipment is defined as a television meeting the ENERGY STAR Version 9.0.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is defined as a non ENERGY STAR certified television.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The assumed lifetime of this measure is 5 years. 337

DEEMED MEASURE COST

The incremental cost for this measure is \$60.338

LOADSHAPE

R13: Residential Standby Losses - Entertainment

COINCIDENCE FACTOR

The coincidence factor for this measure is assumed to be 22%. 339

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

ENERGY STAR savings summarized in table below:340

Equipment Size Bin	ΔkWh
<=47.5"	93.2
47.5" <x<=52.5"< td=""><td>91.3</td></x<=52.5"<>	91.3
52.5" <x<=59.5"< td=""><td>71.6</td></x<=59.5"<>	71.6
59.5" <x<=69.5"< td=""><td>75.3</td></x<=69.5"<>	75.3
69.5" <x<=80"< td=""><td>31.7</td></x<=80"<>	31.7

^{337 &#}x27;ENERGY STAR Version 9.0 TVs Data Package.xls'.

-

³³⁸ Estimate from 'Savings Estimation Technical Reference Manual, 2017'. Highest cost estimate due to majority of TVs now being the larger bin sizes. This estimate is an old reference and would benefit a new study to improve the assumption.

³³⁹ Based upon Hawai'i Energy, Technical Reference Manual, 2018

^{340 &#}x27;ENERGY STAR Version 9.0 TVs Data Package.xls'.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh / Hours * CF$

Where:

Hours = Estimate of hours savings achieved.

 $= 1759^{341}$

CF = Coincidence Factor

 $= 0.22^{2}$

Equipment Size Bin	ΔkW
<=47.5"	0.01166
47.5" <x<=52.5"< td=""><td>0.01142</td></x<=52.5"<>	0.01142
52.5" <x<=59.5"< td=""><td>0.00896</td></x<=59.5"<>	0.00896
59.5" <x<=69.5"< td=""><td>0.00942</td></x<=69.5"<>	0.00942
69.5" <x<=80"< td=""><td>0.00396</td></x<=80"<>	0.00396

FOSSIL FUEL SAVINGS

n/a

WATER AND OTHER NON-ENERGY IMPACT DESCRIPTIONS AND CALCULATION

n/a

DEEMED O&M COST ADJUSTMENT CALCULATION

n/a

MEASURE CODE: RS-CEL-TVS-V02-250101

³⁴¹ Most savings are achieved during "automatic brightness control" during active viewing. Recent study Nielsen "State of Play" found average viewing of 4.82 hours per day = 1759 hours per year.

5.2.4 Smart Sockets

DESCRIPTION

Smart sockets achieve savings through the reduction of the standby load of the controlled appliance, as well as eliminating the operation of an appliance during unoccupied hours. The standby power consumption of home appliances can be significantly reduced.

Smart Sockets in homes can be used for all types of appliances and significant saving opportunities exist for devices which are rarely unplugged like televisions, lamps, and speakers. The savings are derived from the times when the devices are not in use. Devices plugged in, even when off, consume electricity and smart sockets will reduce this standby load. In addition, smart sockets can be used to schedule equipment, so the load is less during hours which the devices are not in use.

This measure was developed to be applicable to the following program types: DI, KITS

DEFINITION OF EFFICIENT EQUIPMENT

The efficient case is the use of a smart plug with a standby power wattage of 2W or less. Should be UL listed. (Simply Conserve Smart Socket SS-15A1-WiFi has a standby power of less than or equal to 0.7).

DEFINITION OF BASELINE EQUIPMENT

The assumed baseline is an appliance plugged into an outlet or into a standard power strip with surge protection that does not control connected loads. Note many ENERGY STAR appliances require power saving settings which will partially offset the savings potential of this measure. Where possible non-ENERGY STAR equipment should be plugged in to the socket to ensure savings are realized.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The assumed lifetime of the smart socket is 7 years.

DEEMED MEASURE COST

For direct install, the actual full equipment and installation cost (including labor) and for kits the actual full equipment cost should be used. If unknown for kits, use \$9.00/each³⁴².

LOADSHAPE

Loadshape R13 – Standby Losses – Entertainment Center

COINCIDENCE FACTOR

The summer peak coincidence factor for this measure is assumed to be 80%. 343

³⁴² Based on cost from vendor of typical smart socket on the market, Simply Conserve Smart Socket by AM Conservation Group. 10 amp smart socket: \$8.92/each; 15 amp smart socket: \$9.00/each.

³⁴³ Efficiency Vermont 2016 TRM coincidence factor for advanced power strip measure –in the absence of empirical evaluation data, this was based on assumptions of the typical run pattern for televisions and computers in homes.

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

 Δ kWh = ((W_{Base} * OnAdj) – W_{Eff}) * Hours) / 1000 * ISR

Where:

 W_{Base}^{344}

= Standby power or On power consumption of connected appliance.

Use actual if known, or refer to tables below. If unknown, e.g. via kits, assume 9.4W Appliances assumed to be in standby mode:

Controlled Equipment ³⁴⁵	Standby Power (W)
Coffee Maker	1.14
Television, CRT	3.06
Television, Rear Projection	6.97
Television, LCD ³⁴⁶	8.00
Set-top Box, DVR	36.68
Set-top Box, Digital Cable	17.83
Set-top Box, Satellite	15.66
Television/VCR	5.99
VCR	4.68
Computer, Desktop	2.84
Computer Notebook	8.90
Multifunction Device, Inkjet	5.26
Multifunction Device, Laser	3.12
Scanner, Flatbed	2.48

Appliances assumed to be in on mode:

Controlled Equipment ³⁴⁷	On Power (W)
Light	10.4
Fan	70
Space Heater	450

 $OnAdj^{348}$ = Adjustment for wattages of appliances that are powered on during unoccupied hours

2025 IL TRM v13.0 Vol. 3_September 20, 2024_FINAL

³⁴⁴ Average connected wattage found in Guidehouse, 'ComEd Small Business Kits CY2020 Impact Evaluation Report 2021-04-01 Final ndf'

³⁴⁵ See Standby Power Summary Table contained in "Standby Power", Lawrence Berkeley National Laboratory, Building Technology and Urban Systems Division, https://standby.lbl.gov/data/summary-table/

³⁴⁶ From "iTECH evaluation on the SmartSocket," ITECH Electronic Co., LTD, 1/28/19. IoT – Related Technical Articles. https://www.itechate.com/uploadfiles/2019/01/201901281143214321.pdf.

³⁴⁷ See Standby Power Summary Table contained in "Standby Power", Lawrence Berkeley National Laboratory, Building Technology and Urban Systems Division, https://standby.lbl.gov/data/summary-table/

³⁴⁸ "4.8.22 Smart Sockets," in Illinois Statewide Technical Reference Manual – Volume 2: Commercial and Industrial Measures, v.11.0, 2023

= 50% for appliances in on mode

=100% for appliances in standby mode and for unknown

W_{Eff} = Standby power consumption of smart socket. If unknown, assume 0.7W.

Hours = Unused hours per year. If unknown, use 5,794.2 Hours/year

Assumptions	Weekly Hours	Annual Hours
Total Hours per week	168	8,769.6
Hours at work	40	2,088
Hours commuting	5	261
Errands/Social/etc.	10	522
Sleep	56	2,923.2
Hours appliances are unused	111	5,794.2

ISR = In Service Rate, dependent on delivery mechanism³⁴⁹

Delivery Mechanism	ISR
Direct Install	97.3%
Single Family Energy Efficiency Kit, Leave behind	74%
Income Qualified Energy Efficiency Kit, Mailed	82%
Community Distributed Kit	93%
Multifamily Energy Efficiency Kit, Leave behind	40%
Virtual Single Family	85.6%
Virtual Multi Family	68.6%

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh / Hours * CF$

Where:

CF = Summer Peak Coincidence Factor for measure

 $= 0.8^{350}$

FOSSIL FUEL SAVINGS

N/A

WATER AND OTHER NON-ENERGY IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

³⁴⁹ Using averages of Advanced Power Strip – Tier 1 and Connected LED Lamps from Volume 3 Residential Measures V11.0. See 'Smart Sockets Working ISRs' workbook for additional details.

³⁵⁰ Efficiency Vermont 2016 TRM coincidence factor for advanced power strip measure –in the absence of empirical evaluation data, this was based on assumptions of the typical run pattern for televisions and computers in homes.

MEASURE CODE: RS-CEL-SSOC-V01-240101

REVIEW DEADLINE: 1/1/2026

5.3 HVAC End Use

5.3.1 Air Source Heat Pumps (Centrally Ducted, Ductless and Portable)

DESCRIPTION

A heat pump provides heating or cooling by moving heat between indoor and outdoor air. This measure relates to:

- a unitary central heat pump (split or packaged) with conditioned air delivered to the home via ductwork
- a ductless minisplit system
- "hybrid" systems that work in conjunction with fuel-fired heating systems, and
- a portable heat pump (mounted within a wall, within a window, or floor-mounted with intake and/or exhaust duct(s) directed through a window).

This measure characterizes:

a) New Construction:

- The installation of a new residential sized (<= 65,000 Btu/hr) Air Source Heat Pump meeting minimum requirements determined by the program in a new home.
- Note the baseline in this case should be determined via EM&V and the algorithms are provided to allow savings to be calculated from any baseline condition.

b) Time of Sale:

- The installation of a new residential sized (<= 65,000 Btu/hr) Air Source Heat Pump meeting minimum requirements determined by the program. This relates to the replacement of an existing unit at the end of its useful life.
- Note the baseline in this case is an equivalent replacement system to that which exists currently
 in the home. Where unknown, the baseline should be determined via EM&V and the algorithms
 are provided to allow savings to be calculated from any baseline condition.
- The allocation of savings is dependent on whether an incentive for the installation has been provided by both a gas and electric utility, just an electric utility or just a gas utility.

c) Early Replacement:

The early removal of functioning components of the electric or gas heating and/or cooling systems from service, prior to its natural end of life, and replacement with a new high efficiency air source heat pump unit.

Note the baseline in this case is the existing equipment being replaced. The allocation of savings is dependent on whether an incentive for the installation has been provided by both a gas and electric utility, just an electric utility or just a gas utility.

Early Replacement determination will be based on meeting the following conditions:

- The existing unit is operational when replaced, or
- The existing unit requires minor repairs (<\$276 per ton).³⁵¹
- All other conditions will be considered Time of Sale.

The Baseline SEER2 of the existing unit replaced:

- Is the actual SEER (converted to SEER2) value of the unit replaced.
- If the SEER of the existing unit is unknown use assumptions in variable list below (SEER2_exist and HSPF2_exist).

³⁵¹ The Technical Advisory Committee agreed that if the cost of repair is less than 20% of the new baseline replacement cost it can be considered early replacement. Note the non-inflated cost is used as this would be a cost consideration in the program year.

If the operational status or repair cost of the existing unit is unknown, use time of sale assumptions or average weighted factors determined via evaluation and the algorithms below

A weighted average early replacement rate is provided for use in programs when the actual baseline early replacement rates are unknown.

Deemed Early Replacement Rates For ASHP³⁵²

Equipment Type	Full System Displacement	Partial System Displacement
Cooling	30%	30%
Heating	30%	100%

Note to apply these deemed early replacement rates, an assumption of the percentage of replacements that are full displacement v partial displacement is required. This should be determined through evaluation, or a deemed ratio of 100% Full Displacement for ducted ASHPs and 50% Full: 50% Partial for Ductless ASHPs can be used³⁵³. Savings should be calculated following both the full and partial displacement methodology and then this ratio should be used to weight the savings accordingly.

Quality Installation:

Additional savings are attributed to the Quality Installation (QI) of the system. QI programs should follow industry standards such as those described in ENERGY STAR Verified HVAC Installation Program (ESVI), ANSI ACCA QI5 and QI9vp. This must include considerations of system design (including sizing, matching, ventilation calculations) and equipment installation (including static pressure, airflow, refrigerant charge) and may also consider distribution.

This measure was developed to be applicable to the following program types: TOS, NC, EREP. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

A new residential sized (<= 65,000 Btu/hr) air source heat pump with specifications to be determined by program.

The following conversion factors are recommended for use if the efficient equipment is not rated under the new testing procedure: 354

SEER2 = SEER * X EER2 = EER * X HSPF2 = HSPF * X

Where:

³⁵² Program tracking data from ComEd and Ameren between 2018 and 2020 was used to develop these assumptions. During this period the air source heat pump programs operated downstream and projects were classified as Time of Sale or Early Replacement. Note that any fuel switch scenario at the time would have been classified as Time of Sale and therefore the rates provided likely represent a low estimate of the true early replacement rates. In the absence of alternative data, the TAC agreed to apply these rates and the deemed full v partial displacement assumptions listed, but these assumptions should be revisited through future evaluation.

³⁵³ For ductless ASHPs with a capacity less than 18kBtu, the Full Displacement calculation should use the lower 'Supplemental' EFLHs provided, and the Partial Displacement calculation use the Standard hours. All other calculations should use the Standard hours. We assume that smaller systems are typically used to (1) provide all of the heating/cooling for zones outside of central living zones or (2) as partial displacement of existing systems in central living zones.

³⁵⁴ Consortium for Energy Efficiency (CEE), Testing, Testing, M1, 2, 3, Transitioning to New Federal Minimum Standards, CEE Summer Program Meeting, August, 2022.

Х	SEER	EER	HSPF
Ducted	0.95	0.95	0.85
Non-Ducted	1.00	1.00	0.90
Packaged/Portable	0.95	0.95	0.84

DEFINITION OF BASELINE EQUIPMENT

The baseline designation can be assigned differently for heating and cooling for the same installation, but the designation must remain consistent when applying the TRM calculations (e.g., for energy savings, measure cost, and demand savings). For example, customers may choose to replace an AC at the end of its useful life yet continue using their existing furnace. In this case, the cooling replacement could represent a time of sale baseline while the heating replacement could reflect an early replacement baseline.

New Construction: To calculate savings with an electric baseline, the baseline equipment is assumed to be an Air Source Heat Pump meeting the Federal Standard efficiency level:³⁵⁵

- Split system ducted heat pump standard sized units 14.3 SEER2, 7.5 HSPF2, 9.4 EER2
- Split system ductless heat pump standard sized units 14.3 SEER2, 7.5 HSPF2, 8.5 EER2
- Space constrained heat pump units 11.9 SEER2, 7.8 EER2 and 6.3 HSPF2

Note, the space constrained product baseline should only be used when the efficient unit is classified as space constrained (labelled as SCP on AHRI database).

To calculate savings with a furnace/central AC baseline, the baseline equipment is assumed to be an 80% AFUE Furnace and central AC meeting the Federal Standard efficiency level; 13.4 SEER2, 10.6 EER2 for standard sized units, or 11.7SEER, 9.2 EER2 for space constrained product.

Time of Sale: The baseline for this measure is a new replacement unit of the same system type as the existing unit, meeting the baselines provided below³⁵⁶.

Unit Type	Efficiency Standard
Standard sized Ducted ASHP	14.3 SEER2, 9.4 EER2, 7.5 HSPF2
Standard sized Ductless ASHP	14.3 SEER2, 8.5 EER2, 7.5 HSPF2
Space constrained ASHP	11.9 SEER2, 7.8 EER2, 6.3 HSPF2
Room AC (baseline for portable HP only)	Select appropriate baseline from measure 5.1.7. Assume same capacity as efficient.
Electric Resistance (default for portable HP)	3.412 HSPF2
Natural Gas or LP Furnace	80% AFUE
Natural Gas or LP Boiler	84% AFUE
Oil Furnace	83% AFUE
Oil Boiler	86% AFUE
Standard sized Central AC	13.4 SEER2, 10.6 EER2
Space constrained Central AC	11.7 SEER2, 9.2 EER2

³⁵⁵ The federal Standard does not currently include an EER2 component for northern states. The value provided is based on scaling CEE Tier 1 ratings for North and Canada (12EER2 for CAC, 10EER2 for ducted HP and 9.0EER2 for ductless HP) proportionally down compared to the Federal baseline SEER2 compared to CEE Tier 1 SEER2 ratings.

_

³⁵⁶ Federal Standard as provided in DOE 10 CFR 430.32.

Unit Type	Efficiency Standard
Unknown, installing ducted ³⁵⁷	13.9 SEER2, 9.4 EER2, 5.9HSPF2, 80.1% AFUE
Unknown, installing ductless	13.7 SEER2, 8.5 EER2, 5.3HSPF2, 81.1% AFUE

Early replacement / Retrofit: The baseline for this measure is the efficiency of the *existing* heating and cooling equipment for the assumed remaining useful life of the existing unit and a new baseline heating and cooling system for the remainder of the measure life (as provided in table above).

When unknown, default early replacement efficiency assumptions are 9.2 SEER2, 7.4 EER2, 4.5 HSPF2 and 80% AFUE when installing ducted ASHP and 9.5 SEER2, 7.4 EER2, 4.4 HSPF2 and 63% AFUE when installing ductless³⁵⁸. Consistent with TRM Volume 1 Section 2.3.1 for midstream programs or other cases where the existing condition is unknown, it may be appropriate to apply a deemed percent split of Time of Sale and Early Replacement assumptions based on evaluation results.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 16 years for ducted and ductless ASHP³⁵⁹ and 12 years for portable HP³⁶⁰.

Remaining life of existing equipment is assumed to be 6 years for ASHP and Central AC, 7 years for furnace, 8 years for boilers³⁶¹ and 16 years for electric resistance.³⁶²

DEEMED MEASURE COST

Centrally Ducted Air Source Heat Pumps:

New Construction and Time of Sale: The actual installed cost of the Air Source Heat Pump (including any necessary electrical or distribution upgrades required) should be used minus the assumed installation cost of the baseline equipment (\$6865 + \$600 per ton for a new baseline ASHP³⁶³, \$2,011 for a new baseline 80% AFUE furnace or \$4,053 for a new 84% AFUE boiler³⁶⁴ and \$952 per ton for new baseline Central AC replacement³⁶⁵).

Early Replacement: The actual full installation cost of the Air Source Heat Pump (including any necessary electrical or distribution upgrades required) should be used. The assumed deferred cost (after the appropriate number of years described above in the 'Deemed Lifetime of Efficient Equipment' section) of replacing existing equipment with

-

³⁵⁷ Unknown time of sale baseline values represent the weighted average baseline values (in SEER2/HSPF2/AFUE) reflecting the assumed shares of installed ASHP replacing given baseline technologies (e.g. ASHP/electric resistance or furnace/boiler) by fuel type. Assumed shares are based on Opinion Dynamics and Guidehouse analysis of 2018-2021 Ameren and ComEd HVAC (downstream) program tracking data, converted to SEER2/EER2/HSPF2 using conversion factors provided. For further details, see '2018-2021 AIC Res HVAC Data ASHP Baseline TRM Update 2023-6-20.xls'.

³⁵⁸ Unknown early replacement baseline values represent the weighted average existing system efficiency values (converted to SEER2/HSPF2 using conversion factors provided) reflecting the assumed shares of installed ASHP replacing given baseline technologies (e.g. ASHP/electric resistance or furnace/boiler) by fuel type. Assumed shares are based on Opinion Dynamics and Guidehouse analysis of 2018-2021 Ameren and ComEd HVAC (downstream) program tracking data. For further details, see '2018-2021 AIC Res HVAC Data ASHP Baseline TRM Update 2023-6-20.xls'.

³⁵⁹ Based on 2016 DOE Rulemaking Technical Support document, as recommended in Guidehouse 'ComEd Effective Useful Life Research Report', May 2018.

³⁶⁰ Assumed the same as 5.1.7 Window Air Conditioners: Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

³⁶¹ Assumed to be one third of effective useful life of replaced equipment.

³⁶² Assume full measure life (16 years) for replacing electric resistance as we would not expect that resistance heat would fail during the lifetime of the efficient measure.

³⁶³ Full install ASHP costs are based upon data provided by Ameren. See 'ASHP Costs_06242022'. Efficiency cost increment consistent with Cadmus "HVAC Program: Incremental Cost Analysis Update", December 19, 2016 study results.

³⁶⁴ Furnace and boiler costs are based on data provided in Appendix E of the Appliance Standards Technical Support Documents including equipment cost and installation labor.

³⁶⁵ Based on 3 ton initial cost estimate for a conventional unit from ENERGY STAR Central AC calculator.

a new baseline unit is assumed to be \$7,722 + \$674 per ton for a new baseline Air Source Heat Pump, or \$2,296 for a new baseline 80% AFUE furnace or \$4,627 for a new 84% AFUE boiler and \$1,092 per ton for new baseline Central AC replacement.³⁶⁶ This future cost should be discounted to present value using the nominal societal discount rate.

If the install cost of the efficient Air Source Heat Pump is unknown, assume the following (note these costs are per ton of unit capacity);³⁶⁷

Efficiency (SEER2)	Full Efficient ASHP Cost (including labor)
15.2	\$7,000 + \$600/ ton
16.2	\$7,286 + \$600/ ton
17.1	\$7,495 + \$600/ ton
18.1	\$7,720 + \$600/ ton
19.0	\$7,946 + \$600/ ton

Ductless Minisplit Heat Pumps:

New Construction and Time of Sale: The actual installed cost of the DMSHP (including any necessary electrical or distribution upgrades required) should be used (defaults are provided below), minus the assumed installation cost of the baseline equipment (\$6865 + \$600 per ton for ASHP,³⁶⁸ or \$2,011 for a new baseline 80% AFUE furnace, or \$4,053 for a new 84% AFUE boiler,³⁶⁹ and \$952 per ton for new baseline Central AC replacement ³⁷⁰).

Default full cost of the DMSHP is provided below. Note, for smaller units a minimum cost of \$2,000 should be applied:³⁷¹

Unit HSPF2	Full Install Cost (\$/ton) ³⁷²
8.1-8.9	\$1,443
9-9.8	\$1,605
9.9-11.6	\$1,715
11.7+	\$2,041

The incremental cost of the DSMHP compared to a baseline minimum efficiency DSMHP is provided in the table below:³⁷³

Efficiency	Incremental Cost (\$/ton)
(HSPF2)	over an HSPF2 7.5 DHP
8.1-8.9	\$62
9-9.8	\$224
9.9-11.6	\$334
11.7+	\$660

³⁶⁶ All baseline replacement costs are consistent with their respective measures and include inflation rate of 1.98%.

³⁶⁷ Full install ASHP costs are based upon data provided by Ameren. See 'ASHP Costs_06242022'. Efficiency cost increment consistent with Cadmus "HVAC Program: Incremental Cost Analysis Update", December 19, 2016 study results.

³⁶⁸ Full install ASHP costs are based upon data provided by Ameren. See 'ASHP Costs_06242022'.

³⁶⁹ Furnace and boiler costs are based on data provided in Appendix E of the Appliance Standards Technical Support Documents including equipment cost and installation labor. Where efficiency ratings are not provided, the values are interpolated from those that are.

³⁷⁰ Based on 3 ton initial cost estimate for a conventional unit from ENERGY STAR Central AC calculator

³⁷¹ The cost per ton table provides reasonable estimates for installation costs of DMSHP, which can vary significantly due to requirements of the home. It is estimated that all units, even units 1 ton or less will be at least \$2000 to install.

³⁷² Full costs based upon full install cost of an ASHP plus incremental costs provided in Memo from Opinion Dynamics Evaluation Team, Ductless Mini-Split Heat Pumps: Incremental Cost Analysis, April 27, 2017.

³⁷³ Memo from Opinion Dynamics Evaluation Team, Ductless Mini-Split Heat Pumps: Incremental Cost Analysis, April 27, 2017

Early Replacement/retrofit (replacing existing equipment): The actual full installation cost of the DMSHP (including any necessary electrical or distribution upgrades required) should be used. The assumed deferred cost (after 8 years) of replacing existing equipment with a new baseline unit is assumed to be \$7,722 + \$674 per ton for a new baseline Air Source Heat Pump, or \$2,296 for a new baseline 80% AFUE furnace or \$4,627 for a new 84% AFUE boiler and \$1,047 per ton for new baseline Central AC replacement.³⁷⁴ If replacing electric resistance heat, there is no deferred replacement cost. This future cost should be discounted to present value using the nominal societal discount rate.

Where the DMSHP is a supplemental HVAC system, the full installation cost of the DMSHP (including any necessary electrical or distribution upgrades required) should be used without a deferred replacement cost.

Portable Heat Pumps:

The actual installed cost of the portable heat pump (including any necessary electrical or distribution upgrades required) should be used, minus the assumed installation cost of the baseline cooling and heating system. If portable heat pump cost is unknown assume \$645 per unit.³⁷⁵ The cost of a baseline replacement room AC unit is \$408.³⁷⁶

Fuel switch scenarios are likely to require additional installation work which may include adding new electrical circuits, capping existing gas lines and upgrading electrical panels. These costs are likely to range significantly and actual values should be used wherever possible. If unknown, assume an additional \$2,000 for full displacement fuel switch installations and \$300 for partial displacement installations.

Quality Installation: The additional design and installation work associated with quality installation has been estimated to cost an additional \$150.377

LOADSHAPE

Loadshape R10 - Residential Electric Heating and Cooling

COINCIDENCE FACTOR

CF_{SSP SF}

The summer peak coincidence factor for cooling is provided in two different ways below. The first is used to estimate peak savings during the utility peak hour and is most indicative of actual peak benefits, and the second represents the *average* savings over the defined summer peak period and is presented so that savings can be bid into PJM's Forward Capacity Market.

	utility peak hour)
	= 72% ³⁷⁸
CF _{PJM} SF	= PJM Summer Peak Coincidence Factor for Heat Pumps in single-family homes (average during PJM peak period)
	- 46 69/379

= Summer System Peak Coincidence Factor for Heat Pumps in single-family homes (during

CF_{SSP, MF} = Summer System Peak Coincidence Factor for Heat Pumps in multi-family homes (during

³⁷⁴ All baseline replacement costs are consistent with their respective measures and include inflation rate of 1.91%.

³⁷⁵ Average retail cost of ENERGY STAR certified portable heat pumps, as of 6/2024 and collected by Ameren. See 'PHP Cost and Efficiencies 20240605.xls'.

³⁷⁶ Based upon costs provided in 5.1.7 ENERGY STAR and CEE Tier 2 Room Air Conditioner.

³⁷⁷ Based on data provided by MidAmerican in April 2018 summarizing survey results from 11 HVAC suppliers in Iowa.

³⁷⁸ Based on analysis of metering results from 24 heat pumps in Ameren Illinois service territory in PY5 coincident with AIC's 2010 system peak; 'Impact and Process Evaluation of Ameren Illinois Company's Residential HVAC Program (PY5)'.

³⁷⁹ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

system peak hour)

 $=67\%^{380}$

CF_{PJM, MF} = PJM Summer Peak Coincidence Factor for Heat Pumps in multi-family homes (average

during peak period)

= 28.5%

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS AND FOSSIL FUEL SAVINGS

Non fuel switch measures (if heat pump is being installed for cooling only, only calculate the cooling impact below):

 $\Delta kWh_{Non Fuel Switch} = ASHPSiteCoolingImpact + ASHPSiteHeatingImpact$

Where:

```
ASHPSiteCoolingImpact = ((CoolingLoad/DuctlessSave * (1/(SEER2_base * (1 - DeratingCool<sub>Base</sub>)))) - (CoolingLoad * 1/(SEER2_ee * (1 - DeratingCool<sub>Eff</sub>))))/1000

ASHPSiteHeatingImpact = ((HeatLoad_Disp/DuctlessSave * (1/(HSPF2_base * HSPF2_ClimateAdj * (1 - DeratingHeat<sub>Base</sub>)))) - (HeatLoad_Disp * 1/(HSPF2_ee * HSPF2_ClimateAdj * (1 - DeratingHeat<sub>Eff</sub>)))) / 1000
```

Fuel switch measures:

Fuel switch measures must produce positive total lifecycle energy savings (i.e., reduction in Btus at the premises) in order to qualify. This is determined as follows:

SiteEnergySavings (MMBTUs) = FuelSwitchSavings + NonFuelSwitchSavings FuelSwitchSavings = GasHeatReplaced – ASHPSiteHeatConsumed NonFuelSwitchSavings = FurnaceFanSavings + ASHPSiteCoolingImpact

Where:

GasHeatReplaced = (HeatLoad_Disp/DuctlessSave * 1/AFUE_{base}) / 1,000,000

FurnaceFanSavings = (FurnaceFlag * HeatLoad_Disp/DuctlessSave * 1/AFUE_{base} * F_e) / 1,000,000

ASHPSiteHeatConsumed = ((HeatLoad_Disp * (1/(HSPF2_ee * HSPF2_ClimateAdj * PD_Adj * (1 -

DeratingHeat_{Eff})))) /1000 * 3412)/ 1,000,000

((CoolingLoad * 1/(SEER2 ee * (1 – DeratingCool_{Eff}))))/1000 * 3412) / 1,000,000

If SiteEnergySavings calculated above is positive, the measure is eligible.

The appropriate savings claim is dependent on which utilities are supporting the measure as provided in a table below:

³⁸⁰ Multifamily coincidence factors both from; All-Electric Homes PY6 Metering Results: Multifamily HVAC Systems, Cadmus, October 2015

Measure supported by:	Electric Utility claims (kWh):	Gas Utility claims (therms):
Electric utility only	SiteEnergySavings * 1,000,000/3,412	N/A
Electric and gas utility (Note utilities may make alternative agreements to how savings are allocated as long as total MMBtu savings remains the same).	%IncentiveElectric * SiteEnergySavings * 1,000,000/3,412	%IncentiveGas * SiteEnergySavings * 10
Gas utility only	N/A	SiteEnergySavings * 10

Note for Early Replacement measures, the efficiency (SEER, EER and HSPF) and furnace fan energy consumption (F_e) terms of the existing unit should be used for the remaining useful life of the existing equipment (6 years for ASHP and Central AC, 7 years for furnace, 8 years for boilers, 16 years for electric resistance), and the efficiency and F_e terms for a new baseline unit should be used for the remaining years of the measure. See assumptions below.

Programs where existing system is unknown

In programs where the existing fuel or system type is unknown, savings should be apportioned between the Fuel Switch and Non- Fuel Switch scenarios, as follows:

Savings from Non-Fuel Switch (kWh) = $(1 - \%FuelSwitch) * \Delta kWh_{Non Fuel Switch}$

Plus

Savings from Fuel Switch (MMBtu converted to appropriate fuel as table above)

= %FuelSwitch * SiteEnergySavings (MMBTUs)

Where:

%FuelSwitch = The percentage of replacements resulting in fuel-switching.

= 1 when fuel switching is known, 0 if non fuel switch

= when unknown, e.g. midstream program, determine via evaluation

CoolingLoad = Annual cooling load for the building

= FLH_cooling * Capacity_ASHPcool

FLH_cooling = Full load hours of air conditioning

= dependent on location:

Climate Zone (City based upon)	FLH_cooling (single family) ³⁸¹	FLH_cooling (multifamily) ³⁸²	FLH_cooling ³⁸³ (Ductless Minisplit HP providing supplemental cooling or Portable HP in IQ homes) ³⁸⁴	FLH_cooling (Portable HP in non-IQ homes) ³⁸⁵
1 (Rockford)	547	499	331	235
2 (Chicago)	709	629	429	261
3 (Springfield)	779	707	472	340
4 (Belleville)	1082	982	655	447
5 (Marion)	956	868	579	396
Weighted Average ³⁸⁶				
ComEd	676	603	409	256
Ameren	875	791	530	364
Statewide	731	655	443	286

Use Multifamily if: Building has meets utility's definition for multifamily and system serves single unit. For residential sized systems serving 2 or more units, assume single family hours. For central systems use Volume 2 Commercial and Industrial Measures.

Capacity_ASHPcool = Cooling Output Capacity of Air Source Heat Pump (Btu/hr)

= Actual (1 ton = 12,000Btu/hr)

DuctlessSave

- = Factor used to adjust ducted heating or cooling load displaced by ductless or portable HP systems that are not subject to losses from existing ductwork.
- = 1-0.15 = 0.85 for ducted system displaced by ductless or portable HP system
- = 1.00 for ducted system displaced by ducted system or ductless system displaced by ductless or portable HP system

SEER2 base

= Seasonal Energy Efficiency Ratio of baseline unit (kBtu/kWh), converted to SEER2 if rating is in SEER. For early replacment measures, the actual SEER2 rating where it is possible to measure or reasonably estimate should be used for the remaining useful life of the existing equipment (6 years for ASHP and Central AC). If using rated efficiencies, derate efficiency value by 1% per year (maximum of 30 years) to account for degradation over time, ³⁸⁷ or if unknown assume default provided below. If unknown value is used, it should not be derated by age.

³⁸¹ Full load hours for Chicago, Moline and Rockford are provided in "Final Evaluation Report: Central Air Conditioning Efficiency Services (CACES), 2010, Navigant Consulting", p.33. An average FLH/Cooling Degree Day (from NCDC) ratio was calculated for these locations and applied to the CDD of the other locations in order to estimate FLH. There is a county mapping table in Volume 1, Section 3.7 providing the appropriate city to use for each county of Illinois. During update cycle for version v.12, applied percent change of CDD65, NCEI Annual Normals from 30 yr data set (1981-2010) to more recent 15 yr data (2006-2020) to all FLHcool values

³⁸² Ibid

³⁸³ Full load hours for a ductless minisplit HP providing supplemental cooling to a limited space previously unserved or underserved by existing equipment, is based on the ratio of the EFLH for conventional cooling systems to the EFLH of DMSHPs provided in the "Ductless Mini Split Heat Pump Impact Evaluation" 2016, The Cadmus Group, pg. 6 (61%).

³⁸⁴ If unknown, assume supplemental if ductless minisplit heat pump <18,000 Btu/h.

³⁸⁵ Full load hours for non-IQ portable heat pumps is assumed to be consistent with Room AC EFLHs.

³⁸⁶ Weighting for Ameren is based on electric accounts in each of the cooling zones. Weighting for ComEd and Statewide average is based on number of occupied residential housing units in each zone. ComEd is weighted average of Zones 1-2. Alternative program-weighted assumptions can be used if appropriate.

³⁸⁷ Justification for degradation factors can be found on page 14 of 'AIC HVAC Metering Study Memo FINAL 2_28_2018'. Estimate efficiency as (Rated Efficiency * (1-0.01)^Equipment Age).

		SEER2_base		
Baseline/Existing Cooling System	Early Replacement (Remaining useful life of existing equipment)	Early Replacement Time of Sale or (Remaining New Construction measure life)		
Air Source Heat Pump – Standard sized	9.2 SEER2 ³⁸⁸	14.3	SEER2 ³⁸⁹	
Air Source Heat Pump – Space constrained	9.2 SEER2	11.9	SEER2	
Central AC – Standard sized	9.2 SEER2 ³⁹⁰	13.4	SEER2 ³⁹¹	
Central AC – Space constrained	9.2 SEER2	11.7 SEER2		
Room AC	7.7 CEER ³⁹²	measure 5.1.7. As as efficient. If un	iate baseline from ssume same capacity known assume 10.9 EER.	
No central cooling	Make '1/SEER2_exist' = 0 ³⁹³	13.4	SEER2 ³⁹⁴	
Unknown, installing ducted ³⁹⁵	9.2 SEER2	13.9	SEER2	
Unknown, installing ductless	9.5 SEER2	13.7	SEER2	

SEER2 ee = Rated Seasonal Energy Efficiency Ratio of ENERGY STAR unit (kBtu/kWh), converted to

SEER2 if rating is in SEER (or CEER for portable heat pumps)

= Actual or program-defined minimum if unknown.

DeratingCool_{Eff} = Efficent ASHP Cooling derating

= 0% if Quality Installation is performed

= 10% if Quality Installation is not performed or unknown³⁹⁶

DeratingCool_{Base} = Baseline Cooling derating

= 10%

HeatLoad Disp = Annual heat load for the building displaced by the ASHP (Btus)

= FLH_ASHPheat * Capacity_ASHPheat * HeatLoadFactor

2025 IL TRM v13.0 Vol. 3 September 20, 2024 FINAL

³⁸⁸ Based on Opinion Dynamics and Cadmus metering study of Ameren HVAC program participants; See 'AIC HVAC Metering Study Memo FINAL 2_28_2018', converted to SEER2.

³⁸⁹ Minimum Federal Standard as of 1/1/2023

³⁹⁰ Based on Opinion Dynamics and Cadmus metering study of Ameren HVAC program participants; See 'AIC HVAC Metering Study Memo FINAL 2 28 2018' Converted to SEER2.

³⁹¹ Minimum Federal Standard; Federal Register, Vol. 66, No. 14, Monday, January 22, 2001/Rules and Regulations, p. 7170-7200.

³⁹² Based on Nexus Market Research Inc, RLW Analytics, December 2005; "Impact, Process, and Market Study of the Connecticut Appliance Retirement Program: Overall Report."

³⁹³ If there is no central cooling in place but the incentive encourages installation of a new ASHP with cooling, the added cooling load should be subtracted from any heating benefit.

³⁹⁴ Assumes that the decision to replace existing systems includes desire to add cooling.

³⁹⁵ Values represent the weighted average SEER baseline values (converted to SEER2) reflecting the assumed shares of installed ASHP replacing given baseline technologies (e.g. ASHP/electric resistance or furnace/boiler) by fuel type. Assumed shares are based on Opinion Dynamics and Guidehouse analysis of 2018-2021 Ameren and ComEd HVAC (downstream) program tracking data. For further details, see '2018-2021 AIC Res HVAC Data ASHP Baseline TRM Update 2023-06-20.xls'.

³⁹⁶ Based on Cadmus assumption provided in preparation of the 2014 Interstate Power and Light TRM based upon proper refrigerant charge, evaporator airflow, and unit sizing. Appears conservative in comparison to ENERGY STAR statements (see 'Sponsoring an ENERGY STAR Verified HVAC Installation (ESVI) Program') and so could be considered for future evaluation.

FLH_ASHPheat = Full load hours of heat pump heating

= Dependent on location and home type:

Climate Zone (City based upon)	FLH_ ASHPheat (single family and multifamily) ³⁹⁷	FLH_ ASHPheat ³⁹⁸ (Ductless Minisplit HP providing supplemental heating or Portable HP) ³³⁹
1 (Rockford)	1924	716
2 (Chicago)	1726	642
3 (Springfield)	1708	636
4 (Belleville)	1195	445
5 (Marion/Murphysboro)	1270	473
Weighted Average ⁴⁰⁰		
ComEd	1766	657
Ameren	1547	576
Statewide	1700	633

Capacity_ASHPheat

= Heating Output Capacity of Air Source Heat Pump at 47° F (Btu/hr)

= Actual (1 ton = 12,000Btu/hr)

HeatLoadFactor

- = Portion of HeatLoad displaced by ASHP in partial displacement applications. Varies by Switchover Temperature and Climate Region. If Switchover Temperature is unknown, use 32F. For portable heat pumps, unless it can be confirmed that the unit will be used through the heating season, use 47F to reflect likely behavior of unit being removed when temperature falls below this temperature.
- = 1.0 if full displacement (e.g. cold climate heat pumps) or if switchover temperature is lower than 17F, if Partial Displacement with simultaneous operation.

Climate Zone	Climate Zone					HeatLoadFactor (by Switchover Temperature)					
(City based upon)	47F	44F	41F	38F	35F	32F	29F	26F	23F	20F	17F
1 (Rockford)	8%	14%	18%	22%	32%	42%	50%	63%	70%	74%	81%
2 (Chicago)	8%	14%	20%	26%	37%	48%	56%	70%	77%	80%	86%
3 (Springfield)	8%	15%	21%	27%	43%	57%	63%	73%	79%	82%	87%

³⁹⁷ Full load heating hours for heat pumps are provided for Rockford, Chicago and Springfield in the ENERGY STAR Calculator. Estimates for the other locations were calculated based on the FLH to Heating Degree Day (from NCDC) ratio. VEIC consider ENERGY STAR estimates to be high due to oversizing not being adequately addressed. Using average Illinois billing data (from ICC Commerce Commission) VEIC estimated the average gas heating load and used this to estimate the average home heating output (using 83% average gas heat efficiency). Dividing this by a typical 36,000 Btu/hr ASHP gives an estimate of average ASHP FLH_heat of 1821 hours. We used the ratio of this value to the average of the locations using the ENERGY STAR data (1994 hours) to scale down the ENERGY STAR estimates. There is a county mapping table in Volume 1, Section 3.7 providing the appropriate city to use for each county of Illinois. During update cycle for version v.12, applied percent change of HDD60, NCEI Annual Normals from 30 yr data set (1981-2010) to more recent 15 yr data (2006-2020) to all FLHheat values

³⁹⁸ Full load hours for a ductless minisplit HP providing supplemental heating to a limited space previously unserved or underserved by existing equipment, is based on the ratio of the EFLH for conventional heating systems to the EFLH of DMSHPs provided in the "Ductless Mini Split Heat Pump Impact Evaluation" 2016, The Cadmus Group, pg. 6 (37%).

³⁹⁹ If unknown, assume supplemental if ductless minisplit heat pump <18,000 Btu/h.

⁴⁰⁰ Weighting for Ameren is based on electric heat accounts in each of the heating zones. Weighting for ComEd and Statewide average is based on number of occupied residential housing units in each zone. ComEd is weighted average of Zones 1-2. Alternative program-weighted assumptions can be used if appropriate.

Climate Zone	HeatLoadFactor (by Switchover Temperature)										
(City based upon)	47F	44F	41F	38F	35F	32F	29F	26F	23F	20F	17F
4 (Belleville)	13%	21%	30%	37%	48%	61%	71%	80%	88%	92%	95%
5 (Marion)	14%	23%	33%	41%	59%	72%	79%	88%	92%	95%	97%
Weighted Average ⁴⁰¹											
ComEd	8%	14%	20%	26%	37%	48%	56%	70%	77%	80%	86%
Ameren	10%	16%	24%	30%	44%	57%	64%	75%	81%	85%	90%
Statewide	8%	15%	21%	27%	39%	50%	58%	71%	78%	81%	87%

HSPF2_base

= Heating Seasonal Performance Factor 2 of baseline heating system (kBtu/kWh), converted to HSPF2 if rating is in HSPF. For early replacement measures, use actual HSPF2 rating where it is possible to measure or reasonably estimate for the remaining useful life of the existing equipment (6 years for ASHP, 16 years for electric resistance). If using rated efficiencies, derate efficiency value by 1% per year (maximum of 30 years) to account for degradation over time, 402 or if unknown assume default. If unknown value is used, it should not be derated by age.

		HSPF2_base						
Baseline/ Existing Heating System	Early Replacement (Remaining useful life of existing equipment)	Early Replacement (Remaining measure life)	Time of Sale or New Construction					
Air Source Heat Pump – standard sized	4.91 HSPF2 ⁴⁰³	7.5 HSPF2 ⁴⁰⁴						
Air Source Heat Pump – space constrained	4.91 HSPF2	6.3 HSF	PF2					
Electric Resistance								
Unknown, installing ducted ⁴⁰⁶	4.5 HSPF2 5.9 HSI		PF2					
Unknown, installing ductless	4.4 HSPF2	5.3 HSF	PF2					

HSPF2_ee = Heating Seasonal Performance Factor 2 of efficient Air Source Heat Pump, converted to HSPF2 if rating is in HSPF (kBtu/kWh)

= Actual or program-defined minimum if unknown⁴⁰⁷

DeratingHeat_{Eff} = Efficent ASHP Heating derating

= 0% if Quality Installation is performed

⁴⁰¹ Weighting for Ameren is based on electric heat accounts in each of the heating zones. Weighting for ComEd and Statewide average is based on number of occupied residential housing units in each zone. ComEd is weighted average of Zones 1-2. Alternative program-weighted assumptions can be used if appropriate.

⁴⁰² Justification for degradation factors can be found on page 14 of 'AIC HVAC Metering Study Memo FINAL 2_28_2018'. Estimate efficiency as (Rated Efficiency * (1-0.01)^Equipment Age).

⁴⁰³ Based on Opinion Dynamics and Cadmus metering study of Ameren HVAC program participants; See 'AIC HVAC Metering Study Memo FINAL 2 28 2018' Converted to HSPF2.

⁴⁰⁴ Based on Minimum Federal Standard effective 1/1/2023.

 $^{^{405}}$ Electric resistance has a COP of 1.0 which equals 1/0.293 = 3.41 HSPF.

⁴⁰⁶ Values represent the weighted average HSPF (converted to HSPF2) baseline values reflecting the assumed shares of installed ASHP replacing given baseline technologies (e.g. ASHP/electric resistance or furnace/boiler) by fuel type. Assumed shares are based on Opinion Dynamics and Guidehouse analysis of 2018-2021 Ameren and ComEd HVAC (downstream) program tracking data. For further details, see '2018-2021 AIC Res HVAC Data ASHP Baseline TRM Update 2023-06-20.xls'.

⁴⁰⁷ ENERGY STAR minimum.

= 10% if Quality Installation is not performed⁴⁰⁸

DeratingHeat_{Base} = Baseline Heating derating

= 10%

HSPF2_ClimateAdj= Adjustment factor to account for observed discrepency between seasonal heating performance relative to rated HSPF2 as provided by standard AHRI 210/240 rating conditions. 409

= 100% if Partial Displacement and switchover temperature greater than 17F, otherwise:

City (county based upon)	HSPF2_ClimateAdj
1 (Rockford)	77%
2 (Chicago)	77%
3 (Springfield)	91%
4 (Belleville)	91%
5 (Marion)	91%
Weighted Average ⁴¹⁰	
ComEd	77%
Ameren	89%
Statewide	80%

PD Adj

- = Adjustment multiplier to account for increased heat pump efficiency in Partial Displacement applications when there is no electric resistance backup and switchover temperature is higher than 17F. Varies by Switchover Temperature and Climate Region. If Switchover Temperature is unknown, use 32F.
- = 1.0 if full displacement (e.g. cold climate heat pumps) or if switchover temperature is lower than 17F, or if Partial Displacement with simultaneous operation, or if Portable HP.

Climate Zone	PD_Adj (by Switchover Temperature)										
(City based upon)	47F	44F	41F	38F	35F	32F	29F	26F	23F	20F	17F
1 (Rockford)	155%	151%	148%	146%	141%	137%	134%	131%	128%	127%	125%
2 (Chicago)	155%	151%	147%	144%	140%	137%	134%	131%	129%	128%	126%

⁴⁰⁸ Based on Cadmus assumption provided in preparation of the 2014 Interstate Power and Light TRM based upon proper refrigerant charge, evaporator airflow, and unit sizing, Assumed consistent for heating and cooling. Appears conservative in comparison to ENERGY STAR statements (see 'Sponsoring an ENERGY STAR Verified HVAC Installation (ESVI) Program') and so could be considered for future evaluation.

⁴⁰⁹ Adjustment factors are based on findings from NEEA, July 2020 'EXP07:19 Load-based and Climate-Specific Testing and Rating Procedures for Heat Pumps and Air Conditioners'. See 'NEEA HP data' for calculation. Findings were consistent with other reviewed sources including ASHRAE, 2020 'Right-Sizing Electric Heat Pump and Auxiliary Heating for Residential Heating Systems Based on Actual Performance Associated with Climate Zone' and Cadmus, 2022 'Residential ccASHP Building Electrification Study'. The difference between HSPF and HSPF2 ratings is based on the change in testing procedure that will correct for some of this effect where ducted systems will have an approximately 9% lower HSPF2 rating as compared to HSPF, based on CEE presentation, July 2022, 'Testing Testing, M1, 2, 3: Transitioning to New Federal Minimum Standards'.

⁴¹⁰ Weighting for Ameren is based on electric heat accounts in each of the heating zones. Weighting for ComEd and Statewide average is based on number of occupied residential housing units in each zone. ComEd is weighted average of Zones 1-2. Alternative program-weighted assumptions can be used if appropriate.

Climate Zone		PD_Adj (by Switchover Temperature)									
(City based upon)	47F	44F	41F	38F	35F	32F	29F	26F	23F	20F	17F
3 (Springfield)	155%	151%	147%	145%	139%	136%	134%	132%	130%	129%	127%
4 (Belleville)	155%	151%	148%	145%	142%	138%	136%	133%	131%	130%	129%
5 (Marion)	155%	151%	147%	145%	140%	138%	136%	134%	133%	132%	131%
Weighted Average ⁴¹¹											
ComEd	155%	151%	147%	144%	140%	137%	134%	131%	129%	128%	126%
Ameren	155%	151%	147%	145%	140%	137%	135%	132%	130%	129%	128%
Statewide	155%	151%	147%	144%	140%	137%	134%	131%	129%	128%	126%

AFUE_{base}

= Baseline Annual Fuel Utilization Efficiency Rating. For early replacement measures, use actual AFUE rating where it is possible to measure or reasonably estimate for the remaining useful life of the existing equipment (6 years for furnace, 8 years for boilers). If using rated efficiencies, derate efficiency value by 1% per year (maximum of 30 years) to account for degradation over time, 412 or if unknown assume default. If unknown value is used, it should not be derated by age.

		AFUEbase	
Baseline/ Existing Heating System	Early Replacement (Remaining useful life of	Early Replacement (Remaining	Time of Sale or New
	existing equipment)413	measure life)	Construction
Furnace	64.4%	80%	80%
Boiler	61.6%	84%	84%
Unknown ⁴¹⁴	80%	80.1%	80.1%

FurnaceFlag = 1 if system replaced is a fossil fuel furnace, 0 if not.

F_e = Furnace Fan energy consumption as a percentage of annual fuel consumption

For Early Replacement (1st 6 years) F_{e} Exist = 3.14%⁴¹⁵

For New Construction, Time of Sale and early replacement (remaining 10 years)

 F_e New = 1.88%⁴¹⁶

3412 = Btu per kWh

%IncentiveElectric = % of total incentive paid by electric utility

⁴¹¹ Weighting for Ameren is based on electric heat accounts in each of the heating zones. Weighting for ComEd and Statewide average is based on number of occupied residential housing units in each zone. ComEd is weighted average of Zones 1-2. Alternative program-weighted assumptions can be used if appropriate.

⁴¹² Justification for degradation factors can be found on page 14 of 'AIC HVAC Metering Study Memo FINAL 2_28_2018'. Estimate efficiency as (Rated Efficiency * (1-0.01)^Equipment Age).

⁴¹³ Average nameplate efficiencies of all Early Replacement qualifying equipment in Ameren PY3-PY4.

⁴¹⁴ Values represent the weighted average AFUE baseline values reflecting the assumed shares of installed ASHP replacing given baseline technologies (e.g. ASHP/electric resistance or furnace/boiler) by fuel type. Assumed shares are based on Opinion Dynamics and Guidehouse analysis of 2018-2021 Ameren and ComEd HVAC (downstream) program tracking data. For further details, see '2018-2021 AIC Res HVAC Data ASHP Baseline TRM Update 2022-07-11.xls'.

 $^{^{415}}$ F_e is not one of the AHRI certified ratings provided for residential furnaces, but can be reasonably estimated from a calculation based on the certified values for fuel energy (Ef in MMBtu/yr) and Eae (kWh/yr). An average of a 300 record sample (non-random) out of 1495 was 3.14%. This is, appropriately, ~50% greater than the ENERGY STAR version 3 criteria for 2% F_e. See "Programmable Thermostats Furnace Fan Analysis.xlsx" for reference.

⁴¹⁶ New furnaces are required to have ECM fan motors installed. Comparing Eae to Ef for furnaces on the AHRI directory as above, indicates that Fe for new furnaces is on average 1.88%.

= Actual

%IncentiveGas = % of total incentive paid by gas utility

= Actual

Non Fuel Switch Illustrative Examples

Time of Sale using ASHP baseline:

For example, an ASHP is installed in a single-family home in Marion with the following nameplate information: 15.2 SEER2, 12.4 EER2, 9 HSPF2; Cooling capacity: 34,800 Btuh; Heating capacity at 47°F: 33,000 Btuh; Heating capacity at 17°F: 21,200 Btuh with Quality Installation;

 $\Delta kWh_{Non Fuel Switch} = ASHPSiteCoolingImpact + ASHPSiteHeatingImpact$

ASHPSiteCoolingImpact =
$$(((956 * 34,800)/1 * 1/(14.3 * (1 - 0.1))) - (956 * 34,800 * 1/(15.2 * (1 - 0)))) / 1000$$

= 396 kWh

$$ASHPS ite Heating Impact = (((1,270*33,000*1)/1*(1/(7.5*0.91*(1-0.1)) - 1/(9*0.91*(1-0)))) / 1000)$$

= 1,706 kWh

$$\Delta$$
kWh_{Non Fuel Switch} = 396 + 1706 = 2,102 kWh

Early Replacement:

For example, a 15.2 SEER2, 12.4 EER2, 9 HSPF2 Air Source Heat Pump with nameplate information as above replaces an existing working Air Source Heat Pump with unknown efficiency ratings in a single family home in Marion:

ΔkWH for remaining life of existing unit (1st 6 years):

$$ASHPSiteCoolingImpact = (((956 * 34,800)/1 * 1/(9.3 * (1 - 0.1))) - (956 * 34,800 * 1/(15.2 * (1 - 0)))) / 1000 + ((956 * 34,800)/1 * 1/(9.3 * (1 - 0.1))) - (956 * 34,800 * 1/(15.2 * (1 - 0)))) / 1000 + ((956 * 34,800)/1 * 1/(9.3 * (1 - 0.1)))) - (956 * 34,800 * 1/(15.2 * (1 - 0)))) / 1000 + ((956 * 34,800)/1 * 1/(9.3 * (1 - 0.1)))) - ((956 * 34,800) * 1/(15.2 * (1 - 0))))) / 1000 + ((956 * 34,800)/1 * 1/(9.3 * (1 - 0.1)))) / 1000 + ((956 * 34,800)/1 * 1/(9.3 * (1 - 0.1))))) / 1000 + ((956 * 34,800)/1 * 1/(9.3 * (1 - 0.1)))) / 1000 + ((956 * 34,800)/1 * 1/(9.3 * (1 - 0.1)))) / 1000 + ((956 * 34,800)/1 * 1/(9.3 * (1 - 0.1))))) / 1000 + ((956 * 34,800)/1 * 1/(9.3 * (1 - 0.1))))) / 1000 + ((956 * 34,800)/1 * (1 - 0.1)))) / 1000 + ((956 * 34,800)/1 * (1 - 0.1)))) / 1000 + ((956 * 34,800)/1 * (1 - 0.1)))) / 1000 + ((956 * 34,800)/1 * (1 - 0.1)))) / 1000 + ((956 * 34,800)/1 * (1 - 0.1)))) / 1000 + ((956 * 34,800)/1 * (1 - 0.1)))) / 1000 + ((956 * 34,800)/1 * (1 - 0.1)))) / 1000 + ((956 * 34,800)/1 * (1 - 0.1)))) / 1000 + ((956 * 34,800)/1 * (1 - 0.1)))) / 1000 + ((956 * 34,800)/1 * (1 - 0.1)))) / 1000 + ((956 * 34,800)/1 * (1 - 0.1)))) / 1000 + ((956 * 34,800)/1 * (1 - 0.1)))) / 1000 + ((956 * 34,800)/1 * (1 - 0.1)))) / 1000 + ((956 * 34,800)/1 * (1 - 0.1)))) / 1000 + ((956 * 34,800)/1 * (1 - 0.1)))) / 1000 + ((956 * 34,800)/1 * (1 - 0.1))) / 1000 + ((956 * 34,800)/1 * (1 - 0.1))) / 1000 + ((956 * 34,800)/1 * (1 - 0.1))) / 1000 + ((956 * 34,800)/1 * (1 - 0.1))) / 1000 + ((956 * 34,800)/1 * (1 - 0.1))) / 1000 + ((956 * 34,800)/1 * (1 - 0.1))) / 1000 + ((956 * 34,800)/1 * (1 - 0.1))) / 1000 + ((956 * 34,800)/1 * (1 - 0.1))) / 1000 + ((956 * 34,800)/1 * (1 - 0.1))) / 1000 + ((956 * 34,800)/1 * (1 - 0.1))) / 1000 + ((956 * 34,800)/1 * (1 - 0.1))) / 1000 + ((956 * 34,800)/1 * (1 - 0.1))) / 1000 + ((956 * 34,800)/1 * (1 - 0.1))) / 1000 + ((956 * 34,800)/1 * (1 - 0.1)) / 1000 + ((956 * 34,800)/1 * ((956 * 34,800)/1 * ((956 * 34,800)/1 * ((956 * 34,800)/1 * ((956 * 34,800)/1 * ((956 * 34,800)/1 * ((956 * 34,800)/1 * ((956$$

= 1786 kWh

$$ASHPSite Heating Impact = (((1,270*33,000*1)/1*(1/(5.54*0.91*(1-0.1)) - 1/(9*0.91*(1-0)))) / 1000)$$

= 4120 kWh

$$\Delta kWh_{Non Fuel Switch} = 1786 + 4102 = 5,888 kWh$$

ΔkWH for remaining measure life (next 12 years):

= 2,102 kWh (as example above)

Fuel Switch Illustrative Examples

[for illustrative purposes, 50:50 Incentive is used for joint programs]

New construction using gas furnace and central AC baseline:

For example a 3-ton (Cooling capacity of 34,800Btuh and Heating capacity of 33,000 Btuh), 15.2 SEER2, 12.4 EER2, 9 HSPF2 ducted Air Source Heat Pump installed in single-family home in Marion with Quality Installation, in place of a 81,000 Btuh natural gas furnace and 3 ton Central AC unit:

SiteEnergySavings (MMBTUs) = GasHeatReplaced + FurnaceFanSavings - ASHPSiteHeatConsumed +

ASHPSiteCoolingImpact

GasHeatReplaced = ((HeatLoad Disp/DuctlessSave * 1/AFUE_{base}) / 1,000,000)

= 52.4 MMBtu

= (FurnaceFlag * HeatLoad Disp/DuctlessSave * 1/AFUE_{base} * F_e New) / 1,000,000 FurnaceFanSavings

= 1.0 MMBtu

ASHPSiteHeatConsumed = ((HeatLoad_Disp * (1/(HSPF2_ee * HSPF2_ClimateAdj * PDAdj * (1 -DeratingHeat_{Eff})))) /1000 * 3412)/ 1,000,000

```
= (((1,270 * 33,000 * 1)/1 * (1/(9 * 0.91 * 1 * (1-0)))) / 1000 * 3412)/ 1,000,000
```

= 17.5 MMBtu

Fuel Switch Illustrative Example continued

```
ASHPSiteCoolingImpact = ((CoolingLoad/DuctlessSave * (1/(SEER2_base * (1 - DeratingCool<sub>Base</sub>)) - 1/(SEER2_ee * (1 - DeratingCool_{Eff})))/1000) * 3412) / 1,000,000
= (((956 * 34,800 * 1)/1 * (1/(13.4 * (1-0.1)) - 1/(15.2 * (1-0)))) / 1000 * 3412)/1,000,000
= 1.9 MMBtu
SiteEnergySavings (MMBTUs) = 52.4 + 1.0 - 17.5 + 1.9 = 37.8 MMBtu [Measure is eligible]
```

Savings would be claimed as follows:

Measure supported by:	Electric Utility claims:	Gas Utility claims:
Electric utility	37.8 * 1,000,000/3412	N/A
only	= 11,079 kWh	N/A
Electric and gas	0.5 * 37.8 * 1,000,000/3412	0.5 * 37.8 * 10
utility	= 5,539 kWh	= 189 Therms
Cos utility only	NI/A	37.8 * 10
Gas utility only	N/A	= 378 Therms

Early Replacement fuel switch:

For example a three ton (Cooling capacity of 34,800Btuh and Heating capacity of 33,000 Btuh), 15.2 SEER2, 12.4 EER2, 9 HSPF2 Air Source Heat Pump installed in single-family home in Marion with Quality Installation, replaces an existing working natural gas furnace and 3-ton Central AC unit with unknown efficiency ratings:

```
LifetimeSiteEnergySavings (MMBTUs) = LifetimeGasHeatReplaced + LifetimeFurnaceFanSavings - LifetimeASHPSiteHeatConsumed + LifetimeASHPSiteCoolingImpact
```

```
 \begin{tabular}{ll} LifetimeGasHeatReplaced = & [(HeatLoad\_Disp/DuctlessSave * 1/AFUE_{base}) / 1,000,000] * 6 & years + \\ & [(HeatLoad\_Disp/DuctlessSave * 1/AFUE_{base}) / 1,000,000] * 10 & years + \\ & [(HeatLoad\_Disp/DuctlessSave * 1/AFUE_{base}) / 1,000,000] * 10 & years + \\ & [(HeatLoad\_Disp/DuctlessSave * 1/AFUE_{base}) / 1,000,000] * 10 & years + \\ & [(HeatLoad\_Disp/DuctlessSave * 1/AFUE_{base}) / 1,000,000] * 10 & years + \\ & [(HeatLoad\_Disp/DuctlessSave * 1/AFUE_{base}) / 1,000,000] * 10 & years + \\ & [(HeatLoad\_Disp/DuctlessSave * 1/AFUE_{base}) / 1,000,000] * 10 & years + \\ & [(HeatLoad\_Disp/DuctlessSave * 1/AFUE_{base}) / 1,000,000] * 10 & years + \\ & [(HeatLoad\_Disp/DuctlessSave * 1/AFUE_{base}) / 1,000,000] * 10 & years + \\ & [(HeatLoad\_Disp/DuctlessSave * 1/AFUE_{base}) / 1,000,000] * 10 & years + \\ & [(HeatLoad\_Disp/DuctlessSave * 1/AFUE_{base}) / 1,000,000] * 10 & years + \\ & [(HeatLoad\_Disp/DuctlessSave * 1/AFUE_{base}) / 1,000,000] * 10 & years + \\ & [(HeatLoad\_Disp/DuctlessSave * 1/AFUE_{base}) / 1,000,000] * 10 & years + \\ & [(HeatLoad\_Disp/DuctlessSave * 1/AFUE_{base}) / 1,000,000] * 10 & years + \\ & [(HeatLoad\_Disp/DuctlessSave * 1/AFUE_{base}) / 1,000,000] * 10 & years + \\ & [(HeatLoad\_Disp/DuctlessSave * 1/AFUE_{base}) / 1,000,000] * 10 & years + \\ & [(HeatLoad\_Disp/DuctlessSave * 1/AFUE_{base}) / 1,000,000] * 10 & years + \\ & [(HeatLoad\_Disp/DuctlessSave * 1/AFUE_{base}) / 1,000,000] * 10 & years + \\ & [(HeatLoad\_Disp/DuctlessSave * 1/AFUE_{base}) / 1,000,000] * 10 & years + \\ & [(HeatLoad\_Disp/DuctlessSave * 1/AFUE_{base}) / 1,000,000] * 10 & years + \\ & [(HeatLoad\_Disp/DuctlessSave * 1/AFUE_{base}) / 1,000,000] * 10 & years + \\ & [(HeatLoad\_Disp/DuctlessSave * 1/AFUE_{base}) / 1,000,000] * 10 & years + \\ & [(HeatLoad\_Disp/DuctlessSave * 1/AFUE_{base}) / 1,000,000] * 10 & years + \\ & [(HeatLoad\_Disp/DuctlessSave * 1/AFUE_{base}) / 1,000,000] * 10 & years + \\ & [(HeatLoad\_Disp/DuctlessSave * 1/AFUE_{base}) / 1,000,000] * 10 & years + \\ & [(HeatLoad\_Disp/DuctlessSave * 1/AFUE_{base})
```

```
= ((((1270*33000*1)/1*1/0.644)/1000000)*6) + ((((1270*33000*1)/1*1/0.8)/1000000)*10)
```

=914.3 MMBtu

LifetimeFurnaceFanSavings = ((FurnaceFlag * HeatLoad_Disp/DuctlessSave * $1/AFUE_{exist}$ * F_{e} _Exist) / 1,000,000) * 6 years + ((FurnaceFlag * HeatLoad_Disp/DuctlessSave * $1/AFUE_{base}$ * F_{e} _New) / 1,000,000) * 10 years

```
= ((1 * (1270 * 33,000 * 1)/1 * 1/0.644 * 0.0314) / 1,000,000) * 6 + ((1 * (1270 * 33,000 * 1)/1 * 1/0.8 * 0.0188)/ 1,000,000) * 10
```

= 22.1 MMBtu

LifetimeASHPSiteHeatConsumed = ((HeatLoad_Disp/DuctlessSave * (1/(HSPF2_ee * HSPF2_ClimateAdj * PD_Adj * (1 – DeratingHeat_{Eff})))) /1000 * 3412)/ 1,000,000 * 16 years

```
= (((1,270 * 33,000 * 1)/1 * (1/(9 * 0.91 * 1.001 * 1 * (1-0)))) / 1000 * 3412)/1,000,000 * 16
```

= 279 MMBtu

```
Fuel Switch Illustrative Example continued
LifetimeASHPSiteCoolingImpact
                                    = (((CoolingLoad/DuctlessSave * (1/(SEER2 exist * (1 - DeratingCool<sub>Base</sub>)) -
       1/(SEER2 ee * SEER2adj * (1 - DeratingCool<sub>Eff</sub>))))/1000 * 3412)/1,000,000 * 6 years) +
       (((CoolingLoad/DuctlessSave * (1/(SEER2 base * (1 - DeratingCool<sub>Base</sub>)) - 1/(SEER2 ee * SEER2adj * (1 -
       DeratingCool<sub>Eff</sub>))))/1000 * 3412)/1,000,000 * 10 years)
       =((((956*34,800)/1*(1/(9.3*(1-0.1))-1/(15.2*(1-0))))/1000*3412)/1,000,000*6)+((((956*34,800)/1))/1000*3412)/1,000,000*6)
       * (1/(13.4 * (1-0.1)) - 1/(15.2 * (1-0)))) / 1000 * 3412)/1,000,000 * 10)
       = 56.0 MMBtu
 LifetimeSiteEnergySavings (MMBTUs) = 914.3 + 22.1 – 279 + 56.0 = 713.4 MMBtu [Measure is eligible]
 First 6 years:
SiteEnergySavings_FirstYear (MMBTUs)
                                            = GasHeatReplaced + FurnaceFanSavings - ASHPSiteHeatConsumed +
                                    ASHPSiteCoolingImpact
         GasHeatReplaced
                                    = [(HeatLoad Disp/DuctlessSave * 1/AFUE<sub>Exist</sub>) / 1,000,000]
                           = (((1270 * 33,000 * 1)/1 * 1/0.644) / 1000000)
                           = 65.1 MMBtu
                                    = (FurnaceFlag * HeatLoad Disp/DuctlessSave * 1/AFUE<sub>Exist</sub> * F<sub>e</sub> Exist) /
         FurnaceFanSavings
                                    1.000.000
                           = (1 * (1270 * 33,000 * 1)/1 * 1/0.644 * 0.0314) / 1,000,000
                           = 2.0 MMBtu
         ASHPSiteHeatConsumed = ((HeatLoad Disp/DuctlessSave * (1/(HSPF2 ee * HSPF2 ClimateAdj * PD Adj
                                    * (1 – DeratingHeat<sub>Eff</sub>)))) /1000 * 3412)/ 1,000,000
                           = (((1,270 * 33,000 * 1)/1 * (1/(9 * 0.91 * 1 * (1-0)))) / 1000 * 3412) / 1,000,000
                           = 17.5 MMBtu
         ASHPSiteCoolingImpact = ((CoolingLoad/DuctlessSave * (1/(SEER2_exist * (1 - DeratingCool<sub>Base</sub>)) -
                                    1/(SEER2 ee * (1 – DeratingCool<sub>Eff</sub>))))/1000 * 3412) / 1,000,000
                           = (((956 * 34,800)/1 * (1/(9.3 * (1-0.1)) - 1/(15.2 * (1-0)))) / 1000 * 3412)/1,000,000
                           = 6.1 MMBtu
         SiteEnergySavings_FirstYear (MMBTUs) = 65.1 + 2.0 - 17.5 + 6.1 = 55.7 MMBtu
 Remaining 10 years:
SiteEnergySavings PostAdj (MMBTUs)
                                             = GasHeatReplaced + FurnaceFanSavings - ASHPSiteHeatConsumed +
                                    ASHPSiteCoolingImpact
                                    = (((1270 * 33,000 * 1)/1 * 1/0.8) / 1000000)
         GasHeatReplaced
                                    = 52.4 MMBtu
                                   = (1 * (1270 * 33,000 * 1)/1 * 1/0.8 * 0.0188) / 1,000,000
         FurnaceFanSavings
                                    = 1.0 MMBtu
```

Fuel Switch Illustrative Example continued

ASHPSiteHeatConsumed = (((1,270*33,000*1)/1*(1/(9*0.91*1*(1-0))))/1000*3412)/1,000,000

= 17.5 MMBtu

ASHPSiteCoolingImpact = (((956 * 34,800)/1 * (1/(13.4 * (1-0.1)) - 1/(15.2 * (1-0)))) / 1000

*3412)/1,000,000

= 1.9 MMBtu

SiteEnergySavings_ PostAdj (MMBTUs) = 52.4 + 1.0 - 17.5 + 1.9 = 37.8 MMBtu

Savings would be claimed as follows:

Measure supported by:	Electric Utility claims:	Gas Utility claims:
Electric utility only	First 6 years: 55.7* 1,000,000/3412 = 16,235 kWh Remaining 10 years: 37.8 * 1,000,000/3412 = 11,079 kWh	N/A
Electric and gas utility	First 6 years: 0.5 * 55.7 * 1,000,000/3412 = 8,162 kWh Remaining 10 years: 0.5 * 37.8 * 1,000,000/3412 = 5,539 kWh	First 6 years: 0.5 * 55.7 * 10 = 279 Therms Remaining 10 years: 0.5 * 37.8 * 10 = 189 Therms
Gas utility only	N/A	First 6 years: 55.7 * 10 = 557 Therms Remaining 10 years: 37.8 * 10 = 378 Therms

SUMMER COINCIDENT PEAK DEMAND SAVINGS

ΔkW = ((Capacity_cooling/DuctlessSave * (1/(EER2_base * (1 – DeratingCool_{Base}))) – (Capacity_cooling * 1/(EER2_ee * (1 – DeratingCool_{Eff})))) / 1000 * CF

Where:

EER2_base

= Energy Efficiency Ratio 2 of baseline unit (kBtu/kWh). For early replacment measures, the actual EER2 rating where it is possible to measure or reasonably estimate should be used for the remaining useful life of the existing equipment (6 years for ASHP and Central AC). If using rated efficiencies, derate efficiency value by 1% per year (maximum of 30 years) to account for degradation over time.⁴¹⁷ If unknown, assume default provided below. If unknown value is used, it should not be derated by age.

⁴¹⁷ Justification for degradation factors can be found on page 14 of 'AIC HVAC Metering Study Memo FINAL 2_28_2018'. Estimate efficiency as (Rated Efficiency * (1-0.01)^Equipment Age).

	EER2_base		
Baseline/Existing Cooling System	Early Replacement (Remaining useful life of existing equipment)	Early Replacement (Remaining measure life)	Time of Sale or New Construction
Ducted Air Source Heat Pump – standard sized	7.4 EER2 ⁴¹⁸	9.4 EER2 ⁴¹⁹	
Ductless Air Source Heat Pump – standard sized	7.4 EER2	8.5 EER2	
Air Source Heat Pump – space constrained	7.4 EER2	7.8 EER2	
Central AC – standard sized	7.4 EER2	10.6 EER2	
Central AC – space constrained	7.4 EER2	9.2 EER2	
No central cooling	Make '1/EER2_exist' = 0	10.6 E	ER2 ⁴²¹
Unknown ⁴²²	7.4 EER2	9.4 EER2	

EER2_ee	= Energy Efficiency Ratio of efficient Air Source Heat Pump (kBtu/hr / kW)
	= Actual. If unknown, assume 12.4 EER2. ⁴²³
CF _{SSP} SF	= Summer System Peak Coincidence Factor for Heat Pumps in single-family homes (during system peak hour)
	= 72% ⁴²⁴
CF _{PJM} SF	= PJM Summer Peak Coincidence Factor for Heat Pumps in single-family homes (average during peak period)
	= 46.6% ⁴²⁵
CF _{SSP, MF}	= Summer System Peak Coincidence Factor for Heat Pumps in multi-family homes (during system peak hour)
	= 67% ⁴²⁶
СҒрјм, мғ	= PJM Summer Peak Coincidence Factor for Heat Pumps in multi-family homes (average during peak period)
	= 28.5%

⁴¹⁸ Based on Opinion Dynamics and Cadmus metering study of Ameren HVAC program participants; See 'AIC HVAC Metering Study Memo FINAL 2_28_2018' Converted to EER2.

Use Multifamily if: Building meets utility's definition for multifamily and system serves single unit. For

⁴¹⁹ Assumed consistent with the EER2 requirements in the Federal Standard for Southwest standards (in the absence of standards for Nothern states).

⁴²⁰ If there is no central cooling in place but the incentive encourages installation of a new ASHP with cooling, the added cooling load should be subtracted from any heating benefit.

⁴²¹ Assumes that the decision to replace existing systems includes desire to add cooling.

⁴²² Program tracking data does not provide an EER2 value. These are estimated based on the other values in the table.

⁴²³ ENERGY STAR minimum.

⁴²⁴ Based on analysis of metering results from 24 heat pumps in Ameren Illinois service territory in PY5 coincident with AIC's 2010 system peak; 'Impact and Process Evaluation of Ameren Illinois Company's Residential HVAC Program (PY5)'.

⁴²⁵ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

⁴²⁶ All-Electric Homes PY6 Metering Results: Multifamily HVAC Systems, Cadmus, October 2015

residential sized systems serving 2 or more units, assume single family. For central systems use Volume 2 Commercial and Industrial Measures.

Time of Sale:

For example, a three ton, 15.2 SEER2, 12.4 EER2, 9 HSPF2 Air Source Heat Pump installed in single-family home in Marion with Quality Installation:

$$\Delta kW_{SSP} = (36,000/1 * (1/(9.4 * (1-0.1)) - 1/(12.4 * (1-0)))) / 1000 * 0.72$$

= 0.9735 kW
 $\Delta kW_{PJM} = (36,000/1 * (1/(9.4 * (1-0.1)) - 1/(12.4 * (1-0)))) / 1000 * 0.466$
= 0.6301 kW

Early Replacement:

For example, a 3-ton, 15.2 SEER2, 12.4 EER2, 9 HSPF2 Air Source Heat Pump replaces an existing working Air Source Heat Pump with unknown efficiency ratings in single-family home in Marion with Quality Installation:

 ΔkW_{SSP} for remaining life of existing unit (1st 6 years):

ΔkW_{SSP} for remaining measure life (next 10 years):

= 0.9735 kW

 ΔkW_{PJM} for remaining life of existing unit (1st 6 years):

ΔkW_{PJM} for remaining measure life (next 10 years):

```
= (36,000/1*(1/(9.4*(1-0.1)) - 1/(12.4*(1-0)))) / 1000*0.466
```

= 0.6301 kW

FOSSIL FUEL SAVINGS

Calculation provided together with Electric Energy Savings above.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

COST EFFECTIVENESS SCREENING AND LOAD REDUCTION FORECASTING WHEN FUEL SWITCHING

This measure can involve fuel switching from fossil fuel to electric.

For the purposes of forecasting load reductions due to fuel switch ASHP projects per Section 16-111.5B, changes in site energy use at the customer's meter (using ΔkWh algorithm below), customer switching estimates, NTG, and any other adjustment factors deemed appropriate, should be used.

The inputs to cost effectiveness screening should reflect the actual impacts on the electric and fuel consumption at the customer meter and, for fuel switching measures, should therefore reflect the decrease in one fuel and increase in another, as opposed to the single savings value calculated in the "Electric and Fossil Fuel Energy Savings" section above. Therefore in addition to the calculation of savings claimed, the following values should be used to assess the

cost effectiveness of the measure. For Early Replacement measures, the efficiency and Fe terms of the existing unit should be used for the remaining useful life of the existing equipment (6 years for ASHP and Central AC, 7 years for furnace, 8 years for boilers or GSHP, 16 years for electric resistance), and the efficiency and Fe terms for a new baseline unit should be used for the remaining years of the measure.

ΔTherms = [Heating Consumption Replaced]

= [(%FuelSwitch * HeatLoad_Disp/DuctlessSave * 1/AFUE_{base}) / 100,000]

ΔkWh = [FurnaceFanSavings] - [ASHP heating consumption] + [Cooling savings]

= %FuelSwitch * [[FurnaceFlag * HeatLoad_Disp/DuctlessSave * 1/AFUE_{base} * F_e * 0.000293] - [(HeatLoad_Disp * (1/(HSPF2_ee * HSPF2_ClimateAdj * PD_Adj * (1 – DeratingHeat_{Eff}))))/1000] + [((CoolingLoad/DuctlessSave * (1/(SEER2_base * (1 – DeratingCool_{Base})))) – ((CoolingLoad * 1/(SEER2_ee * (1 – DeratingCool_{Eff})))))/1000]

MEASURE CODE: RS-HVC-ASHP-V15-250101

REVIEW DEADLINE: 1/1/2028

5.3.2 Boiler Pipe Insulation

DESCRIPTION

This measure describes adding insulation to un-insulated boiler pipes in un-conditioned basements or crawlspaces.

This measure was developed to be applicable to the following program types: TOS, RNC, RF, DI.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient case is installing pipe wrap insulation to a length of boiler pipe.

DEFINITION OF BASELINE EQUIPMENT

The baseline is an un-insulated boiler pipe.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The measure life is assumed to be 11 years. 427

Note a mid-life adjustment to account for replacement of HVAC equipment during the measure life should be applied after 9 years. 428 See section below for detail.

DEEMED MEASURE COST

The actual installation cost should be used if known. If unknown, the measure cost including material and installation is assumed to be \$3 per linear foot. 429 For foam pipe insulation assume a measure cost of 0.56/ft for 2 insulation and 0.90/ft for 2 insulation. 430

LOADSHAPE

N/A

COINCIDENCE FACTOR

N/A

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

N/A

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

FOSSIL FUEL SAVINGS

 Δ Therm = (((1/R_{exist} - 1/R_{new}) * Ci_{nside} * L_{effective} * FLH_heat * Δ T) / η Boiler)/100,000

⁴²⁷ DEER 2014

⁴²⁸ This is intentionally longer than the assumptions found in the early replacement measures as the application of this measure will occur in a variety of homes that will not be targeted for early replacement HVAC systems.

⁴²⁹ Consistent with DEER 2008 Database Technology and Measure Cost Data.

⁴³⁰ Review of website cost data for Homedepot.com, Lowes.com, and Menards.com for locations in Peoria, IL. Websites accessed 5/6/24.

Where:

R_{exist} = Pipe heat loss coefficient of uninsulated pipe (existing) [(hr-°F-ft²)/Btu]

= Varies based on pipe size and material. See table below for values.

 R_{new} = Pipe heat loss coefficient of insulated pipe (new) [(hr-°F-ft²)/Btu]

= Actual (R_{exist} + R value of insulation⁴³¹)

C_{inside} = Inside circumference of the pipe [ft]

= Actual (0.5" pipe = 0.1427 ft, 0.75" pipe = 0.2055 ft); See table below for values.

 $L_{\text{effective}}$ = Effective Length of pipe from boiler covered by pipe insulation (ft)⁴³²

= $L_{Horizontal} + \alpha L_{Vertical}$

= Actual; See table below for α values. If unknown, assume 3ft of vertical and remaining $\,$

horizontal.

FLH_heat = Full load hours of heating

= Dependent on location:433

Climate Zone (City based upon)	FLH_heat
1 (Rockford)	1924
2 (Chicago)	1726
3 (Springfield)	1708
4 (Belleville)	1195
5 (Marion)	1270
Weighted Average ⁴³⁴	
ComEd	1766
Ameren	1543
Statewide	1700

 ΔT = Average temperature difference between circulated heated water and unconditioned space air temperature (°F) 435

⁴³¹ Where possible it should be ensured that the R-value of the insulation is at the appropriate mean rating temperature (125F).

⁴³² In cases with zero wind, heat loss (and therefore) savings is larger from horiztonal pipe configurations than vertical pipe configurations due, perhaps to the way in which convective losses are handled. An analysis of the 3E PLUS tool by NAIMA (https://insulationinstitute.org/tools-resources/free-3e-plus/) yielded adjustment factors for horizontal to vertical loss and savings values. See DHW_PipeInsulationCalcs_062121.xlsx for details of the analysis and comparisons.

⁴³³ Full load heating hours for heat pumps are provided for Rockford, Chicago and Springfield in the ENERGY STAR Calculator. Estimates for the other locations were calculated based on the FLH to Heating Degree Day (from NCDC) ratio. VEIC consider ENERGY STAR estimates to be high due to oversizing not being adequately addressed. Using average Illinois billing data (from Illinois Commerce Commission) VEIC estimated the average gas heating load and used this to estimate the average home heating output (using 83% average gas heat efficiency). Dividing this by a typical 36,000 Btu/hr ASHP gives an estimate of average ASHP FLH_heat of 1821 hours. We used the ratio of this value to the average of the locations using the ENERGY STAR data (1994 hours) to scale down the ENERGY STARr estimates. There is a county mapping table in Volume 1, Section 3.7 providing the appropriate city to use for each county of Illinois. During update cycle for version v.12, applied percent change of HDD60, NCEI Annual Normals from 30 yr data set (1981-2010) to more recent 15 yr data (2006-2020) to all FLHheat values ⁴³⁴ Weighting for Ameren is based on electric heat accounts in each of the heating zones. Weighting for ComEd and Statewide average is based on number of occupied residential housing units in each zone. ComEd is weighted average of Zones 1-2. Alternative program-weighted assumptions can be used if appropriate.

⁴³⁵ Assumes 160°F water temp for a boiler without reset control, 120°F for a boiler with reset control, and 50°F air temperature

Pipes in unconditioned basement:

Outdoor reset controls	ΔT (°F)
Boiler without reset control	110
Boiler with reset control	70

Pipes in crawl space:

Climate Zone	ΔΤ (°F)		
(City based upon)	Boiler without reset control	Boiler with reset control	
1 (Rockford)	127	87	
2 (Chicago)	126	86	
3 (Springfield)	122	82	
4 (Belleville)	120	80	
5 (Marion)	120	80	
Weighted Average ⁴³⁶	125	85	

ηBoiler = Efficiency of boiler

 $= 0.819^{437}$

Parameter assumptions for various pipe sizes and materials:

Type and Size	C _{Inside} ⁴³⁸ (I.D.*π/12) (ft)	Product of Overall Heat Transfer Coefficient and Pipe Area (UA) per foot ⁴³⁹ from bare pipe (BTU/hr·ft·°F)	Pipe Area per linear foot (ft³) ⁴⁴⁰	R _{exist} ((hr·ft·°F)/BTU)	Horizontal to Vertical Adjustment Factor (α)
½" Copper Pipe	0.1427	0.345	0.153	0.444	0.67
¾" Copper Pipe	0.2055	0.417	0.217	0.521	0.72
½" PEX	0.1270	0.438	0.145	0.332	0.73
¾" PEX	0.1783	0.545	0.204	0.374	0.77

For example, insulating 10 feet of 0.75" copper pipe (4ft vertical and 6 ft horizontal) with R-3 insulation in a crawl space of a Marion home with a boiler without reset control:

$$\Delta$$
Therm = (((1/0.521- 1/3.521) * 0.2055 * (6 + 4*0.72) * 110 * 1270) / 0.819) / 100,067

= 5.09 therms

Mid-Life adjustment

for pipes in unconditioned basements and the following average heating season outdoor temperatures as the air temperature in crawl spaces: Zone 1-33.1, Zone 2-34.4, Zone 3-37.7, Zone 4-40.0, Zone 5-39.8, Weighted Average -35.3 (NCDC 1881-2010 Normals, average of monthly averages Nov – Apr for zones 1-3 and Nov-March for zones 4 and 5).

⁴³⁶ Weighted based on number of occupied residential housing units in each zone.

⁴³⁷ Average efficiency of boiler units found in Ameren PY3-PY4 data.

⁴³⁸ See: https://energy-models.com/pipe-sizing-charts-tables (last accessed 5/7/21) for copper pipe sizes and https://www.garagesanctum.com/size-chart/pex-tubing-size-chart/ (last accessed 5/7/21) for PEX pipe sizes.

⁴³⁹ Laboratory measured values from Hoeschele and Weitzel (2012), Figure 1.

⁴⁴⁰ Calculated using the average pipe thickness (I.D. + O.D.)*0.5.

In order to account for the likely replacement of existing heating equipment during the lifetime of this measure, a mid-life adjustment should be applied. To calculate the adjustment, re-calculate the savings above using the following new baseline system efficiency assumptions:

Efficiency Assumption	System Type	New Baseline Efficiency
ηHeat	Boiler	84% AFUE

This reduced annual savings should be applied following the assumed remaining useful life of the existing equipment, estimate to be 13 years. 441 Note if the existing equipment efficiency is greater than the new baseline efficiency listed above, do not apply a mid-life adjustment.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-HVC-PINS-V08-250101

REVIEW DEADLINE: 1/1/2027

⁴⁴¹ This is intentionally longer than the assumption found in the early replacement measures as the application of this measure will occur in a variety of homes and will not be targeting those homes appropriate for early replacement HVAC systems.

5.3.3 Central Air Conditioning

DESCRIPTION

This measure characterizes:

a) Time of Sale:

a. The installation of a new residential sized (<= 65,000 Btu/hr) Central Air Conditioning ducted split system meeting specifications determined by the program. This could relate to the replacement of an existing unit at the end of its useful life, or the installation of a new system in a new home.

b) Early Replacement:

Early Replacement determination will be based on meeting the following conditions:

- The existing unit is operational when replaced, or
- The existing unit requires minor repairs (<\$190 per ton).⁴⁴²
- All other conditions will be considered Time of Sale.

The Baseline SEER2 of the existing Central Air Conditioning unit replaced:

- If the SEER of the existing unit is known use the actual SEER (converted to SEER2) value of the unit replaced.
- If the SEER of the existing unit is unknown, use assumptions in variable list below (SEER2_exist).
- If the operational status or repair cost of the existing unit is unknown, use time of sale assumptions.

A weighted average early replacement rate is provided when the actual baseline early replacement rate is unknown. 443

Deemed Early Replacement Rates for CAC Units in Combined System Replacement (CSR) Projects

Replacement Scenario for the CAC Unit	Deemed Early Replacement Rate
Early Replacement Rate for participants when a CAC unit when the CAC unit is the Primary unit in a CSR project	14%
Early Replacement Rate for participants when a CAC unit when the CAC unit is the Secondary unit in a CSR project	40%

Note: it is not appropriate to claim additional ECM fan savings (from 5.3.5 Furnace Blower Motor) due to installing new CAC units with an ECM, since the SEER2/EER2 ratings already account for this electrical load.

Quality Installation:

Additional savings are attributed to the Quality Installation (QI) of the system. QI programs should follow industry standards such as those described in ENERGY STAR Verified HVAC Installation Program (ESVI), ANSI ACCA QI5 and QI9vp. This must include considerations of system design (including sizing, matching, ventilation calculations) and

⁴⁴² The Technical Advisory Committee agreed that if the cost of repair is less than 20% of the new baseline replacement cost it can be considered early replacement. Note the non-inflated cost is used as this would be a cost consideration in the program year.

⁴⁴³ Based upon research from "Home Energy Efficiency Rebate Program GPY2 Evaluation Report" which outlines early replacement rates for both primary and secondary central air cooling (CAC) and residential furnaces. The unit (furnace or CAC unit) that initially caused the customer to contact a trade ally is defined as the "primary unit". The furnace or CAC unit that was also replaced but did not initially prompt the customer to contact a trade ally is defined as the "secondary unit". This evaluation used different criteria for early replacement due to the availability of data after the fact; cost of any repairs < \$550 and age of unit < 20 years. Report presented to Nicor Gas Company February 27, 2014.

equipment installation (including static pressure, airflow, refrigerant charge) and may also consider distribution.

This measure was developed to be applicable to the following program types: TOS, NC, EREP. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the efficient equipment is assumed to be a ducted split central air conditioning unit meeting specifications determined by the program. For reference, the minimum ENERGY STAR version 6.1 efficiency level standards are provided below⁴⁴⁴:

- Split system central air conditioners 15.2 SEER2 and 12.0 EER2
- Single package central air conditioners 15.2 SEER2 and 11.5 EER2
- Space constrained units 13.4 SEER2⁴⁴⁵

The measure characterization recommends sourcing the efficiency specifications from the actually installed equipment. If those values are not known, the default equipment efficiency recommendations are conservatively based on ENERGY STAR version 6.1 specifications.

The following conversion factors are recommended for use if the efficient equipment is not rated under the new testing procedure: 446

Where:

Х	SEER	EER
Ducted	0.95	0.95
Packaged	0.95	0.95

DEFINITION OF BASELINE EQUIPMENT

The baseline for the Time of Sale measure is based on the current Federal Standard efficiency level⁴⁴⁷:

Standard sized Split system air conditioners – 13.4 SEER2

⁴⁴⁴ ENERGY STAR Program Requirements Product Specification for Central Air Conditioner and Heat Pump Equipment, v6.1, effective January 1, 2023, are in terms of an updated metric, depicted as SEER2 and EER2. The updated test method as well as the updated ENERGY STAR specifications mimic the updated federal appliance standards. An equivalent stringency of these new standards for split system air conditioners are 16 SEER and 13 EER and for single-package air conditioners are 16 SEER and EER 12, as detailed in: Consortium for Energy Efficiency (CEE) Residential HVAC Specifications, Estimated Appendix M1 Equivalents, January 15 2021

⁴⁴⁵ The ENERGY STAR specification does not provide an efficiency level for space constrained products but this is a proposed level for this product type that the marketplace has developed solutions to meet.

⁴⁴⁶ Consortium for Energy Efficiency (CEE), Testing, Testing, M1, 2, 3, Transitioning to New Federal Minimum Standards, CEE Summer Program Meeting, June 10, 2022.

⁴⁴⁷ The 2023 federal standards (10 CFR 430.32(c)(5)) are in terms of an updated metric, depicted as SEER2 and manufacturers must certify their products meet the standard according to the new test procedure and new metrics. The updated test method as well as the updated energy conservation standards were negotiated under the appliance standards and rulemaking federal advisory committee (ASRAC) in accordance with the Federal Advisory Committee Act (FACA) and the negotiated rulemaking act. An equivalent stringency of these new standards for split system air conditioners are 14 SEER and for single-package air conditioners are 14 SEER, as detailed in: Federal Code of Regulations, Energy Conservation Program: Energy Conservations Standards for residential Central Air Conditioners and Heat Pumps; Confirmation of effective date and compliance date for direct final rule, May 26, 2017, Docket: EERE-2014-BT-STD-0048 (https://www.regulations.gov/document/EERE-2014-BT-STD-0048-0200)

- Standard sized Single-package air conditioners 13.4 SEER2
- Space constrained air conditioners 11.7 SEER2
- Room AC for mobile homes 7.7 EER

Note, the space constrained product baseline should only be used when the efficient unit is classified as space constrained. It is assumed that 'Quality Installation' did not occur.

For mobile homes, replacing central AC presents a series of challenges, not least due to structural limitations. It is assumed that in the absence of program support, units would not be replaced with a new central AC unit but instead be replaced with multiple room AC units.

The baseline for the early replacement measure is the efficiency of the existing equipment for the assumed remaining useful life of the unit and the new baseline as defined above for the remainder of the measure life. 448 Consistent with TRM Volume 1 Section 2.3.1 for midstream programs or other cases where the existing condition is unknown, it may be appropriate to apply a deemed percent split of Time of Sale and Early Replacement assumptions based on evaluation results

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 18 years. 449

Remaining life of existing equipment is assumed to be 6 years. 450

DEEMED MEASURE COST

Time of sale (non-mobile homes): The incremental capital cost for this measure is dependent on efficiency. Assumed incremental costs are provided below:⁴⁵¹

Efficiency Level (SEER2)	Incremental Cost
13.4	\$0
15.2	\$1070
16.2	\$1270

Time of sale (mobile homes):

For mobile homes, this measure assumes a baseline of three 8,500 BTU/hr room AC units purchased via the secondary market and assumed to cost \$50 each – for a total of \$150. This should be compared to a typical retail cost for an ENERGY STAR 3-ton unit of $$3,750^{452}$ for an incremental cost estimate of \$3,600.

An additional \$150 every 6 years should be included to account for the replacement of the secondhand room AC units.

Early replacement: The full install cost for this measure is the actual cost of removing the existing unit and installing the new one. If this is unknown, assume defaults below.⁴⁵³

_

⁴⁴⁸ Baseline SEER and EER should be updated when new minimum federal standards become effective.

⁴⁴⁹ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

⁴⁵⁰ Assumed to be one third of effective useful life.

⁴⁵¹ Based on EIS report "Updated Buildings Sector Appliance and Equipment Costs and Efficiencies", March 2023.

⁴⁵³ Based on 3 ton initial cost estimate for a conventional unit from ENERGY STAR Central AC calculator, \$2,857. Efficiency cost increment consistent with Cadmus study results.

Efficiency Level (SEER2)	Full Retrofit Cost (including labor)
15.2	\$952 / ton + \$1,070
16.2	\$952 / ton + \$1,270

Assumed deferred cost (after 6 years) of replacing existing equipment with new baseline unit is assumed to be \$3,140⁴⁵⁴ for non-mobile homes and \$150 for mobile homes. This cost should be discounted to present value using the nominal societal discount rate.

Quality Installation: The additional design and installation work associated with quality installation has been estimated to cost an additional \$150.455

LOADSHAPE

Loadshape R08 - Residential Cooling

COINCIDENCE FACTOR

The summer peak coincidence factor for cooling is provided in two different ways below. The first is used to estimate peak savings during the utility peak hour and is most indicative of actual peak benefits, and the second represents the *average* savings over the defined summer peak period and is presented so that savings can be bid into PJM's capacity market.

CF _{SSP}	= Summer System Peak Coincidence Factor for Central A/C (during system peak hour) = 68% ⁴⁵⁶
СҒрјм	= PJM Summer Peak Coincidence Factor for Central A/C (average during PJM peak period) = 46.6% ⁴⁵⁷

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Time of sale (non-mobile homes):

```
\DeltakWH = (FLHcool * Capacity * (1/(SEER2base * (1 - DeratingCool<sub>Base</sub>)) - 1/(SEER2ee (1 - DeratingCool<sub>Eff</sub>))))/1000
```

Time of sale (mobile homes):

 Δ kWH = kWhBaseRAC – kWhEffCAC

kWhBaseRAC = (#RACUnits * FLHcool * CapacityRAC * (1/(EERbase/1.01)))/1,000 kWhEffCAC = (FLHcool * Capacity * (1/(SEER2ee (1 – DeratingCool_{Eff}))))/1,000

2025 IL TRM v13.0 Vol. 3 September 20, 2024 FINAL

⁴⁵⁴ Based on 3 ton initial cost estimate for a conventional unit from ENERGY STAR Central AC calculator, \$2,857, and applying inflation rate of 1.91%. While baselines are likely to shift in the future, there is currently no good indication of what the cost of a new baseline unit will be in 6 years. In the absence of this information, assuming a constant federal baseline cost is within the range of error for this prescriptive measure.

⁴⁵⁵ Based on data provided by MidAmerican in April 2018 summarizing survey results from 11 HVAC suppliers in Iowa.

⁴⁵⁶ Based on metering of 24 homes with central AC during PY4 and PY5 in Ameren Illinois service territory.

⁴⁵⁷ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

Early replacement:458

ΔkWH for remaining life of existing unit (1st 6 years):

=(FLHcool * Capacity *
$$(1/(SEER2exist * (1 - DeratingCool_{Base})) - 1/(SEER2ee * (1 - DeratingCool_{Eff})))/1,000$$

ΔkWH for remaining measure life (next 12 years) – non mobile-homes:

= (FLHcool * Capacity *
$$(1/(SEER2base * (1 - DeratingCool_{Base})) - 1/(SEER2ee * (1 - DeratingCool_{Eff}))))/1,000$$

ΔkWH for remaining measure life (next 12 years) – mobile-homes:

= kWhBaseRAC - kWhEffCAC

kWhBaseRAC = (#RACUnits * FLHcool * CapacityRAC * (1/(EERbase/1.01)))/1,000 kWhEffCAC = (FLHcool * Capacity * (1/(SEER2ee (1 – DeratingCool_{Eff}))))/1,000

Where:

FLHcool = Full load cooling hours

= dependent on location and building type:⁴⁵⁹

Climate Zone (City based upon)	FLHcool (single family)	FLHcool (multifamily)	FLH_cooling (weatherized multifamily)
1 (Rockford)	547	499	320
2 (Chicago)	709	629	403
3 (Springfield)	779	707	453
4 (Belleville)	1,082	982	630
5 (Marion)	956	868	557
Weighted Average ⁴⁶¹			
ComEd	676	603	386
Ameren	875	791	507
Statewide	731	655	420

Use Multifamily if the Building meets the utility's definition for multifamily and system serves single unit. For residential sized systems serving 2 or more units, assume single family hours. For central systems use Volume 2 Commercial and Industrial Measures.

⁴⁵⁸ The two equations are provided to show how savings are determined during the initial phase of the measure (existing to efficient) and the remaining phase (new baseline to efficient). In practice, the screening tools used may either require a First Year savings (using the first equation) and then a "number of years to adjustment" and "savings adjustment" input which would be the (new base to efficient savings)/(existing to efficient savings).

⁴⁵⁹ Full load hours for Chicago, Moline and Rockford are provided in "Final Evaluation Report: Central Air Conditioning Efficiency Services (CACES), 2010, Navigant Consulting", p.33. An average FLH/Cooling Degree Day (from NCDC) ratio was calculated for these locations and applied to the CDD of the other locations in order to estimate FLH. There is a county mapping table in Volume 1, Section 3.7 providing the appropriate city to use for each county of Illinois.

⁴⁶⁰ All-Electric Homes PY6 Metering Results: Multifamily HVAC Systems, Cadmus, October 2015. The multifamily units within this study had undergone significant shell improvements (air sealing and insulation) and therefore this set of assumptions is only appropriate for units that have recently participated in a weatherization or other shell program. Note that the FLHcool where recalculated based on existing efficiencies consistent with the TRM rather than from the metering study. During update cycle for version v.12, applied percent change of CDD65, NCEI Annual Normals from 30 yr data set (1981-2010) to more recent 15 yr data (2006-2020) to all FLHcool values.

⁴⁶¹ Weighting for Ameren is based on electric accounts in each of the cooling zones. Weighting for ComEd and Statewide average is based on number of occupied residential housing units in each zone. ComEd is weighted average of Zones 1-2. Alternative program-weighted assumptions can be used if appropriate.

= Size of new equipment in Btu/hr (note 1 ton = 12,000Btu/hr) Capacity

> = Use actual when program delivery allows size of AC unit to be known. If unknown, assume 33,600 Btu/hr for single family homes, 28,000 Btu/hr for multifamily, or 24,000 Btu/hr for mobile homes. 462 If building type is unknown, assume 31,864Btu/hr. 463

= Seasonal Energy Efficiency Ratio of baseline unit (kBtu/kWh) SEER2base

= 13.4 SEER2 for standard sized units or 11.7 SEER2 for space constrained units 464

SEER2exist = Seasonal Energy Efficiency Ratio 2 of existing unit (kBtu/kWh)

> = Use actual SEER2 rating where it is possible to measure or reasonably estimate. If using rated efficiencies, derate efficiency value by 1% per year (maximum of 30 years) to account for degradation over time, 465 or, if unknown, assume 9.2 SEER2.466 If unknown

value is used, it should not be derated by age.

SEER2ee = Rated Seasonal Energy Efficiency Ratio 2 of ENERGY STAR unit (kBtu/kWh)

= Actual, or 15.2 SEER2 (15.9 SEER) if unknown.

DeratingCooleff = Efficent Central Air Conditioner Cooling derating

= 0% if Quality Installation is performed

= 10% if Quality Installation is not performed or unknown⁴⁶⁷

DeratingCool_{Base} = Baseline Central Air Conditioner Cooling derating

= 10%

#RACUnits = Number of Room AC units assumed to have been installed in mobile home instead of a

replacement CAC unit

= Actual, if unknown assume 3

CapacityRAC = Capacity of assumed Room AC unit

= Actual, if unknown assume 8500 Btu/hr⁴⁶⁸

EERbase = Efficiency of baseline Room AC unit, assumed to be purchased through the secondary

market

⁴⁶² Single family cooling capacity based on Final Evaluation Report: Central Air Conditioning Efficiency Services (CACES), October 19, 2010, ComEd, Navigant Consulting. Multifamily capacity based on weighted average of PY9 Ameren and ComEd MF cooling capacities. Mobile home capacity based on ENERGY STAR's Manufactured Home Cooling Equipment Sizing Guidelines which vary by climate zone and home size. The average size of a mobile home in the East North Central region (1,120 square feet) from the 2015 RECS data is used to calculated appropriate size.

⁴⁶³ Unknown is based on statewide weighted average of 69% single family and 31% multifamily, based on IL data from 2009 RECS Table HC2.9 Structural and Geographic Characteristics of Homes in Midwest Region, Divisions and States, 2009.

⁴⁶⁴ Based on Minimum Federal Standard.

⁴⁶⁵ Justification for degradation factors can be found on page 14 of 'AIC HVAC Metering Study Memo FINAL 2 28 2018'. Estimate efficiency as (Rated Efficiency * (1-0.01)^Equipment Age).

⁴⁶⁶ Based on Opinion Dynamics and Cadmus metering study of Ameren HVAC program participants, assumption provided for 2020; See 'AIC HVAC Metering Study Memo FINAL 2_28_2018' Converted to SEER2.

⁴⁶⁷ Based on Cadmus assumption provided in preparation of the 2014 Interstate Power and Light TRM based upon proper refrigerant charge, evaporator airflow, and unit sizing, Appears conservative in comparison to ENERGY STAR statements (see 'Sponsoring an ENERGY STAR Verified HVAC Installation (ESVI) Program').

⁴⁶⁸ Based on maximum capacity average from the RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008

= Actual, if unknown assume 7.7 ⁴⁶⁹

1.01 = Factor to convert EER to CEER (CEER includes standby and off power consumption)⁴⁷⁰

Time of sale non mobile-home example: a 3 ton unit with SEER2 rating of 17, EER2 rating of 12.5 in unknown location without Quality Install:

$$\Delta$$
kWH = (731 * 36,000 * (1/(13.4 * (1-0.1)) – 1 / (17 * (1-0.1)))) / 1,000
= 462 kWh

Time of sale example: a 3-ton unit with SEER2 rating of 17, EER2 rating of 12.5 in unknown location with Quality Install:

$$\Delta$$
kWH = (731 * 36,000 * (1/(13.4 * (1-0.1)) – 1 / (17 * (1-0)))) / 1,000
= 634 kWh

Time of sale mobile-home example: a 3-ton unit with SEER2 rating of 17, EER2 rating of 12.5 is installed with Quality Install in a mobile home in Belleville, in place of 3 Room AC units:

 $\Delta kWH = kWhBaseRAC - kWhEffCAC$

kWhBaseRAC = (3 * 1,082 * 8,500 * (1/(7.7/1.01)))/1,000

= 3,619 kWh

kWhEffCAC = (1,082 * 36,000 * (1/(17 * (1 - 0))))/1,000

= 2,291 kWh

 Δ kWH = 3,619 – 2,291

= 1,328 kWh

Early replacement example: a 3-ton unit, with SEER2 rating of 17, EER2 rating of 12.5 replaces an existing unit in unknown location with quality installation:

```
\DeltakWH(for first 6 years) = (731 * 36,000 * (1/(9.2 * (1-0.1)) - 1/(17 * (1-0))))/1,000
```

= 1,630 kWh

 Δ kWH(for next 12 years) = (731 * 36,000 * (1/(13.4 * (1-0.1)) - 1/(17 * (1-0))))/1,000

= 634 kWh

Therefore, savings adjustment of 39% (634/1,630) after 6 years.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

Time of sale (non mobile-homes):

$$\Delta$$
kW = (Capacity * (1/(EER2base * (1 – DeratingCool_{Base})) - 1/(EER2ee * (1 – DeratingCool_{Eff}))))/1,000 * CF

٠

⁴⁶⁹ Based on Nexus Market Research Inc, RLW Analytics, December 2005; "Impact, Process, and Market Study of the Connecticut Appliance Retirement Program: Overall Report."

 $^{^{470}}$ Version 3.0 of the ENERGY STAR specification provided equivalent EER and CEER ratings and for the most popular size band the EER rating is approximately 1% higher than the CEER. See 'ENERGY STAR Version 3.0 Room Air Conditioners Program Requirements'.

Time of sale (mobile-homes):

 $\Delta kW = (kWBaseRAC - kWEffCAC) * CF$

kWBaseRAC = (#RACUnits * CapacityRAC * (1/(EERbase/1.01)))/1,000 kWEffCAC = (Capacity * (1/(EER2ee (1 – DeratingCool_{Eff}))))/1,000

Early replacement:471

 Δ kW for remaining life of existing unit (1st 6 years):

= (Capacity * (1/(EER2exist * (1 – DeratingCool_{Base})) - 1/(EER2ee* (1 – DeratingCool_{Eff}))))/1,000 * CF

ΔkW for remaining measure life (next 12 years) – non mobile-homes:

= (Capacity * $(1/(EER2base * (1 - DeratingCool_{Base})) - 1/(EER2ee* (1 - DeratingCool_{Eff}))))/1,000 * CF$

ΔkW for remaining measure life (next 12 years) –mobile-homes:

= (kWBaseRAC - kWEffCAC) * CF

kWBaseRAC = (#RACUnits * CapacityRAC * (1/(CEERbase/1.01)))/1,000 kWEffCAC = (Capacity * (1/(EER2ee (1 – DeratingCool_{Eff}))))/1,000

Where:

EER2base = EER2 Efficiency of baseline unit

= 10.6 EER2 for standard sized units⁴⁷² = 9.2 EER2 for space constrained units

EER2exist = EER2 Efficiency of existing unit

= Use actual EER2 rating where it is possible to measure or reasonably estimate. If using rated efficiencies, derate efficiency value by 1% per year (maximum of 30 years) to account for degradation over time. 473 If unknown, assume 7.4 EER2. 474 If unknown value

is used, it should not be derated by age.

EER2ee = EER2 Efficiency of ENERGY STAR unit

= Actual installed or 12.4 EER2 if unknown

CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C (during system peak hour)

 $=68\%^{475}$

_

⁴⁷¹ The two equations are provided to show how savings are determined during the initial phase of the measure (existing to efficient) and the remaining phase (new baseline to efficient). In practice, the screening tools used may either require a First Year savings (using the first equation) and then a "number of years to adjustment" and "savings adjustment" input which would be the (new base to efficient savings)/(existing to efficient savings).

⁴⁷² The federal Standard does not currently include an EER2 component. The value provided is based on Opinion Dynamics and Cadmus metering study of Ameren HVAC program participants; See 'AIC HVAC Metering Study Memo FINAL 2_28_2018'. Converted to EER2.

⁴⁷³ Justification for degradation factors can be found on page 14 of 'AIC HVAC Metering Study Memo FINAL 2_28_2018'. Estimate efficiency as (Rated Efficiency * (1-0.01)^Equipment Age).

⁴⁷⁴ Based on Opinion Dynamics and Cadmus metering study of Ameren HVAC program participants; See 'AIC HVAC Metering Study Memo FINAL 2_28_2018'. Converted to EER2.

⁴⁷⁵ Based on metering of 24 homes with central AC during PY4 and PY5 in Ameren Illinois service territory.

CF_{PJM} = PJM Summer Peak Coincidence Factor for Central A/C (average during peak period) = $46.6\%^{476}$

Time of sale non mobile-home example: a 3 ton unit with EER2 rating of 12 with Quality Install:

 ΔkW_{SSP} = (36,000 * (1/(10.6 * (1-0.1)) - 1/(12 * (1-0)))) / 1,000 * 0.68

= 0.5260 kW

 ΔkW_{PJM} = (36,000 * (1/(10.6 * (1-0.1)) - 1/(12 * (1-0)))) / 1,000 * 0.466

= 0.3605 kW

Time of sale mobile-home example: a 3 ton unit with EER2 rating of 12.5 is installed with Quality Install in a mobile home, in place of 3 Room AC units:

 $\Delta kW = (kWBaseRAC - kWEffCAC) * CF$

kWBaseRAC = (3 * 8,500 * (1/(7.7/1.01)))/1,000

= 3.3448kW

kWEffCAC = (36,000 * (1/(12.5 * (1-0))))/1,000

= 2.8800kW

 ΔkW_{SSP} = (3.3448 - 2.880) * 0.68

= 0.3161 kW

 ΔkW_{PJM} = (3.3448 – 2.880) * 0.466

= 0.2166 kW

Early replacement example: a 3 ton unit with EER2 rating of 12 replaces an existing unit with Quality Install:

 Δ kW _{SSP} (for first 6 years) = (36,000 * (1/(7.4 * (1-0.1)) – 1/(12 * (1-0)))) / 1,000 * 0.68

= 1.636 kW

 Δ kW _{SSP} (for next 12 years) = (36,000 * (1/(10.1 * (1-0.1)) – 1/(12 * (1-0)))) / 1,000 * 0.68

= 0.653 kW

 ΔkW_{PJM} (for first 6 years) = (36,000 * (1/(7.4 * (1-0.1)) - 1/(12 * (1-0)))) / 1,000 * 0.466

= 1.121 kW

 ΔkW_{PJM} (for next 12 years)= (36,000 * (1/(10.1 * (1-0.1)) - 1/(12 * (1-0)))) / 1,000 * 0.466

= 0.448 kW

FOSSIL FUEL SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

⁴⁷⁶ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-HVC-CAC1-V13-250101

REVIEW DEADLINE: 1/1/2027

5.3.4 Duct Insulation and Sealing

DESCRIPTION

This measure describes evaluating the savings associated with adding duct insulation or performing duct sealing using mastic sealant, metal tape, or injection of UL certified and low VOC for sealant to the distribution system of homes with either central air conditioning or a ducted heating system.

Three methodologies for estimating the savings associate from sealing the ducts are provided, one of which can also be used to estimate duct insulation savings. The first preferred method requires the use of a blower door, the second method requires a pressurized duct test, and the third requires careful inspection of the duct work.

- **1. Modified Blower Door Subtraction** this technique is described in detail on the Energy Conservatory website. See 'The Energy Conservatory Blower-Door-Subtraction-Method.pdf'.
- 2. Pressurized Duct Test this technique includes direct measurement of air leaks in the duct system.
- 3. **Evaluation of Distribution Efficiency** this methodology can be used to estimate duct insulation or duct sealing savings, and requires the evaluation of three duct characteristics below, and use of the Building Performance Institutes 'Distribution Efficiency Look-Up Table' ⁴⁷⁷.
 - a. Percentage of duct work found within the conditioned space
 - b. Duct leakage evaluation
 - Duct insulation evaluation

This measure was developed to be applicable to the following program types: RF. If applied to other program types, the measure savings should be verified.

For duct insulation and sealing of central systems in multifamily buildings, use Volume 2 Commercial and Industrial Measures.

DEFINITION OF EFFICIENT EQUIPMENT

For duct sealing, the efficient condition is sealed duct work throughout the unconditioned or semi-conditioned space in the home. A non-conditioned space is defined as a space outside of the thermal envelope of the building that is not intentionally heated for occupancy (crawl space, roof attic, etc.). A semi-conditioned space is defined as a space within the thermal envelop that is not intentionally heated for occupancy (unfinished basement).⁴⁷⁸

For duct insulation, the efficient condition is ductwork insulated with a minimum of R-4 insulation in an unconditioned or semi-conditioned space in the home.

DEFINITION OF BASELINE EQUIPMENT

For duct sealing, the existing baseline condition is leaky duct work within the unconditioned or semi-conditioned space in the home.

For duct insulation, the baseline condition is un-insulated ductwork that passes through an unconditioned or semi-conditioned space in the home.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The assumed lifetime of this measure is 20 years.⁴⁷⁹

Note: a mid-life adjustment to account for replacement of HVAC equipment during the measure life should be

 $\underline{https://www.bpi.org/sites/default/files/Guidance\%20on\%20Estimating\%20Distribution\%20Efficiency.pdf}$

⁴⁷⁷Building Performance Institute, Distribution Efficiency Look-up Tables.

⁴⁷⁸ Definition matches Regain factor discussed in Home Energy Services Impact Evaluation, prepared for the Massachusetts Residential Retrofit and Low Income Program Area Evaluation, Cadmus Group, Inc., August 2012

⁴⁷⁹ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

applied after 10 years. 480 See section below for detail.

DEEMED MEASURE COST

The actual duct sealing or insulating measure cost should be used.

LOADSHAPE

Loadshape R08 - Residential Cooling

Loadshape R09 - Residential Electric Space Heat

Loadshape R10 - Residential Electric Heating and Cooling (Shell Measures)

COINCIDENCE FACTOR

The summer peak coincidence factor for cooling is provided in two different ways below. The first is used to estimate peak savings during the utility peak hour and is most indicative of actual peak benefits, and the second represents the *average* savings over the defined summer peak period and is presented so that savings can be bid into PJM's capacity market.

CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C (during utility peak hour)

 $=68\%^{481}$

CF_{PJM} = PJM Summer Peak Coincidence Factor for Central A/C (average during PJM peak period)

 $=46.6\%^{482}$

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

For Methodology 1: Modified Blower Door Subtraction, follow steps (a) through (c)

For Methodology 2: Pressurized Duct Test, follow step (c)

a) Determine Duct Leakage rate before and after performing duct sealing: Duct Leakage (CFM50_{DL}) = (CFM50_{Whole House} – CFM50_{Envelope Only}) * SCF

Where:

CFM50_{Whole House} = Standard Blower Door test result finding Cubic Feet per Minute at 50 Pascal

pressure differential

CFM50Envelope Only = Blower Door test result finding Cubic Feet per Minute at 50 Pascal pressure

differential with all supply and return registers sealed.

SCF = Subtraction Correction Factor to account for underestimation of duct leakage

due to connections between the duct system and the home. Determined by measuring pressure in duct system with registers sealed and using look up table

provided by Energy Conservatory.

⁴⁸⁰ This is intentionally longer than the assumptions found in the early replacement measures as the application of this measure will occur in a variety of homes that will not be targeted for early replacement HVAC systems.

⁴⁸¹ Based on metering of 24 homes with central AC during PY4 and PY5 in Ameren Illinois service territory.

⁴⁸² Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

b) Calculate duct leakage reduction, convert to CFM25_{DL} and factor in Supply and Return Loss Factors
Duct Leakage Reduction (ΔCFM25_{DL}) = (Pre CFM50_{DL} – Post CFM50_{DL}) * 0.64 * (SLF + RLF)

Where:

0.64 = Converts CFM50 to CFM25⁴⁸³

SLF = Supply Loss Factor

= % leaks sealed located in Supply ducts * 1 484

Default = 0.5^{485}

RLF = Return Loss Factor

= % leaks sealed located in Return ducts * 0.5⁴⁸⁶

Default = 0.25^{487}

c) Calculate Electric Energy Savings:

 ΔkWh = $\Delta kWh_{cooling} + \Delta kWh_{Fan}$

ΔkWh_{cooling} = ((ΔCFM25_{DL}/ ((CapacityCool/12,000) * 400)) * FLHcool * CapacityCool * TRFcool *

%Cool) / 1,000 / ηCool

 ΔkWh_{Fan} = ($\Delta Therms * F_e * 29.3$)

Where:

 Δ CFM25_{DL} = Duct leakage reduction in CFM25

= For Methodology 1: Modified Blower Door Subtraction, calculated above

= For Methodology 2: Pressurized Duct Test, use actual

CapacityCool = Capacity of Air Cooling system (Btu/hr)

= Actual

12,000 = Converts Btu/H capacity to tons

400 = Converts capacity in tons to CFM (400CFM / ton)⁴⁸⁸

FLHcool = Full load cooling hours

_

⁴⁸³ 25 Pascals is the standard assumption for typical pressures experienced in the duct system under normal operating conditions. To convert CFM50 to CFM25 you multiply by 0.64 (inverse of the "Can't Reach Fifty" factor for CFM25; see Energy Conservatory Blower Door Manual).

⁴⁸⁴ Assumes that for each percent of supply air loss there is one percent annual energy penalty. This assumes supply side leaks are direct losses to the outside and are not recaptured back to the house. This could be adjusted downward to reflect regain of usable energy to the house from duct leaks. For example, during the winter some of the energy lost from supply leaks in a crawlspace will probably be regained back to the house (sometimes 1/2 or more may be regained). More information provided in "Appendix E Estimating HVAC System Loss From Duct Airtightness Measurements" from Energy Conservatory 'Minneapolis Duct Blaster Operation Manual'.

⁴⁸⁵ Assumes 50% of leaks are in supply ducts.

⁴⁸⁶ Assumes that for each percent of return air loss there is a half percent annual energy penalty. Note that this assumes that return leaks contribute less to energy losses than do supply leaks. This value could be adjusted upward if there was reason to suspect that the return leaks contribute significantly more energy loss than "average" (e.g. pulling return air from a super heated attic), or can be adjusted downward to represent significantly less energy loss (e.g. pulling return air from a moderate temperature crawl space). More information provided in "Appendix E Estimating HVAC System Loss From Duct Airtightness Measurements" from Energy Conservatory 'Minneapolis Duct Blaster Operation Manual'.

⁴⁸⁷ Assumes 50% of leaks are in return ducts.

⁴⁸⁸ This conversion is an industry rule of thumb; e.g. see 'Why 400 CFM per ton.pdf'.

= Dependent on location as below:⁴⁸⁹

Climate Zone (City based upon)	FLHcool Single Family	FLHcool Multifamily
1 (Rockford)	547	499
2 (Chicago)	709	629
3 (Springfield)	779	707
4 (Belleville)	1,082	982
5 (Marion)	956	868
Weighted Average ⁴⁹⁰		
ComEd	676	603
Ameren	875	791
Statewide	731	655

Use Multifamily if: Building meets utility's definition for multifamily and system serves single unit. For residential sized systems serving 2 or more units, assume single family hours. For central systems use Volume 2 Commercial and Industrial Measures.

TRFcool = Thermal Regain Factor for cooling by space type

= 1.0 for Unconditioned Spaces

= 0.4 for Semi-Conditioned Spaces⁴⁹¹

%Cool = Percent of homes that have cooling

Central Cooling?	%Cool
Yes	100%
No	0%
Unknown (for use in program evaluation only) ⁴⁹²	66%

1000 = Converts Btu to kBtu

= Efficiency (SEER2) of Air Conditioning equipment (kBtu/kWh)

= Actual. If unknown assume the following:⁴⁹³

Age of Equipment	SEER2 Estimate
Before 2006	9.5
After 2006 - 2014	12.4
Central AC After 1/1/2015	12.4
Heat Pump After 1/1/2015	13.3

⁴⁸⁹ Based on Full Load Hours from ENERGY STAR with adjustments made in a Navigant Evaluation, other cities were scaled using those results and CDD. There is a county mapping table in Volume 1, Section 3.7 providing the appropriate city to use for each county of Illinois. During update cycle for version v.12, applied percent change of CDD65, NCEI Annual Normals from 30 yr data set (1981-2010) to more recent 15 yr data (2006-2020) to all FLHcool values.

ηCool

⁴⁹⁰ Weighting for Ameren is based on electric accounts in each of the cooling zones. Weighting for ComEd and Statewide average is based on number of occupied residential housing units in each zone. ComEd is weighted average of Zones 1-2. Alternative program-weighted assumptions can be used if appropriate.

⁴⁹¹ Thermal regain (i.e. the potential for conditioned air escaping from ducts not being lost to the atmosphere) for residential pipe insulation measures is discussed in Home Energy Services Impact Evaluation, prepared for the Massachusetts Residential Retrofit and Low Income Program Area Evaluation, Cadmus Group, Inc., August 2012.

⁴⁹² Percentage of homes in Illinois that have central cooling from "Table HC7.9 Air Conditioning in Homes in Midwest Region, Divisions, and States, 2009" from Energy Information Administration, 2009 Residential Energy Consumption Survey
⁴⁹³ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Central AC was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate. Note all ratings have been converted to SEER2 equivalents – since the new rating better reflects the actual efficiency of the units.

Age of Equipment	SEER2 Estimate
Unknown (for use in program evaluation only)	10.0

ΔTherms = Therm savings as calculated in Fossil Fuel Savings

F_e = Furnace Fan energy consumption as a percentage of annual fuel consumption

= 3.14%⁴⁹⁴

= kWh per therm

For example, duct sealing in unconditioned space a single family house in Springfield with a 36,000 Btu/H, SEER 11 central air conditioning, an 80% AFUE, 105,000 Btu/H natural gas furnace and the following blower door test results:

Before: $CFM50_{Whole\ House} = 4800\ CFM50$

CFM50Envelope Only = 4500 CFM50

House to duct pressure of 45 Pascals. = 1.29 SCF (Energy Conservatory look up table)

After: CFM50whole House = 4600 CFM50

CFM50_{Envelope Only} = 4500 CFM50

House to duct pressure of 43 Pascals = 1.39 SCF (Energy Conservatory look up table)

Duct Leakage:

CFM50_{DL before} = (4800 - 4500) * 1.29

= 387 CFM

 $CFM50_{DL after} = (4600 - 4500) * 1.39$

= 139 CFM

Duct Leakage reduction at CFM25:

 $\Delta CFM25_{DL}$ = (387 – 139) * 0.64 * (0.5 + 0.25)

= 119 CFM25

Energy Savings:

 $\Delta kWh_{cooling}$ = [((119 / ((36,000/12,000) * 400)) * 779 * 36,000 * 1) / 1000 / 11] + (179 *

0.0314 * 29.3)

= 253 + 165

= 418 kWh

Heating savings for homes with electric heat:

ΔkWhheatingElectric = ((ΔCFM25_{DL}/((OutputCapacityHeat/12,000) * 400)) * FLHheat * OutputCapacityHeat *

TRFheat *%ElectricHeat) / nHeat / 3412

Where:

OutputCapacityHeat = Heating output capacity (Btu/hr) of electric heat

=Actual

 $^{^{494}}$ F_e is not one of the AHRI certified ratings provided for residential furnaces, but can be reasonably estimated from a calculation based on the certified values for fuel energy (Ef in MMBtu/yr) and Eae (kWh/yr). An average of a 300 record sample (non-random) out of 1495 was 3.14%. This is, appropriately, ~50% greater than the ENERGY STAR version 3 criteria for 2% F_e. See "Programmable Thermostats Furnace Fan Analysis.xlsx" for reference.

FLHheat =

- = Full load heating hours
- = Dependent on location as below:⁴⁹⁵

Climate Zone (City based upon)	FLH_heat
1 (Rockford)	1924
2 (Chicago)	1726
3 (Springfield)	1708
4 (Belleville)	1195
5 (Marion/Murphysboro)	1270
Weighted Average ⁴⁹⁶	
ComEd	1766
Ameren	1547
Statewide	1700

TRFheat = Thermal Regain Factor for heating by space type

= 0.40 for Semi-Conditioned Spaces

= 1.0 for Unconditioned Spaces⁴⁹⁷

%ElectricHeat = Percent of homes that have electric space heating

= 100 % for Electric Resistance or Heat Pump

= 0 % for Natural Gas

= If unknown⁴⁹⁸, use the following table:

	Location					
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown	
Ameren	18%	26%	38%	39%	29%	
ComEd	14%	22%	43%	48%	21%	
PGL	1.0%	1.5%	4.0%	2.8%	2.2%	
NSG	1.3%	0.8%	32.5%	1.2%	3.3%	
Nicor	1.3%	0.8%	32.5%	1.2%	3.3%	
All DUs ⁴⁹⁹					26%	

⁴⁹⁵ Heating EFLH based on ENERGY STAR EFLH for Rockford, Chicago, and Springfield and on NCDC/NOAA HDD for the other two cities. In all cases, the hours were adjusted based on average natural gas heating consumption in IL.

⁴⁹⁶ Weighting for Ameren is based on electric heat accounts in each of the heating zones. Weighting for ComEd and Statewide average is based on number of occupied residential housing units in each zone. ComEd is weighted average of Zones 1-2. Alternative program-weighted assumptions can be used if appropriate.

⁴⁹⁷ Thermal regain (i.e. the potential for conditioned air escaping from ducts not being lost to the atmosphere) for residential pipe insulation measures is discussed in Home Energy Services Impact Evaluation, prepared for the Massachusetts Residential Retrofit and Low Income Program Area Evaluation, Cadmus Group, Inc., August 2012.

⁴⁹⁸ Based on the average % Natural Gas used for space heating in Unknown residential structure types across all utilities covered by the IL program. Residence types include: SF, SF LI, MF & MF LI. Utilities included: Ameren, ComEd, People's Gas, Northshore Gas & Nicor. Data provided from 2016 Ameren Illinois Demand Side Management (DSM) Market Potential Study by Applied Energy Group, ComEd's 2019 Baseline Survey on residential space heating share, and PY2022-2023 Implementation Contractors Data for People's Gas, Northshore Gas & Nicor.

⁴⁹⁹ For the weighted average calculations, please see the Analysis file. PGL, NSG, Nicor & gas customers were assumed to follow the provided split. ComEd total customers, minus overlap with PGL,NSG & Nicor, therefore electric only homes. Ameren is total customers minus Nicor.

<u>Note</u>: If a measure is supported by a gas and electric utility through a joint program, and it is unknown whether the participant has a gas supply, the electric utility values in the table above should be used. If it is known that the participant has a gas supply, the values from the gas utility above should be applied.

ηHeat = Efficiency in COP of Heating equipment

= Actual. If not available use:500

System Type	Age of Equipment	HSPF2 Estimate	COP Estimate
Heat Pump	Before 2006	5.8	1.44
(if age unknown, assume	After 2006 - 2014	6.5	1.62
2006-2014)	2015 on	7.0	1.74
Resistance	N/A	N/A	1.00
Unknown (for use in program evaluation only) ⁵⁰¹	N/A	N/A	1.32

3412 = Converts Btu to kWh

For example, duct sealing in unconditioned space in a 36,000 Btu/H 2.5 COP heat pump heated single family house in Springfield with the blower door results described above:

$$\Delta kWh_{heating}$$
 = ((119 / ((36,000/12,000) * 400)) * 1,708 * 36,000 * 1 * 1) / 2.5 / 3,412

= 715 kWh

Methodology 3: Evaluation of Distribution Efficiency

Determine Distribution Efficiency by evaluating duct system before and after duct sealing or duct insulating using Building Performance Institute "Distribution Efficiency Look-Up Table".

$$\Delta kWh = ((((DE_{after} - DE_{before}) / DE_{after}) * FLHcool * CapacityCool * TRFcool * %Cool)/1,000 / \etaCool) + (\Delta Therms * F_e * 29.3)$$

Where:

DE_{after} = Distribution Efficiency after duct sealing, see table below⁵⁰²

DE_{before} = Distribution Efficiency before duct sealing, see table below⁵⁰³

		Heating			Cooling		
Insulation	Sealing	Attic	Basement	Vented Crawl	Attic	Basement	Vented Crawl
R-0	Leaky	69%	93%	74%	61%	81%	76%

⁵⁰⁰ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time means that using the minimum standard is appropriate. Note all ratings have been converted to HSPF2 equivalents – since the new rating better reflects the actual efficiency of the units.

⁵⁰¹ Calculation assumes 35% Heat Pump and 65% Resistance, which is based upon data from Energy Information Administration, 2009 Residential Energy Consumption Survey, see "HC6.9 Space Heating in Midwest Region.xls", using average for East North Central Region. Average efficiency of heat pump is assumed consistent with the baseline for 2006-2014. Program or evaluation data should be used to improve this assumption if available.

⁵⁰² Building Performance Institute, Distribution Efficiency Look-up Tables, Climate Zones 4-5. https://www.bpi.org/sites/default/files/Guidance%20on%20Estimating%20Distribution%20Efficiency.pdf
503 Ibid

		Heating			Cooling		
				Vented			Vented
Insulation	Sealing	Attic	Basement	Crawl	Attic	Basement	Crawl
	Average	73%	94%	78%	64%	87%	83%
	Tight	77%	95%	82%	73%	94%	91%
	Leaky	76%	94%	80%	65%	83%	78%
R-2	Average	82%	96%	85%	74%	88%	85%
	Tight	87%	97%	90%	84%	95%	93%
	Leaky	79%	95%	82%	67%	83%	79%
R-4	Average	84%	96%	87%	77%	89%	86%
	Tight	90%	98%	92%	87%	95%	94%
	Leaky	80%	95%	84%	69%	83%	79%
R-8	Average	86%	97%	89%	79%	89%	87%
	Tight	92%	98%	94%	90%	95%	94%

FLHcool

- = Full load cooling hours
- = Dependent on location as below:504

Climate Zone	FLHcool	FLHcool
(City based upon)	Single Family	Multifamily
1 (Rockford)	547	499
2 (Chicago)	709	629
3 (Springfield)	779	707
4 (Belleville)	1,082	982
5 (Marion)	956	868
Weighted Average ⁵⁰⁵		
ComEd	676	603
Ameren	875	791
Statewide	731	655

Use Multifamily if: Building meets utility's definition for multifamily and system serves single unit. For residential sized systems serving 2 or more units, assume single family hours. For central systems use Volume 2 Commercial and Industrial Measures.

CapacityCool = Capacity of Air Cooling system (Btu/hr)

= Actual

TRFcool = Thermal Regain Factor for cooling by space type

= 1.0 for Unconditioned Spaces

= 0.4 for Semi-Conditioned Spaces⁵⁰⁶

%Cool = Percent of homes that have cooling

2025 IL TRM v13.0 Vol. 3 September 20, 2024 FINAL

⁵⁰⁴ Based on Full Load Hours from ENERGY STAR with adjustments made in a Navigant Evaluation, other cities were scaled using those results and CDD. There is a county mapping table in Volume 1, Section 3.7 providing the appropriate city to use for each county of Illinois. During update cycle for version v.12, applied percent change of CDD65, NCEI Annual Normals from 30 yr data set (1981-2010) to more recent 15 yr data (2006-2020) to all FLHcool values.

⁵⁰⁵ Weighting for Ameren is based on electric accounts in each of the cooling zones. Weighting for ComEd and Statewide average is based on number of occupied residential housing units in each zone. ComEd is weighted average of Zones 1-2. Alternative program-weighted assumptions can be used if appropriate.

⁵⁰⁶ Thermal regain for residential pipe insulation measures is discussed in Home Energy Services Impact Evaluation, prepared for the Massachusetts Residential Retrofit and Low Income Program Area Evaluation, Cadmus Group, Inc., August 2012.

Central Cooling?	%Cool
Yes	100%
No	0%
Unknown (for use in program evaluation only) ⁵⁰⁷	66%

1000 = Converts Btu to kBtu

ηCool = Efficiency (SEER2) of Air Conditioning equipment (kBtu/kWh)

= Actual. If unknown assume:⁵⁰⁸

Age of Equipment	SEER2 Estimate
Before 2006	9.5
After 2006 – 2014	12.4
Central AC After 1/1/2015	12.4
Heat Pump After 1/1/2015	13.3
Unknown (for use in	10.0
program evaluation only)	

For example, duct sealing in unconditioned space in a single family house in Springfield, with 36,000 Btu/H SEER 11 central air conditioning, an 80% AFUE, 105,000 Btu/H natural gas furnace and the following duct evaluation results:

 $\begin{array}{ll} DE_{before} & = 0.85 \\ DE_{after} & = 0.92 \end{array}$

Energy Savings:

 $\Delta kWh_{cooling}$ = ((((0.92 - 0.85)/0.92) * 779 * 36,000 * 1 * 1) / 1000 / 11) + (179 * 0.0314 *

29.3)

= 194 + 165 = 359 kWh

Heating savings for homes with electric heat:

 $\Delta kWh_{heatingElectric}$ = ((DE_{after} - DE_{before})/ DE_{after})) * FLHheat * OutputCapacityHeat * TRFheat *

%ElectricHeat) / ηHeat / 3412

Where:

OutputCapacityHeat = Heating output capacity (Btu/hr) of the electric heat

= Actual

FLHheat = Full load heating hours

= Dependent on location as below:⁵⁰⁹

⁵⁰⁷ Percentage of homes in Illinois that have central cooling from "Table HC7.9 Air Conditioning in Homes in Midwest Region, Divisions, and States, 2009" from Energy Information Administration, 2009 Residential Energy Consumption Survey ⁵⁰⁸ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Central AC was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time means that using the minimum standard is appropriate. Note all ratings have been converted to SEER2 equivalents – since the new rating better reflects the actual efficiency of the units. ⁵⁰⁹ Heating EFLH based on ENERGY Star EFLH for Rockford, Chicago, and Springfield and on NCDC/NOAA HDD for the other two cities. In all cases, the hours were adjusted based on average natural gas heating consumption in IL.

Climate Zone (City based upon)	FLH_heat
1 (Rockford)	1924
2 (Chicago)	1726
3 (Springfield)	1708
4 (Belleville)	1195
5 (Marion)	1270
Weighted Average ⁵¹⁰ ComEd Ameren Statewide	1766 1547 1700

TRFheat = Thermal Regain Factor for heating by space type

= 0.40 for Semi-Conditioned Spaces

= 1.0 for Unconditioned Spaces⁵¹¹

%ElectricHeat = Percent of homes that have electric space heating

= 100 % for Electric Resistance or Heat Pump

= 0 % for Natural Gas

= If unknown⁵¹², use the following table:

		Location			
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown
Ameren	18%	26%	38%	39%	29%
ComEd	14%	22%	43%	48%	21%
PGL	1.0%	1.5%	4.0%	2.8%	2.2%
NSG	1.3%	0.8%	32.5%	1.2%	3.3%
Nicor	1.3%	0.8%	32.5%	1.2%	3.3%
All DUs ⁵¹³					26%

<u>Note</u>: If a measure is supported by a gas and electric utility through a joint program, and it is unknown whether the participant has a gas supply, the electric utility values in the table above should be used. If it is known that the participant has a gas supply, the values from the gas utility above should be applied.

⁵¹⁰ Weighting for Ameren is based on electric heat accounts in each of the heating zones. Weighting for ComEd and Statewide average is based on number of occupied residential housing units in each zone. ComEd is weighted average of Zones 1-2. Alternative program-weighted assumptions can be used if appropriate.

⁵¹¹ Thermal regain for residential pipe insulation measures is discussed in Home Energy Services Impact Evaluation, prepared for the Massachusetts Residential Retrofit and Low Income Program Area Evaluation, Cadmus Group, Inc., August 2012.

⁵¹² Based on the average % Natural Gas used for space heating in Unknown residential structure types across all utilities covered by the IL program. Residence types include: SF, SF LI, MF & MF LI. Utilities included: Ameren, ComEd, People's Gas, Northshore Gas & Nicor. Data provided from 2016 Ameren Illinois Demand Side Management (DSM) Market Potential Study by Applied Energy Group, ComEd's 2019 Baseline Survey on residential space heating share, and PY2022-2023 Implementation Contractors Data for People's Gas, Northshore Gas & Nicor .

⁵¹³ For the weighted average calculations, please see the Analysis file. PGL, NSG, Nicor & gas customers were assumed to follow the provided split. ComEd total customers, minus overlap with PGL,NSG & Nicor, therefore electric only homes. Ameren is total customers minus Nicor.

COP = Coefficient of Performance of electric heating system⁵¹⁴

= Actual. If not available use:515

System Type	Age of Equipment	HSPF2 Estimate	COP Estimate
Heat Pump	Before 2006	5.8	1.44
(if age unknown,	After 2006 – 2014	6.5	1.62
assume 2006-2014)	2015 on	7.0	1.74
Resistance	N/A	N/A	1.00
Unknown (for use in program evaluation only) ⁵¹⁶	N/A	N/A	1.32

For example, duct sealing in unconditioned space in a 36,000 Btu/H, 2.5 COP heat pump heated single family house in Springfield with the following duct evaluation results:

 DE_{after} = 0.92 DE_{before} = 0.85

Energy Savings:

 $\Delta kWh_{heating}$ = ((0.92 - 0.85)/0.92) * 1,708 * 36,000 * 1 * 1) / 2.5) / 3,412

= 549 kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh_{cooling}/ FLHcool * CF$

Where:

FLHcool = Full load cooling hours:

= Dependent on location as below:517

Climate Zone (City based upon)	FLHcool Single Family	FLHcool Multifamily
1 (Rockford)	547	499
2 (Chicago)	709	629
3 (Springfield)	779	707
4 (Belleville)	1,082	982

 $^{^{514}}$ Note that the HSPF2 of a heat pump is equal to the COP * 3.413.

⁵¹⁵ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time means that using the minimum standard is appropriate. Note all ratings have been converted to HSPF2 equivalents – since the new rating better reflects the actual efficiency of the units.

⁵¹⁶ Calculation assumes 35% Heat Pump and 65% Resistance, which is based upon data from Energy Information Administration, 2009 Residential Energy Consumption Survey, see "HC6.9 Space Heating in Midwest Region.xls", using average for East North Central Region. Average efficiency of heat pump is assumed consistent with the baseline for 2006-2014. Program or evaluation data should be used to improve this assumption if available.

⁵¹⁷ Based on Full Load Hours from ENERGY Star with adjustments made in a Navigant Evaluation, other cities were scaled using those results and CDD. There is a county mapping table in Volume 1, Section 3.7 providing the appropriate city to use for each county of Illinois. During update cycle for version v.12, applied percent change of CDD65, NCEI Annual Normals from 30 yr data set (1981-2010) to more recent 15 yr data (2006-2020) to all FLHcool values.

5 (Marion)	956	868
Weighted Average ⁵¹⁸ ComEd Ameren	676 875	603 791
Statewide	731	655

Use Multifamily if: Building meets utility's definition for multifamily and system serves single unit. For residential sized systems serving 2 or more units, assume single family hours. For central systems use Volume 2 Commercial and Industrial Measures.

CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C (during system peak hour)

= 68%⁵¹⁹

CF_{PJM} = PJM Summer Peak Coincidence Factor for Central A/C (average during peak period)

 $=46.6\%^{520}$

FOSSIL FUEL SAVINGS

For homes with Fossil Fuel Heating:

Methodology 1: Modified Blower Door Subtraction

Methodology 2: Pressurized Duct Test

ΔTherm = (((ΔCFM25_{DL} / (InputCapacityHeat * 0.0123)) * FLHheat * InputCapacityHeat * TRFheat

* %FossilHeat * (ηEquipment / ηSystem)) / 100,000

Where:

 Δ CFM25_{DL} = Duct leakage reduction in CFM25

InputCapacityHeat = Heating input capacity (Btu/hr)

=Actual

0.0123 = Conversion of Capacity to CFM $(0.0123CFM / Btu/hr)^{521}$

FLHheat = Full load heating hours

=Dependent on location as below:522

Climate Zone (City based upon)	FLH_heat
1 (Rockford)	1924
2 (Chicago)	1726

⁵¹⁸ Weighting for Ameren is based on electric accounts in each of the cooling zones. Weighting for ComEd and Statewide average is based on number of occupied residential housing units in each zone. ComEd is weighted average of Zones 1-2. Alternative program-weighted assumptions can be used if appropriate.

⁵¹⁹ Based on metering of 24 homes with central AC during PY4 and PY5 in Ameren Illinois service territory.

⁵²⁰ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

sased on Natural Draft Furnaces requiring 100 CFM per 10,000 Btu, Induced Draft Furnaces requiring 130CFM per 10,000Btu and Condensing Furnaces requiring 150 CFM per 10,000 Btu (rule of thumb from <u>'Practical Standards to Measure HVAC System Performance'</u>). Data provided by GAMA during the federal rule-making process for furnace efficiency standards, suggested that in 2000, 24% of furnaces purchased in Illinois were condensing units. Therefore, a weighted average required airflow rate is calculated assuming a 50:50 split of natural v induced draft non-condensing furnaces, as 123 per 10,000Btu or 0.0123/Btu. Fleating EFLH based on ENERGY Star EFLH for Rockford, Chicago, and Springfield and on NCDC/NOAA HDD for the other two cities. In all cases, the hours were adjusted based on average natural gas heating consumption in IL. During update cycle for version v.12, applied percent change of HDD60, NCEI Annual Normals from 30 yr data set (1981-2010) to more recent 15 yr data (2006-2020) to all FLHheat values.

Climate Zone (City based upon)	FLH_heat
3 (Springfield)	1708
4 (Belleville)	1195
5 (Marion)	1270
Weighted	
Average ⁵²³ ComEd Ameren Statewide	1766 1543 1700

TRFheat = Thermal Regain Factor for heating by space type

= 0.40 for Semi-Conditioned Spaces

= 1.0 for Unconditioned Spaces⁵²⁴

%FossilHeat = Percent of homes that have gas space heating

= 100 % for Natural Gas

= 0 % for Electric Resistance or Heat Pump

= If unknown⁵²⁵, use the following table:

	Location				
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown
Ameren	82%	74%	62%	61%	71%
ComEd	86%	78%	57%	52%	79%
PGL	98.9%	98.5%	96.0%	96.9%	97.7%
NSG	98.3%	99.2%	67.5%	98.8%	96.6%
Nicor	98.3%	99.2%	67.5%	98.8%	96.6%
All DUs ⁵²⁶					74%

Note: If a measure is supported by a gas and electric utility, utilize the assumptions above for the gas utility

100,000 = Converts Btu to therms

ηEquipment = Heating Equipment Efficiency

_

⁵²³ Weighting for Ameren is based on electric heat accounts in each of the heating zones. Weighting for ComEd and Statewide average is based on number of occupied residential housing units in each zone. ComEd is weighted average of Zones 1-2. Alternative program-weighted assumptions can be used if appropriate.

⁵²⁴ Thermal regain for residential pipe insulation measures is discussed in Home Energy Services Impact Evaluation, prepared for the Massachusetts Residential Retrofit and Low Income Program Area Evaluation, Cadmus Group, Inc., August 2012.

⁵²⁵ Based on the average % Natural Gas used for space heating in Unknown residential structure types across all utilities covered by the IL program. Residence types include: SF, SF LI, MF & MF LI. Utilities included: Ameren, ComEd, People's Gas, Northshore Gas & Nicor. Data provided from 2016 Ameren Illinois Demand Side Management (DSM) Market Potential Study by Applied Energy Group, ComEd's 2019 Baseline Survey on residential space heating share, and PY2022-2023 Implementation Contractors Data for People's Gas, Northshore Gas & Nicor .

⁵²⁶ For the weighted average calculations, please see the Analysis file. PGL, NSG, Nicor & gas customers were assumed to follow the provided split. ComEd total customers, minus overlap with PGL,NSG & Nicor, therefore gas only homes. Ameren is total customers minus Nicor.

= Actual.⁵²⁷ If not available, use 83%.⁵²⁸

ηSystem = Pre duct sealing Heating System Efficiency (Equipment Efficiency * Pre Distribution

Efficiency)529

= Actual. If not available, use 70%⁵³⁰

For example, duct sealing in unconditioned space in a house in Springfield with an 80% AFUE, 105,000 Btu/H (input capacity) natural gas furnace and the following blower door test results:

Before: CFM50_{Whole House} = 4800 CFM50

CFM50_{Envelope Only} = 4500CFM50

House to duct pressure of 45 Pascals = 1.29 SCF (Energy Conservatory look up table)

After: CFM50_{Whole House} = 4600 CFM50

CFM50_{Envelope Only} = 4500CFM50

House to duct pressure of 43 Pascals = 1.39 SCF (Energy Conservatory look up table)

Duct Leakage:

 $CFM50_{DL before} = (4800 - 4500) * 1.29$

= 387 CFM

 $CFM50_{DL after} = (4600 - 4500) * 1.39$

= 119 CFM

Duct Leakage reduction at CFM25:

 $\Delta CFM25_{DL}$ = (387 - 139) * 0.64 * (0.5 + 0.25)

= 119 CFM25

Energy Savings:

Pre Distribution Efficiency = 1 - (387/4800) = 92%nSystem = 80% * 92% = 74%

 Δ Therm = ((119/(105,000*0.0123))*1,708*105,000*1*(0.8/0.74))/100,000

= 179 therms

Methodology 3: Evaluation of Distribution Efficiency

ΔTherm = ((DE_{after} – DE_{before})/ DE_{after})) * FLHheat * InputCapacityHeat * TRFheat * %FossilHeat *

⁵²⁷ The Equipment Efficiency can be obtained either by recording the AFUE of the unit, or performing a steady state efficiency test.

If there are more than one heating systems, the weighted (by consumption) average efficiency should be used.

If the heating system or distribution is being upgraded within a package of measures together with the insulation upgrade, the new average heating system efficiency should be used.

⁵²⁸ This has been estimated assuming that natural gas central furnace heating is typical for Illinois residences (66% of Illinois homes have a Natural Gas Furnace (based on Energy Information Administration, 2009 Residential Energy Consumption Survey). In 2000, 24% of furnaces purchased in Illinois were condensing (based on data from GAMA, provided to Department of Energy during the federal standard setting process for residential heating equipment - see Furnace Penetration.xls). Furnaces tend to last up to 20 years and so units purchased 10 years ago provide a reasonable proxy for the current mix of furnaces in the State. Assuming typical efficiencies for condensing and non-condensing furnaces and duct losses, the average heating system efficiency is estimated as follows:

^{(0.24*0.92) + (0.76*0.8) = 0.829}

⁵²⁹ The Distribution Efficiency can be estimated via a visual inspection and by referring to a look up table such as that provided by the Building Performance Institute: (see 'DistributionEfficiencyTable-Blue Sheet') or by performing duct blaster testing.

⁵³⁰ Estimated as follows: 0.829 * (1-0.15) = 0.70

(nEquipment / nSystem)) / 100,000

Where:

DE_{after} = Distribution Efficiency after duct sealing, refer to table in electric savings section

DE_{before} = Distribution Efficiency before duct sealing, refer to table in electric savings section

Other factors as defined above.

For example, duct sealing in unconditioned space in a house in Springfield an 80% AFUE, 105,000 Btu/H (input capacity) natural gas furnace and the following duct evaluation results:

 $\begin{array}{ll} DE_{after} & = 0.92 \\ DE_{before} & = 0.85 \end{array}$

Energy Savings:

 η System = 80% * 85% = 68%

 Δ Therm = (((0.92 - 0.85)/0.92) * 1,708 * 105,000 * 1 * 1 * (0.8/0.68)) / 100,067

= 160 therm

Mid-Life Adjustment

In order to account for the likely replacement of existing heating and cooling equipment during the lifetime of this measure, a mid-life adjustment should be applied.

For electric HVAC, to calculate the adjustment, re-calculate the savings using the algorithms in the 'Electric Energy Savings' section using the following new baseline system efficiency assumptions:

Efficiency Assumption	System Type	New Baseline Efficiency
nCool	Central AC	13.4 SEER2
IICOOI	Heat Pump	14.3 SEER2
nlloot	Heat Pump	2.20 COP
ηHeat	(7.5/3.413)	2.20 COP

For gas fueled systems, because the algorithm uses input capacity (which already accounts for the equipment efficiency), the *change* in equipment efficiency needs to be accounted for. Therefore, re-calculate the savings using the following algorithm:

Methodology 1: Modified Blower Door Subtraction

Methodology 2: Pressurized Duct Test

 Δ Therms = ((Δ CFM25_{DL} / (InputCapacityHeat * 0.0123)) * FLHheat * InputCapacityHeat * TRFheat * %FossilHeat * (ηEquipment / (ηEquipment_{New} * DE_{after})) / 100,000

Where:

 η Equipment_{New} = 80% AFUE

DE_{after} = Distribution efficiency after duct sealing

= 1 - (CFM50_{DL} After / CFM50_{Whole House After})

Methodology 3: Evaluation of Distribution Efficiency

 Δ Therms = ((DE_{after} - DE_{before})/ DE_{after})) * FLHheat * InputCapacityHeat * TRFheat * %FossilHeat *

(ηEquipment / (ηEquipment_{New} * DE_{after})) / 100,000

Where:

 η Equipment_{New} = 80% AFUE

DE_{after} = Distribution efficiency after duct sealing

= As evaluated using the Building Performance Institutes 'Distribution Efficiency

Look-Up Table'

The re-calculated reduced annual savings should be applied following the assumed remaining useful life of the existing equipment, estimated to be 10 years.⁵³¹ Note: if the existing equipment efficiency is greater than the new baseline efficiency listed above, do not apply a mid-life adjustment.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-HVC-DINS-V13-250101

REVIEW DEADLINE: 1/1/2028

⁵³¹ This is intentionally longer than the assumption found in the early replacement measures as the application of this measure will occur in a variety of homes and will not be targeting those homes appropriate for early replacement HVAC systems.

5.3.5 Furnace Blower Motor

DESCRIPTION

This measure describes savings from a brushless permanent magnet (BPM) motor (known and referred in this measure as an electronically commutated motor (ECM)) compared to a lower efficiency motor. Time of Sale and New Construction replacement scenarios no longer apply to this measure, as federal standards make ECM blower fan motors a requirement for residential furnaces. Savings however are available from retrofitting an ECM motor into an existing furnace, or replacing an operational inefficient furnace with a new furnace with an ECM prior to the end of its life.

This measure characterizes the electric savings associated with the fan and the interactive negative therm savings due to a reduction in waste heat of the fan when operating in heating mode.

Savings decrease sharply with static pressure so duct improvements, and clean, low pressure drop filters can maximize savings. Savings occur when the blower is used for heating, cooling as well as when it is used for continuous ventilation, but only if the non-ECM motor would have been used for continuous ventilation too. If the resident runs the ECM blower continuously because it is a more efficient motor and would not run a non-ECM motor that way, savings are near zero and possibly negative. This characterization uses a 2016 Ameren Illinois study of ECM blower motors in Illinois, which accounted for the effects of this behavioral impact through surveyed results of impacted homeowners.

Retrofitting an existing blower motor with a new ECM reduces the potential impact of the high efficiency motor over a new system designed for an ECM blower motor because existing systems were not designed to capitalize and take advantage of the ECM's multi-staging features. Energy and demand savings are limited to the efficiency gains from the motor itself.

Note: as part of a Time of Sale measure, it is not appropriate to claim additional ECM fan savings due to installing a new furnace or CAC unit as ECM motors are now baseline for new furnaces and the SEER2/EER2 ratings of a CAC unit already account for this electrical load.

In an early replacement furnace situation, ECM fan heating savings can be claimed for the RUL of the existing furnace, and cooling savings can be claimed for the RUL of the CAC if an existing cooling unit is not replaced.

If a new CAC unit is installed in a home where the existing furnace is not replaced, heating ECM savings should only be claimed if it can be demonstrated that the new CAC motor will be used for the heating load.

This measure was developed to be applicable to the following program types: RF, EREP

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

A brushless permanent magnet (ECM) blower motor, also known by the trademark ECM, BLDC, and other names.

DEFINITION OF BASELINE EQUIPMENT

A non-ECM blower motor.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 6 years, which is the remaining life of existing furnaces. 533

⁵³² As part of the code of federal regulations, energy conservation standards for covered residential furnace fans become effective on July 3, 2019 (10 CFR 430.32(y)). The expectation is the baseline will essentially become an ECM motor.

⁵³³ While ECM blower motors have an effective useful life of 15 year (consistent with assumed life of a BPM/ECM motor, Appendix 8-E of the DOE Technical support documents for federal residential appliance standards) as this is a retrofit measure

DEEMED MEASURE COST

The capital cost for this measure as a retrofit should be actual if known; if unknown, assume \$350.⁵³⁴ In cases of furnace early replacements, it is assumed the incremental cost of the ECM is \$0.

LOADSHAPE

Loadshape R08 - Residential Cooling

Loadshape R09 - Residential Electric Space Heat

Loadshape R10 - Residential Electric Heating and Cooling

COINCIDENCE FACTOR

ECMs installed in high efficiency CACs and ASHPs do not generate peak demand cooling savings if demand savings are claimed for these systems. However, some savings are realized for fans operating in circulation mode, even during peak demand cooling periods. Circulation mode operation during peak cooling periods would only occur when a system is not operating in cooling mode, with the percent time in circulation mode calculated using the summer system peak and PJM peak coincidence factors. A metering study found 23% of fans operated continuously during the summer peak periods;⁵³⁵ therefore, ECMs do generate some demand savings during peak periods (when the system is not cooling). ECMs installed with CACs or ASHPs not receiving a rebate improve the cooling efficiency and therefore generate additional peak demand savings (when the system is cooling). Demand savings vary with system size and can be calculated using factors listed in the demand savings calculation table in the next section which incorporate coincidence with peak in their calculation.

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

ΔkWh = Capacity_cooling * kWhSavingsPerTon

Where:

Capacity cooling = Capacity of cooling system in tons

= Actual (1 ton = 12,000Btu/hr)

kWhSavingsPerTon = Blower fan kWh savings per ton of cooling⁵³⁶

The per-ton energy savings values vary by system installation scenario and location as provided below. Assumptions are also provided for installation with

no or unknown cooling system.

on an existing furnace blower motor, the remaining useful life of that equipment is used. For more detail, please see 5.3.7 Gas High Efficiency Furnace

⁵³⁴ The cost of a typical replacement motor is estimated at \$180 based on quotes from online suppliers, plus \$17 for the bracket. Typical labor costs are estimated at between \$140 and \$190 based on program experience provided by Staples in April 2022. A total retrofit measure cost is therefore estimated at \$350.

⁵³⁵ See Opinion Dynamics and Cadmus metering study of Ameren HVAC program participants; See 'AIC HVAC Metering Study Memo FINAL 2_28_2018'.

⁵³⁶ Tons of cooling was determined to be the most straightforward multiplier to apply to systems in which the BPM is installed. The basis of the values and for more information see Opinion Dynamics and Cadmus metering study of Ameren HVAC program participants; See 'AIC HVAC Metering Study Memo FINAL 2_28_2018'.

Region	Existing ASHP	Existing CAC	Furnace, No Cooling System*	Furnace, Cooling System unknown* ⁵³⁷
Rockford	247	229	210	223
Chicago	245	230	208	222
Springfield	249	231	203	221
Belleville	247	235	196	222
Marion	242	231	196	219
Average	247	230	206	222
	I		ı	

^{*}Multiply kWh saved value by 2 tons for furnaces <70 kBTU, by 3 tons for furnaces 70 kBTU – 90 kBTU and by 4 tons for furnaces 90+ kBTU.

For example, an BPM installed in an existing 3-ton, 16 SEER CAC in a home in Marion:

 Δ kWh = 3 * 231

= 693 kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

ΔkW = Capacity_cooling * kWSavingsPerTon

Where:

kWSavingsPerTon = Blower fan kW savings per ton of cooling⁵³⁸

The per-ton energy savings values vary by system installation scenario and location as provided below. Assumptions are also provided for installation with no or unknown cooling system.

Demand Savings Type	Existing ASHP	Existing CAC	Furnace, No Cooling System*	Furnace, Cooling System unknown* ⁵³⁹
SSP	0.085	0.085	0.013	0.065
PJM	0.064	0.064	0.009	0.048
*Multiply k\	*Multiply kWh sayed value by 2 tons for furnaces < 70 kBTIL by 3 tons for			

^{*}Multiply kWh saved value by 2 tons for furnaces <70 kBTU, by 3 tons for furnaces 70 kBTU – 90 kBTU and by 4 tons for furnaces 90+ kBTU.

⁵³⁷ Unknown cooling system values are based on a weight of 66% existing CAC and 34% no cooling factors. Based on 66% of homes in Illinois having central cooling ("Table HC7.9 Air Conditioning in Homes in Midwest Region, Divisions, and States, 2009 from Energy Information Administration", 2009 Residential Energy Consumption Survey)

⁵³⁸ Tons of cooling was determined to be the most straightforward multiplier to apply to systems in which the BPM is installed. The basis of the values and for more information see Opinion Dynamics and Cadmus metering study of Ameren HVAC program participants; See 'AIC HVAC Metering Study Memo FINAL 2_28_2018'.

⁵³⁹ Unknown cooling system values are based on a weight of 66% existing CAC and 34% no cooling factors. Based on 66% of homes in Illinois having central cooling ("Table HC7.9 Air Conditioning in Homes in Midwest Region, Divisions, and States, 2009 from Energy Information Administration", 2009 Residential Energy Consumption Survey)

For example, a BPM installed in an existing 3-ton, 16 SEER CAC receiving a rebate in a home in Marion:

 $\Delta kW_{ssp} = 3 * 0.0085$

= 0.0255 kW

 $\Delta kW_{pjm} = 3 * 0.064$

= 0.192 kW

FOSSIL FUEL SAVINGS

Δtherms⁵⁴⁰ = - HeatingkWhSavings * 0.03412/ AFUE

Where:

HeatingkWhSavings = Heating kWh savings per ton of cooling⁵⁴¹

Use the location-specific values in the following table to determine heating savings based on the size of the cooling system. If cooling size is unknown, assume 2 tons for furnaces <70 kBTU, 3 tons for furnaces 70 kBTU, and 4 tons for furnaces 90+ kBTU. If heating size is unknown or if the system does not include cooling, assume a 3-ton system.

Region	Heating Savings (kWh per ton of cooling)
Rockford	61
Chicago	59
Springfield	50
Belleville	39
Marion	39
Average	56

0.03412 = Converts kWh to therms

AFUE = Efficiency of the Furnace

= Actual. If unknown, assume 64.4 AFUE% for the existing furnace. 542

For example, an ECM installed in an existing 3-ton CAC and 95% AFUE furnace in a home in Marion:

 Δ therms = (-39 kWh * 3 tons * 0.03412) / 0.95

 Δ therms = -4.2 therms

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

⁵⁴⁰ The blower fan is in the heating duct so all, or very nearly all, of its waste heat is delivered to the conditioned space. Negative value since this measure will increase the heating load due to reduced waste heat.

⁵⁴¹ Tons of cooling was determined to be the most straightforward multiplier to apply to systems in which the BPM is installed. The basis of the values and for more information see Opinion Dynamics and Cadmus metering study of Ameren HVAC program participants; See 'AIC HVAC Metering Study Memo FINAL 2_28_2018'.

⁵⁴² Average nameplate efficiencies of all Early Replacement qualifying equipment in Ameren PY3-PY4.

MEASURE CODE: RS-HVC-FBMT-V09-240101

REVIEW DEADLINE: 1/1/2028

5.3.6 Gas High Efficiency Boiler

DESCRIPTION

High efficiency boilers achieve most gas savings through the utilization of a sealed combustion chamber and multiple heat exchangers that remove a significant portion of the waste heat from flue gasses. Because multiple heat exchangers are used to remove waste heat from the escaping flue gasses, some of the flue gasses condense and must be drained.

This measure characterizes:

- a) Time of Sale:
 - a. The installation of a new high efficiency, gas-fired hot water boiler in a residential location meeting efficiency specifications determined by the program. This could relate to the replacement of an existing unit at the end of its useful life, or the installation of a new system in a new home.
- b) Early Replacement:

Early Replacement determination will be based on meeting the following conditions:

- The existing unit is operational when replaced, or
- The existing unit requires minor repairs (<\$709).⁵⁴³
- All other conditions will be considered Time of Sale.

The Baseline AFUE of the existing unit replaced:

- If the AFUE of the existing unit is known the Baseline AFUE is the actual AFUE value of the unit replaced.
- If the AFUE of the existing unit is unknown, use assumptions in variable list below (AFUE_{Exist}).
- If the operational status or repair cost of the existing unit is unknown, use time of sale assumptions.

A weighted average early replacement rate is provided for use in programs when the actual baseline early replacement rates are unknown.⁵⁴⁴

Deemed Early Replacement Rates for Boilers

	Deemed Early Replacement Rate
Early Replacement Rate for Boiler participants	7%

This measure was developed to be applicable to the following program types: TOS, NC, EREP. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the installed Boiler must meet the requirements determined by the program. For reference the ENERGY STAR specification is an AFUE rated at or greater than 90% and input capacity less than

⁵⁴³ The Technical Advisory Committee agreed that if the cost of repair is less than 20% of the new baseline replacement cost it can be considered early replacement. Note the non-inflated cost is used as this would be a cost consideration in the program year.

⁵⁴⁴ Based upon research from "Home Energy Efficiency Rebate Program GPY2 Evaluation Report" which outlines early replacement rates for both primary and secondary central air cooling (CAC) and residential furnaces. This is used as a reasonable proxy for boiler installations since boiler specific data is not available. Report presented to Nicor Gas Company February 27, 2014.

300,000 Btu/hr.545

DEFINITION OF BASELINE EQUIPMENT

Time of sale: The baseline equipment for this measure is a new, gas-fired, standard-efficiency water boiler. The baseline AFUE is assumed to be 84% and is based on minimum federal appliance standards for boilers manufactured on or after January 15, 2021. 546

Early replacement: The baseline for this measure is the efficiency of the existing equipment for the assumed remaining useful life of the unit and the new baseline as defined above for the remainder of the measure life. Consistent with TRM Volume 1 Section 2.3.1 for midstream programs or other cases where the existing condition is unknown, it may be appropriate to apply a deemed percent split of Time of Sale and Early Replacement assumptions based on evaluation results

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 25 years.⁵⁴⁷

Early replacement: Remaining life of existing equipment is assumed to be 8 years. 548

DEEMED MEASURE COST

Time of sale: The incremental install cost for this measure is dependent on tier:549

	Installation Cost	Incremental Install Cost	
Baseline	\$5,001	n/a	
AFUE 90% (ENERGY STAR	¢r 7r0	¢740	
Minimum)	\$5,750	\$749	
AFUE 95%	\$6,073	\$1,072	

Early Replacement: The full installation cost is provided in the table above. The assumed deferred cost (after 8 years) of replacing existing equipment with a new baseline unit is assumed to be \$4,627. This cost should be discounted to present value using the nominal discount rate.

LOADSHAPE

N/A

COINCIDENCE FACTOR

N/A

⁵⁴⁵ ENERGY STAR Program Requirements, Product Specifications for Boilers, version 3.0, effective October 1, 2014 (≥ 90% AFUE for gas-fired and ≥ 87% AFUE for oil-fired)

⁵⁴⁶ Code of Federal Regulations, effective January 15, 2021 (10 CFR 432(e)(3)).

⁵⁴⁷ Appendix 8-F of the Department of Energy Commercial Technical Support Document, Table 8.3.3, federal residential appliance standards.

⁵⁴⁸ Assumed to be one third of effective useful life

⁵⁴⁹ Based on data provided in Technical Support Document: Consumer Boilers. EERE-2014-BT-STD-0036-0021. Department of Energy. April 2022. The total installed cost quoted by DOE was increased by 15% to account for DOE's assumption of an ideal future market (projected from 2022 to 2030) in their development of their technical support documentation. This was an engineering judgment made to better represent real world costs.

⁵⁵⁰ \$4,053 inflated using 1.91% rate.

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

N/A

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

FOSSIL FUEL SAVINGS

Time of Sale:

ΔTherms = (EFLH * CAP_{Input} * (AFUE_{Eff} / AFUE_{Base} -1)) / 100,000

Early replacement:551

ΔTherms for remaining life of existing unit (1st 8 years):

= (EFLH * CAPInput * (AFUE_{Eff} / AFUE_{Exist} -1)) / 100,000

ΔTherms for remaining measure life (next 17 years):

= (EFLH * CAPInput * (AFUE_{Eff} / AFUE_{Base} -1)) / 100,000

Where:

CAP_{Input} = Gas Boiler input capacity (Btuh)

= Actual

EFLH = Equivalent Full Load Hours for gas heating

Climate Zone (City based upon)	EFLH ⁵⁵²
1 (Rockford)	1022
2 (Chicago)	976
3 (Springfield)	836
4 (Belleville)	645
5 (Marion)	656
Weighted Average ⁵⁵³	
ComEd	978
Ameren	800
Statewide	928

AFUE_{Exist} = Existing Boiler Annual Fuel Utilization Efficiency Rating

⁵⁵¹ The two equations are provided to show how savings are determined during the initial phase of the measure (existing to efficient) and the remaining phase (new baseline to efficient). In practice, the screening tools used may either require a First Year savings (using the first equation) and then a "number of years to adjustment" and "savings adjustment" input which would be the (new base to efficient savings)/(existing to efficient savings).

⁵⁵² Full load hours for Chicago, are based on findings in 'Energy Efficiency / Demand Response Nicor Gas Plan Year 1 (6/1/2011-5/31/2012) Research Report: Furnace Metering Study (August 1, 2013), prepared by Navigant Consulting, Inc. Values for other cities are then calculated by comparing relative HDD at base 60F.

⁵⁵³ Weighting for Ameren is based on gas accounts in each of the heating zones. Weighting for ComEd and Statewide average is based on number of occupied residential housing units in each zone. ComEd is weighted average of Zones 1-2. Alternative program-weighted assumptions can be used if appropriate.

= Use actual AFUE rating where it is possible to measure or reasonably estimate. If using rated efficiencies, derate efficiency value by 1% per year (maximum of 30 years) to account for degradation over time, 554 or if unknown, assume 61.6 AFUE%. 555 If unknown

value is used, it should not be derated by age.

AFUE_{Base} = Baseline Boiler Annual Fuel Utilization Efficiency Rating

= 84% if implemented in 2022 and beyond

AFUE_{Eff} = Efficent Boiler Annual Fuel Utilization Efficiency Rating

= Actual. If unknown, use defaults dependent on tier as listed below: 556

Measure Type	AFUE(eff)
ENERGY STAR®	90%
AFUE 90%	92.5%
AFUE 95%	95%

Time of Sale:

For example, a 100,000 Btu/h, 90% AFUE ENERGY STAR boiler purchased and installed near Springfield in 2022:

$$\Delta$$
Therms = $(836 * 100,000 * (0.90/0.84 - 1)) / 100,000$

= 59.7 Therms

Early Replacement:

For example, an existing function boiler with unknown efficiency is replaced with a 100,000 Btu/h, 90% AFUE ENERGY STAR boiler purchased and installed in Springfield in 2022:

ΔTherms for remaining life of existing unit (1st 8 years):

= 385.4 Therms

ΔTherms for remaining measure life (next 17 years):

= 59.7 Therms

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-HVC-GHEB-V12-250101

REVIEW DEADLINE: 1/1/2026

⁵⁵⁴ Justification for degradation factors can be found on page 14 of 'AIC HVAC Metering Study Memo FINAL 2 28 2018'. Estimate efficiency as (Rated Efficiency * (1-0.01)^Equipment Age).

⁵⁵⁵ Average nameplate efficiencies of all Early Replacement qualifying equipment in Ameren PY3-PY4.

⁵⁵⁶ Default values per tier selected based upon the average AFUE value for the tier range except for the top tier where the minimum is used due to proximity to the maximum possible.

5.3.7 Gas High Efficiency Furnace

DESCRIPTION

High efficiency furnace features may include improved heat exchangers and modulating multi-stage burners.

This measure characterizes:

a) Time of sale:

a. The installation of a new high efficiency, gas-fired condensing furnace in a residential location meeting efficiency specifications determined by the program. This could relate to the replacement of an existing unit at the end of its useful life, or the installation of a new system in a new home.

b) Early Replacement:

Early Replacement determination will be based on meeting the following conditions:

- The existing unit is operational when replaced, or
- The existing unit requires minor repairs (<\$528).⁵⁵⁷
- All other conditions will be considered Time of Sale.

The Baseline AFUE of the existing unit replaced:

- If the AFUE of the existing unit is known, the Baseline AFUE is the actual AFUE value of the unit replaced.
- If the AFUE of the existing unit is unknown, use assumptions in variable list below (AFUE(exist)).
- If the operational status or repair cost of the existing unit is unknown, use time of sale assumptions.

A weighted average early replacement rate is provided for use in programs when the actual baseline early replacement rate is unknown.⁵⁵⁸

Deemed Early Replacement Rates For Furnaces

Replacement Scenario for the Furnace	Deemed Early Replacement Rate
Early Replacement Rate for Furnace-only participants	7%
Early Replacement Rate for a furnace participant when the furnace is the Primary unit in a Combined System Replacement (CSR) project	14%
Early Replacement Rate for a furnace participant when the furnace is the Secondary unit in a CSR project	46%

Verified Quality Installation

This approach uses in-field measurement and interpretation of static pressures, identification and plotting of airflow, airflow measurement, temperature measurement and diagnostics, pressure measurements and duct design, and BTU measurement to ensure that newly installed equipment is operating according to manufacturers' published potential performance. Installed equipment operating efficiency is largely dependent on the efficiency rating of the

_

⁵⁵⁷ The Technical Advisory Committee agreed that if the cost of repair is less than 20% of the new baseline replacement cost it can be considered early replacement. Note the non-inflated cost is used as this would be a cost consideration in the program year.

sist Based upon research from "Home Energy Efficiency Rebate Program GPY2 Evaluation Report" which outlines early replacement rates for both primary and secondary central air cooling (CAC) and residential furnaces. The unit (furnace or CAC unit) that initially caused the customer to contact a trade ally is defined as the "primary unit". The furnace or CAC unit that was also replaced but did not initially prompt the customer to contact a trade ally is defined as the "secondary unit". This evaluation used different criteria for early replacement due to the availability of data after the fact; cost of any repairs < \$550 and age of unit < 20 years. Report presented to Nicor Gas Company February 27, 2014.

equipment, the skill of the installation contractor, the degree to which the equipment has aged or drifted from initial settings, and the system level constraints. When one or more of these key dependencies are operating suboptimally, the overall efficiency of the equipment is degraded. A Verified Quality Install identifies sub-optimal performance and prescribes a solution during furnace installation.

This measure was developed to be applicable to the following program types: TOS, NC, EREP. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the installed equipment must be a residential sized (input energy less than 225,000 Btu/hr) natural gas fired furnace with an Annual Fuel Utilization Efficiency (AFUE) rating exceeding the program requirements. For reference the ENERGY STAR specification is an AFUE rated at or greater than 95% with an ECM motor and input capacity less than 225,000 Btu/hr.⁵⁵⁹

DEFINITION OF BASELINE EQUIPMENT

Time of Sale: The current Federal Standard for gas furnaces is an AFUE rating of 80%. The baseline will be adjusted when the Federal Standard is updated.

Early replacement: The baseline for this measure is the efficiency of the existing equipment for the assumed remaining useful life of the unit and a new baseline 80% AFUE unit for the remainder of the measure life. Consistent with TRM Volume 1 Section 2.3.1 for midstream programs or other cases where the existing condition is unknown, it may be appropriate to apply a deemed percent split of Time of Sale and Early Replacement assumptions based on evaluation results.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 20 years. 560

For early replacement: Remaining life of existing equipment is assumed to be 6 years. 561

DEEMED MEASURE COST

Time of sale: The incremental installed cost (retail equipment cost plus installation cost) for this measure depends on efficiency as listed below:562

AFUE	Installed Cost	Incremental Installed Cost
80%	\$3807	n/a
90%	\$4332	\$526
91%	\$4338	\$531
92%	\$4345	\$538
93%	\$4346	\$540
94%	\$4351	\$544
95%	\$4354	\$547
96%	\$4422	\$615
97%	\$4490	\$683
98%	\$4557	\$751

⁵⁵⁹ ENERGY STAR Program Requirements, Product Specifications for Furnaces, version 4.1, effective February 1, 2013.

⁵⁶⁰ Table 8.3.3 The Technical support documents for federal residential appliance standards.

⁵⁶¹ Assumed to be one third of effective useful life

⁵⁶² Based on data from Technical Support Document: Consumer Furnaces. EERE-2014-BT-STD-0031-0320. Department of Energy. June 2022. The total installed cost quoted by DOE was increased by 15% to account for DOE's assumption of an ideal future market (projected from 2022 to 2029) in their development of their technical support documentation. This was an engineering judgment made to better represent real world costs.

Early Replacement: Actual install costs should be used if available. The deemed full installed cost is provided in the table above. The assumed deferred cost (after 6 years) of replacing existing equipment with a new 80% baseline unit is assumed to be \$2296.⁵⁶³ This cost should be discounted to present value using the nominal discount rate. For furnaces installed in mobile homes, add an extra \$750 to both the full install cost and the deferred baseline cost to account for increased equipment and labor costs associated with this install.⁵⁶⁴

Verified Quality Installation: The additional design and installation work associated with verified quality installation has been estimated to take 1-2 hours (Tim Hanes, ESI). At \$40/hr, VQI adds \$60 to the installed cost.

LOADSHAPE

N/A

COINCIDENCE FACTOR

N/A

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Electrical energy savings from the more fan-efficient (typically using brushless permanent magnet (BPM) blower motor) should also be claimed, please refer to "Furnace Blower Motor" characterization for details.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

If the blower motor is also used for cooling, coincident peak demand savings should also be claimed, please refer to "Furnace Blower Motor" characterization for savings details.

FOSSIL FUEL SAVINGS

Time of Sale:

$$\Delta Therms = \frac{\frac{EFLH*CAPInput}{\left(1 - Derating_{eff}\right)}*\left(\frac{AFUE(eff)*\left(1 - Derating(eff)\right)}{AFUE(base)*\left(1 - Derating(base)\right)}-1\right)}{100.000}$$

Early replacement:565

ΔTherms for remaining life of existing unit (1st 6 years):

$$= \frac{\underbrace{EFLH * CAPInput}_{(1-Derating_{eff})} * \left(\underbrace{\frac{AFUE(eff) * (1-Derating(eff))}{AFUE(exist) * (1-Derating(base))} - 1 \right)}_{100,000}$$

ΔTherms for remaining measure life (next 14 years):

$$= \frac{\frac{EFLH*CAPInput}{(1-Derating_{eff})}*\left(\frac{AFUE(eff)*(1-Derating(eff))}{AFUE(base)*(1-Derating(base))}-1\right)}{100,000}$$

Where:

⁵⁶³ \$2641 inflated using 1.91% rate.

⁵⁶⁴ Based on cost review and data provided by Future Energy Enterprises, 5/2022.

⁵⁶⁵ The two equations are provided to show how savings are determined during the initial phase of the measure (existing to efficient) and the remaining phase (new baseline to efficient). In practice, the screening tools used may either require a First Year savings (using the first equation) and then a "number of years to adjustment" and "savings adjustment" input which would be the (new base to efficient savings)/(existing to efficient savings).

CAPInput

- = Gas Furnace input capacity (Btuh)
- = Actual. If unknown, use the table below:

Eligibility Tier	Input Capacity ⁵⁶⁶
AFUE ≥ 95 (all furnaces, no tiers)	84,305
AFUE ≥ 95 and < 97 tier	84,000
AFUE ≥ 97 tier	87,796

EFLH

= Equivalent Full Load Hours for gas heating

Climate Zone (City based upon)	EFLH ⁵⁶⁷	
1 (Rockford)	1022	
2 (Chicago)	976	
3 (Springfield)	836	
4 (Belleville)	645	
5 (Marion)	656	
Weighted Average ⁵⁶⁸		
ComEd	978	
Ameren	800	
Statewide	928	

AFUE(exist)

- = Existing Furnace Annual Fuel Utilization Efficiency Rating
- = Use actual AFUE rating where it is possible to measure or reasonably estimate. If using rated efficiencies, derate efficiency value by 1% per year (maximum of 30 years) to account for degradation over time, ⁵⁶⁹ or if unknown, assume 64.4 AFUE%. ⁵⁷⁰ If unknown value is used, it should not be derated by age.

AFUE(base)

- = Baseline Furnace Annual Fuel Utilization Efficiency Rating
- $= 80\%^{571}$

AFUE(eff)

- = Efficent Furnace Annual Fuel Utilization Efficiency Rating
- = Actual. If unknown, , use the table below:

Eligibility Tier	AFUE (eff) ⁵⁷²
AFUE ≥ 95 (all furnaces, no tiers)	96.0%

⁵⁶⁶ Average Input Capacity for Northern Illinois, based on analysis of Nicor Gas 2019 Home Energy Efficiency Rebate Program participant tracking data, prepared by Guidehouse, Inc., based on 12,549 furnaces rebated at the 95 AFUE Tier, and 1,103 furnaces rebated at the 97 AFUE Tier. Approximately 10% of tracked input capacities were adjusted by Guidehouse based on verification of manufacturer model numbers. Values for Southern Illinois not available.

⁵⁶⁷ Full load hours for Chicago, are based on findings in 'Energy Efficiency / Demand Response Nicor Gas Plan Year 1 (6/1/2011-5/31/2012) Research Report: Furnace Metering Study (August 1, 2013), prepared by Navigant Consulting, Inc. Values for other cities are then calculated by comparing relative HDD at base 60F.

⁵⁶⁸ Weighting for Ameren is based on gas accounts in each of the heating zones. Weighting for ComEd and Statewide average is based on number of occupied residential housing units in each zone. ComEd is weighted average of Zones 1-2. Alternative program-weighted assumptions can be used if appropriate.

⁵⁶⁹ Justification for degradation factors can be found on page 14 of 'AIC HVAC Metering Study Memo FINAL 2_28_2018'. Estimate efficiency as (Rated Efficiency * (1-0.01)^Equipment Age).

⁵⁷⁰ Average nameplate efficiencies of all Early Replacement qualifying equipment in Ameren PY3-PY4.

⁵⁷¹ Code of Federal Regulations, effective November, 2015 (10 CFR 432(e)).

⁵⁷² Average AFUE based on analysis of Nicor Gas 2019 Home Energy Efficiency Rebate Program participant tracking data,

Eligibility Tier	AFUE (eff) ⁵⁷²
AFUE ≥ 95 and < 97 tier	95.9%
AFUE ≥ 97 tier	97.5%

Derating(base)

=Baseline furnace AFUE derating

 $=6.4\%^{573}$

Derating(eff)

=Efficent furnace AFUE derating

=0% if verified quality installation is performed

=6.4% if verified quality installation is not performed or unknown⁵⁷⁴

Time of Sale:

For example, a 95% AFUE, 80,000Btuh furnace purchased and installed with verified quality installation for an existing home near Rockford:

ΔTherms = ((1022 * 80,000)/(1-0) * (((0.95 * (1-0)) / (0.8 * (1-0.064))) - 1)) / 100000

= 220 therms

For example, a 95% AFUE, 80,000 Btuh furnace purchased and installed without verified quality installation for an existing home near Rockford:

ΔTherms = ((1022 * 80,000)/(1-0.064) * (((0.95 * (1-0.064)) / (0.8 * (1-0.064))) - 1)) / 100000

=164 therms

Early Replacement:

For example, an existing functioning furnace with unknown efficiency is replaced with an 95% AFUE, 80,000 Btuh furnace using quality installation in Rockford:

ΔTherms for remaining life of existing unit (1st 6 years):

= ((1022 * 80,000)/(1-0) * (((0.95 * (1-0)) / (0.644 * (1-0.064))) - 1)) / 100000

= 471 therms

ΔTherms for remaining measure life (next 14 years):

= ((1022 * 80,000)/(1-0) * (((0.95 * (1-0)) / (0.8 * (1-0.064))) - 1)) / 100000

= 220 therms

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-HVC-GHEF-V14-250101

REVIEW DEADLINE: 1/1/2027

prepared by Guidehouse, Inc., based on 12,549 furnaces rebated at the 95 AFUE Tier, and 1,103 furnaces rebated at the 97 AFUE Tier.

⁵⁷³ Brand, L., Yee, S., and Baker, J. "Improving Gas Furnace Performance: A Field and Laboratory Study at End of Life." Building Technologies Office. National Renewable Energy Laboratory. 2015 accessed September 6th, 2016. 574 Ibid

5.3.8 Ground Source Heat Pump

DESCRIPTION

This measure characterizes the installation of a Ground Source Heat Pump under the following scenarios:

- a) New Construction:
 - The installation of a new residential sized Ground Source Heat Pump system meeting minimum efficiency standards determined by the program in a new home.
 - Note the baseline in this case should be determined via EM&V and the algorithms are provided to allow savings to be calculated from any baseline condition.

b) Time of Sale:

- The planned installation of a new residential sized Ground Source Heat Pump system meeting minimum efficiency standards determined by the program to replace an existing system(s) that does not meet the criteria for early replacement described in section c below.
- ii. Note the baseline in this case is an equivalent replacement system to that which exists currently in the home. Where unknown, the baseline should be determined via EM&V and the algorithms are provided to allow savings to be calculated from any baseline condition. The calculation of savings is dependent on whether an incentive for the installation has been provided by both a gas and electric utility, just an electric utility or just a gas utility.
- iii. Additional DHW savings are calculated based upon the fuel and efficiency of the existing unit.
- c) Early Replacement/Retrofit:
 - The early removal of functioning components of the electric or gas space heating and/or cooling systems from service, prior to the natural end of life, and replacement with a new high efficiency Ground Source Heat Pump system.
 - Note the baseline in this case is the existing equipment being replaced. The calculation of savings is dependent on whether an incentive for the installation has been provided by both a gas and electric utility, just an electric utility or just a gas utility.
 - Additional DHW savings are calculated based upon the fuel and efficiency of the existing unit. iii.
 - iv. Early Replacement determination will be based on meeting the following conditions:
 - The existing unit is operational when replaced, or
 - The existing unit requires minor repairs, defined as costing less than:⁵⁷⁵

Existing System	Maximum repair cost	
Air Source Heat Pump	\$276 per ton	
Central Air Conditioner	\$190 per ton	
Boiler	\$709	
Furnace	\$528	
Ground Source Heat Pump	<\$249 per ton	

- All other conditions will be considered Time of Sale.
- The Baseline efficiency of the existing unit replaced: ٧.
 - Is the actual efficiency value of the unit replaced if known.
 - If the efficiency of the existing unit is unknown, use assumptions in variable list below (SEER2, HSPF2 or AFUE exist).
 - If the operational status or repair cost of the existing unit is unknown use time of sale

⁵⁷⁵ The Technical Advisory Committee agreed that if the cost of repair is less than 20% of the new baseline replacement cost it can be considered early replacement.

assumptions.

This measure was developed to be applicable to the following program types: TOS, NC, EREP. If applied to other program types, the measure savings should be verified.

For ground source heat pump central systems in multifamily buildings, use Volume 2 Commercial and Industrial Measures.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the efficient equipment must be a Ground Source Heat Pump unit meeting the minimum efficiency level standards determined by the program effective at the time of installation. For reference, the current ENERGY STAR specifications are detailed below:

ENERGY STAR Requirements (Effective January 1, 2012)

Product Type	Cooling	Heating		
, , , , , , , , , , , , , , , , , , ,	EER	СОР		
Water-to	Water-to-air			
Closed Loop	17.1	3.6		
Open Loop	21.1	4.1		
Water-to-Water				
Closed Loop	16.1	3.1		
Open Loop	20.1	3.5		
DGX				
DGX-to-Air	16	3.6		
DGX-to-Water	15	3.1		

The following conversion factors are recommended for use if the efficient equipment is not rated under the new testing procedure:⁵⁷⁶

SEER2 = SEER * X

EER2 = EER2 * X

HSPF2 = HSPF2 * X

Where:

x	SEER	EER	HSPF
Ducted	0.95	0.95	0.85

DEFINITION OF BASELINE EQUIPMENT

For these products, baseline equipment includes Air Conditioning, Space Heating and Water Heating.

New Construction:

To calculate savings with an electric baseline, the baseline equipment is assumed to be an Air Source Heat Pump meeting the Federal Standard efficiency level and a Federal Standard electric hot water heater. The Federal Standard efficiency levels for an Air Source Heat Pump are as follows⁵⁷⁷:

⁵⁷⁶ Consortium for Energy Efficiency (CEE), Testing, Testing, M1, 2, 3, Transitioning to New Federal Minimum Standards, CEE Summer Program Meeting, June 10, 2022.

⁵⁷⁷ The 2023 federal standards (10 CFR 430.32(c)(5)) are in terms of an updated metric, depicted as SEER2 and HSPF2 and manufacturers must certify their products meet the standard according to the new test procedure and new metrics. The updated

- Split system heat pump 14.3 SEER2, 9.4 EER2 and 7.5 HSPF2
- Single-package heat pump 13.4 SEER2, 8.5 EER2 and 6.7 HSPF2

To calculate savings with a furnace/central AC baseline, the baseline equipment is assumed to be an 80% AFUE Furnace and central AC meeting the Federal Standard efficiency level; $13.4 \, \text{SER2}$, $10.6 \, \text{EER2}^{578}$. If a gas water heater, the Federal Standard baseline is calculated as follows; 0.6483 - (0.0017 * storage capacity in gallons) for tanks<=55 gallons and $0.7897 - (0.0004 \times \text{storage capacity in gallons})$ for greater than 55 gallon storage water heaters. For a 40-gallon storage water heater this would be $0.58 \, \text{EF}$.

Time of Sale: The baseline for this measure is a new replacement unit of the same system type as the existing unit, meeting the baselines provided below.

Unit Type	Efficiency Standard	
ASHP	14.3 SEER2 9.4 EER2, 7.5 HSPF2	
Natural Gas or LP Furnace	80% AFUE	
Natural Gas or LP Boiler	84% AFUE	
Oil Furnace	83% AFUE	
Oil Boiler	86% AFUE	
Central AC	13.4 SEER2, 10.6 EER2	

Early replacement / Retrofit: The baseline for this measure is the efficiency of the *existing* heating, cooling and hot water equipment for the assumed remaining useful life of the existing unit and a new baseline heating and cooling system for the remainder of the measure life (as provided in table above).

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 25 years. 580

For early replacement, the remaining life of existing equipment is assumed to be 6 years for ASHP and Central AC, 7 years for furnace, 8 years for boilers and GSHP⁵⁸¹ and 25 years for electric resistance.⁵⁸²

DEEMED MEASURE COST

New Construction and Time of Sale: The actual installed cost of the Ground Source Heat Pump (including any necessary electrical or distribution upgrades required) should be used (default of \$3957 per ton),⁵⁸³ minus the assumed installation cost of the baseline equipment (\$6562 + \$600 per ton for ASHP⁵⁸⁴ or \$2011 for a new baseline

test method as well as the updated energy conservation standards were negotiated under the appliance standards and rulemaking federal advisory committee (ASRAC) in accordance with the Federal Advisory Committee Act (FACA) and the negotiated rulemaking act. An equivalent stringency of these new standards for split system heat pumps are 15 SEER and 8.8 HSPF and for single-package heat pumps are 14 SEER and 8 HSPF, as detailed in: Federal Code of Regulations, Energy Conservation Program: Energy Conservations Standards for residential Central Air Conditioners and Heat Pumps; Confirmation of effective date compliance date for direct final rule, May 26, 2017, Docket: EERE-2014-BT-STD-0048 (https://www.regulations.gov/document/EERE-2014-BT-STD-0048-0200)

⁵⁷⁸ The Federal Standard does not include an EER requirement. The value provided is based on Opinion Dynamics and Cadmus metering study of Ameren HVAC program participants; See 'AIC HVAC Metering Study Memo FINAL 2_28_2018'.

⁵⁷⁹ Minimum Federal standard as of 4/16/2015.

⁵⁸⁰ System life of indoor components as per DOE estimate (see 'Geothermal Heat Pumps Department of Energy'). The ground loop has a much longer life, but the compressor and other mechanical components are the same as an ASHP.

⁵⁸¹ Assumed to be one third of effective useful life of replaced equipment.

⁵⁸² Assume full measure life (16 years) for replacing electric resistance as we would not expect that resistance heat would fail during the lifetime of the efficient measure.

⁵⁸³ Based on data provided in 'Results of HomE geothermal and air source heat pump rebate incentives documented by IL electric cooperatives'.

⁵⁸⁴ Full install ASHP costs are based upon data provided by Ameren. See 'ASHP Costs_06242022'.

80% AFUE furnace, or \$4053 for a new 84% AFUE boiler,⁵⁸⁵ and \$952 per ton for new baseline Central AC replacement ⁵⁸⁶).

Early Replacement: The actual full installation cost of the Ground Source Heat Pump should be used (including any necessary electrical or distribution upgrades required). If the install cost is unknown a default is provided above, however because these assumptions do not include any additional costs that may be required for fuel switch scenarios, these defaults should not be used and actual costs should always be used for fuel switch measures.

The assumed deferred cost (after 8 years) of replacing existing equipment with a new baseline unit is assumed to be \$7,527 + \$688 per ton for a new baseline Air Source Heat Pump, or \$2,296 for a new baseline 80% AFUE furnace, or \$4,627 for a new 84% AFUE boiler, and \$1,047 per ton for new baseline Central AC replacement. This future cost should be discounted to present value using the nominal societal discount rate.

LOADSHAPE

Loadshape R10 - Residential Electric Heating and Cooling

Loadshape R09 - Residential Electric Space Heat

Loadshape R10 - Residential Electric Heating and Cooling

Loadshape R10 - Residential Electric Heating and Cooling

(if replacing as heat and central AC)⁵⁸⁸

(if replacing electric heat with no cooling)

Note for purpose of cost effectiveness screening a fuel switch scenario, the heating kWh increase and cooling kWh decrease should be calculated separately such that the appropriate loadshape (i.e., Loadshape RO9 - Residential Electric Space Heat and Loadshape RO8 – Residential Cooling respectively) can be applied.

COINCIDENCE FACTOR

The summer peak coincidence factor for cooling is provided in two different ways below. The first is used to estimate peak savings during the utility peak hour and is most indicative of actual peak benefits, and the second represents the *average* savings over the defined summer peak period and is presented so that savings can be bid into PJM's capacity market.

```
CF<sub>SSP</sub> = Summer System Peak Coincidence Factor for Heat Pumps (during utility peak hour)
= 72%<sup>589</sup>

CF<sub>PJM</sub> = PJM Summer Peak Coincidence Factor for Heat Pumps (average during PJM peak period)
= 46.6%<sup>590</sup>
```

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS AND FOSSIL FUEL SAVINGS

Non-fuel switch measures:

```
ΔkWh = [Cooling savings] + [Heating savings] + [DHW savings]

= [FLHcool * Capacity_cooling * (1/SEER2<sub>base</sub> – 1/EER2<sub>PL</sub>)/1000] + [HeatLoad* (1/HSPF2<sub>base</sub> – 1/(COP<sub>PL</sub> * 3.412))/1000] + [ElecDHW * %DHWDisplaced * ((1/EF<sub>ELEC</sub> * GPD * Household
```

⁵⁸⁵ Furnace and boiler costs are based on data provided in Appendix E of the Appliance Standards Technical Support Documents including equipment cost and installation labor.

⁵⁸⁶ Based on 3 ton initial cost estimate for a conventional unit from ENERGY STAR Central AC calculator.

⁵⁸⁷ All baseline replacement costs are consistent with their respective measures and include inflation rate of 1.91%.

⁵⁸⁸ The baseline for calculating electric savings is an Air Source Heat Pump.

⁵⁸⁹ Based on analysis of metering results from 24 heat pumps in Ameren Illinois service territory in PY5 coincident with AIC's 2010 system peak; 'Impact and Process Evaluation of Ameren Illinois Company's Residential HVAC Program (PY5)'.

⁵⁹⁰ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

Fuel switch measures:

Fuel switch measures must produce positive total lifecycle energy savings (i.e., reduction in Btus at the premises) in order to qualify. This is determined as follows (note for early replacement measures the lifetime savings should be calculated by calculating savings for the remaining useful life of the existing equipment and for the remaining measure life):

SiteEnergySavings (MMBTUs) = FuelSwitchSavings + NonFuelSwitchSavings

FuelSwitchSavings = GasHeatReplaced – GSHPSiteHeatConsumed

NonFuelSwitchSavings = FurnaceFanSavings + GSHPSiteCoolingImpact + GSHPSiteWaterImpact

GasHeatReplaced = $[(HeatLoad * 1/AFUE_{base}) / 1,000,000]$

FurnaceFanSavings = $(FurnaceFlag * HeatLoad * 1/AFUE_{base} * F_e) / 1,000,000$

GSHPSiteHeatConsumed = $[HeatLoad * (1/(COP_{PL} * 3.412))/1000] * 3412) / 1,000,000$

GSHPSiteCoolingImpact = [FLHcool * Capacity_GSHPcool * (1/SEER2_{base} - 1/EER2_{PL})/1000] * 3412) /

1,000,000

GSHPSiteWaterImpact_{Gas} = (%DHWDisplaced * $(1/EF_{Gas} * GPD * Household * 365.25 * \gamma Water * (T_{OUT} - T_{IN})$

* 1.0)) / 1,000,000)

GSHPSiteWaterImpact_{Electric} = (%DHWDisplaced * (1/EF_{Elec} * GPD * Household * 365.25 * γWater * (Τ_{OUT} –

T_{IN}) * 1.0)) / 1,000,000

If SiteEnergySavings calculated above is positive, the measure is eligible.

The appropriate savings claim is dependent on which utilities are supporting the measure as provided in a table below:

Measure supported by:	Electric Utility claims (kWh):	Gas Utility claims (therms):
Electric utility only	SiteEnergySavings * 1,000,000/3,412	N/A
Electric and gas utility (Note utilities may make alternative agreements to how savings are allocated as long as total MMBtu savings remains the same).	%IncentiveElectric * SiteEnergySavings * 1,000,000/3,412	%IncentiveGas * SiteEnergySavings * 10
Gas utility only	N/A	SiteEnergySavings * 10

Note for Early Replacement measures, the efficiency and Fe terms of the existing unit should be used for the remaining useful life of the existing equipment (6 years for ASHP and Central AC, 6 years for furnace, 8 years for boilers or GSHP, 15 years for electric resistance), and the efficiency and Fe terms for a new baseline unit should be used for the remaining years of the measure. See assumptions below.

Where:

FLHcool = Full load cooling hours

Climate Zone (City based upon)	FLHcool Single Family	FLHcool Multifamily	FLH_cooling (weatherized multifamily) ⁵⁹²
1 (Rockford)	547	499	320
2 (Chicago)	709	629	403
3 (Springfield)	779	707	453
4 (Belleville)	1082	982	630
5 (Marion)	956	868	557
Weighted Average ⁵⁹³ ComEd Ameren Statewide	676 875 731	603 791 655	386 507 420

Use Multifamily if: Building meets utility's definition for multifamily and system serves single unit. For residential sized systems serving 2 or more units, assume single family hours. For central systems use Volume 2 Commercial and Industrial Measures.

Capacity_GSHPcool = Cooling Output Capacity of Ground Source Heat Pump (Btu/hr)

= Actual (1 ton = 12,000Btu/hr)

SEER2base

= SEER2 Efficiency of baseline unit. For early replacment measures, the actual SEER/SEER2 rating where it is possible to measure or reasonably estimate should be used for the remaining useful life of the existing equipment (6 years for ASHP and Central AC, 8 years for GSHP). If using rated efficiencies, derate efficiency value by 1% per year (maximum of 30 years) to account for degradation over time,⁵⁹⁴ or if unknown assume default provided below. If unknown value is used, it should not be derated by age.

	SEER2base		
Baseline/Existing Cooling System	Early Replacement (Remaining useful life of existing equipment)	Replacement O	e of Sale r New struction
Air Source Heat Pump	9.2 SEER2 ⁵⁹⁵	14.3 SEER2 ⁵⁹⁶	
Ground Source Heat Pump	13.4 SEER2 ⁵⁹⁷	14.3 SEER2	•

⁵⁹¹ Based on Full Load Hours from ENERGY STAR with adjustments made in a Navigant Evaluation, other cities were scaled using those results and CDD. There is a county mapping table in Volume 1, Section 3.7 providing the appropriate city to use for each county of Illinois. During update cycle for version v.12, applied percent change of CDD65, NCEI Annual Normals from 30 yr data set (1981-2010) to more recent 15 yr data (2006-2020) to all FLHcool values.

⁵⁹² All-Electric Homes PY6 Metering Results: Multifamily HVAC Systems, Cadmus, October 2015. The multifamily units within this study had undergone significant shell improvements (air sealing and insulation) and therefore this set of assumptions is only appropriate for units that have recently participated in a weatherization or other shell program. Note that the FLHcool where recalculated based on existing efficiencies consistent with the TRM rather than from the metering study.

⁵⁹³ Weighting for Ameren is based on electric accounts in each of the cooling zones. Weighting for ComEd and Statewide average is based on number of occupied residential housing units in each zone. ComEd is weighted average of Zones 1-2. Alternative program-weighted assumptions can be used if appropriate.

⁵⁹⁴ Justification for degradation factors can be found on page 14 of 'AIC HVAC Metering Study Memo FINAL 2_28_2018'. Estimate efficiency as (Rated Efficiency * (1-0.01)^Equipment Age).

⁵⁹⁵ Based on Opinion Dynamics and Cadmus metering study of Ameren HVAC program participants; See 'AIC HVAC Metering Study Memo FINAL 2_28_2018', converted to SEER2.

⁵⁹⁶ Minimum Federal Standard as of 1/1/2023

⁵⁹⁷ Estimate of existing GSHP efficiency is based converting 12 EER (estimate based upon Navigant, 2018 "EIA – Technology Forecast Updates – Residential and Commercial Building Technologies – Reference Case") to SEER. Converted to SEER2.

	SEER2base		
Baseline/Existing Cooling System	Early Replacement (Remaining useful life of existing equipment)	Early Replacement (Remaining measure life)	Time of Sale or New Construction
Central AC	9.2 SEER2 ⁵⁹⁸	13.4 SEER2 ⁵⁹⁹	
No central cooling	13.4 SEER2 ⁶⁰⁰	13.4 SEI	ER2

EER2_{PL} = Part Load EER2 Efficiency of efficient GSHP unit⁶⁰¹

= Actual installed

HeatLoad = Calculated heat load for the building

= FLH_GSHPheat * Capacity_GSHPheat

FLH_GSHPheat = Full load hours of heat pump heating

Dependent on location as below:602

Climate Zone (City based upon)	FLH_heat
1 (Rockford)	1924
2 (Chicago)	1726
3 (Springfield)	1708
4 (Belleville)	1195
5 (Marion)	1270
Weighted Average ⁶⁰³ ComEd Ameren Statewide	1766 1547 1700

Capacity_GSHPheat = Heating Output Capacity of Ground Source Heat Pump (Btu/hr)

= Actual (1 ton = 12,000Btu/hr)

HSPF2_{base}

=Heating Seasonal Performance Factor of baseline heating system (kBtu/kWh), converted to HSPF2 if rating is in HSPF. For early replacement measures, use actual HSPF/HSPF2 rating where it is possible to measure or reasonably estimate for the remaining useful life of the existing equipment (6 years for ASHP, 8 years for GSHP or 15 years for electric resistance). If using rated efficiencies, derate efficiency value by 1% per year (maximum

⁵⁹⁸ Based on Opinion Dynamics and Cadmus metering study of Ameren HVAC program participants; See 'AIC HVAC Metering Study Memo FINAL 2_28_2018' Converted to SEER2.

⁵⁹⁹ Minimum Federal Standard; Federal Register, Vol. 66, No. 14, Monday, January 22, 2001/Rules and Regulations, p. 7170-7200. ⁶⁰⁰ Assumes that the decision to replace existing systems includes desire to add cooling.

⁶⁰¹ As per conversations with David Buss territory manager for Connor Co, the SEER and COP ratings of an ASHP equate most appropriately with the part load EER and COP of a GSHP.

⁶⁰² Heating EFLH based on ENERGY STAR EFLH for Rockford, Chicago, and Springfield and on NCDC/NOAA HDD for the other two cities. In all cases, the hours were adjusted based on average natural gas heating consumption in IL. There is a county mapping table in Volume 1, Section 3.7 providing the appropriate city to use for each county of Illinois. During update cycle for version v.12, applied percent change of HDD60, NCDC/NCEI Annual Normals from 30 yr data set (1981-2010) to more recent 15 yr data (2006-2020) to all FLHheat values

⁶⁰³ Weighting for Ameren is based on electric heat accounts in each of the heating zones. Weighting for ComEd and Statewide average is based on number of occupied residential housing units in each zone. ComEd is weighted average of Zones 1-2. Alternative program-weighted assumptions can be used if appropriate.

of 30 years) to account for degradation over time, ⁶⁰⁴ or if unknown assume default. If unknown value is used, it should not be derated by age.

	HSPF2_base		
Baseline/ Existing Heating System	Early Replacement (Remaining useful life of existing equipment)	Early Replacement (Remaining measure life)	Time of Sale or New Construction
Air Source Heat Pump	4.91 HSPF2 ⁶⁰⁵	7.5 HSPF2 ⁶⁰⁶	
Ground Source Heat Pump	7.5 HSPF2 ⁶⁰⁷	7.5 HSPF2	
Electric Resistance	3.41 HSPF2 ⁶⁰⁸		

COP_{PL} = Part Load Coefficient of Performance of efficient unit⁶⁰⁹

= Actual Installed

3.412 = Constant to convert the COP of the unit to the Heating Season Performance Factor

(HSPF)

ElecDHW = 1 if existing DHW is electrically heated

= 0 if existing DHW is not electrically heated

%DHWDisplaced = Percentage of total DHW load that the GSHP will provide

= Actual if known

= If unknown and if desuperheater installed, assume 44%⁶¹⁰

= 0% if no desuperheater installed

EF_{ELEC} = Energy Factor (efficiency) of electric water heater

= Actual. If unknown or for new construction, assume federal standard:⁶¹¹

For <=55 gallons: 0.96 – (0.0003 * rated volume in gallons)

For >55 gallons: 2.057 – (0.00113 * rated volume in gallons)

GPD = Gallons Per Day of hot water use per person

= 45.5 gallons hot water per day per household/2.59 people per household⁶¹²

= 17.6

_

⁶⁰⁴ Justification for degradation factors can be found on page 14 of 'AIC HVAC Metering Study Memo FINAL 2_28_2018'. Estimate efficiency as (Rated Efficiency * (1-0.01)^Equipment Age).

⁶⁰⁵ Based on Opinion Dynamics and Cadmus metering study of Ameren HVAC program participants; See 'AIC HVAC Metering Study Memo FINAL 2 28 2018' Converted to HSPF2.

⁶⁰⁶ Based on Minimum Federal Standard effective 1/1/2023.

⁶⁰⁷ Estimate of existing GSHP efficiency is assumed equivalent to a new baseline ASHP. It is recommended that this value be evaluated and adjusted for a future version.

 $^{^{608}}$ Electric resistance has a COP of 1.0 which equals 1/0.293 = 3.41 HSPF.

⁶⁰⁹ As per conversations with David Buss territory manager for Connor Co, the SEER and COP ratings of an ASHP equate most appropriately with the part load EER and COP of a GSHP.

 $^{^{610}}$ Assumes that the desuperheater can provide two thirds of hot water needs for eight months of the year (2/3 * 2/3 = 44%). Based on input from Doug Dougherty, Geothermal Exchange Organization.

⁶¹¹ Minimum Federal Standard as of 4/1/2015;.

⁶¹² Deoreo, B., and P. Mayer. Residential End Uses of Water Study Update. Forthcoming. ©2015 Water Research Foundation. Reprinted With Permission.

Household = Average number of people per household

	Household ⁶¹³		
Household Unit Type	IQ Participants	Non-IQ Participants	All Participants
Single-Family - Deemed	2.76	2.62	2.67
Multifamily - Deemed	2.3	2.09	2.18
Household type unknown			2.52 ⁶¹⁴
Custom	Actual Occupancy or Number of Bedrooms ⁶¹⁵		

Use Multifamily if: Building meets utility's definition for multifamily

365.25 = Days per year

γWater = Specific weight of water

= 8.33 pounds per gallon

T_{OUT} = Tank temperature

= 125°F

T_{IN} = Incoming water temperature from well or municiplal system

= 50.7°F 616

1.0 = Heat Capacity of water (1 Btu/lb*°F)

3412 = Conversion from Btu to kWh

AFUEbase = Baseline Annual Fuel Utilization Efficiency Rating. For early replacement measures, use

actual AFUE rating where it is possible to measure or reasonably estimate for the remaining useful life of the existing equipment (6 years for furnace, 8 years for boilers). If using rated efficiencies, derate efficiency value by 1% per year (maximum of 30 years) to account for degradation over time, ⁶¹⁷ or if unknown assume default. If unknown value is

used, it should not be derated by age.

	AFUEbase		
Baseline/ Existing Heating System	Early Replacement (Remaining useful life of existing equipment) ⁶¹⁸	Early Replacement (Remaining measure life)	Time of Sale or New Construction
Furnace	64.4%	80%	80%
Boiler	61.6%	84%	84%

FurnaceFlag = 1 if system replaced is a gas furnace, 0 if not.

Fe = Furnace Fan energy consumption as a percentage of annual fuel consumption

⁶¹³ Assumptions are taken from the draft unadjusted 2024 Baseline Study evaluation data provided in 07/2024 by GDS Associates.

⁶¹⁴ Unknown is based on statewide weighted average of 69% single family and 31% multifamily, based on IL data from 2009 RECS Table HC2.9 Structural and Geographic Characteristics of Homes in Midwest Region, Divisions and States, 2009.

⁶¹⁵ Bedrooms are suitable proxies for household occupancy, and may be preferable to actual occupancy due to turnover rates in residency and non-adult population impacts.

⁶¹⁶ Table 4 in Chen, et. al., "Calculating Average Hot Water Mixes of Residential Plumbing Fixtures", June 2020, reports a value of 50.7°F for inlet water temperature for U.S. Census Division 3.

⁶¹⁷ Justification for degradation factors can be found on page 14 of 'AIC HVAC Metering Study Memo FINAL 2_28_2018'. Estimate efficiency as (Rated Efficiency * (1-0.01)^Equipment Age).

⁶¹⁸ Average nameplate efficiencies of all Early Replacement qualifying equipment in Ameren PY3-PY4.

For Early Replacement (1st 6 years) F_e_Exist = 3.14%⁶¹⁹

For New Construction, Time of Sale and early replacement (remaining 10 years)

 F_{e} New = 1.88%⁶²⁰

EF_{GAS EXIST} = Energy Factor (efficiency) of existing gas water heater

= Actual. If unknown, assume federal standard:621

For <=55 gallons: 0.6483 - (0.0017 * storage capacity in gallons) For >55 gallons 0.7897 - (0.0004 * storage capacity in gallons)

= If tank size unknown, assume 40 gallons and EF Baseline of 0.58

3412 = Btu per kWh

%IncentiveElectric = % of total incentive paid by electric utility

= Actual

%IncentiveGas = % of total incentive paid by gas utility

= Actual

_

 $^{^{619}}$ F_e is not one of the AHRI certified ratings provided for residential furnaces, but can be reasonably estimated from a calculation based on the certified values for fuel energy (Ef in MMBtu/yr) and Eae (kWh/yr). An average of a 300 record sample (non-random) out of 1495 was 3.14%. This is, appropriately, ~50% greater than the ENERGY STAR version 3 criteria for 2% F_e. See "Programmable Thermostats Furnace Fan Analysis.xlsx" for reference.

⁶²⁰ New furnaces are required to have ECM fan motors installed. Comparing Eae to Ef for furnaces on the AHRI directory as above, indicates that Fe for new furnaces is on average 1.88%.

⁶²¹ Minimum Federal Standard as of 4/1/2015.

Non Fuel Switch Illustrative Examples

New Construction using ASHP baseline:

For example, a 3-ton unit with Part Load EER2 rating of 19 and Part Load COP of 4.4 with desuperheater is installed with a 50 gallon electric water heater in single family non- IQ house in Springfield:

```
ΔkWh = [779 * 36,000 * (1/13.4 – 1/19) / 1000] + [1708 * 36,000 * (1/7.5 – 1/(4.4 * 3.412)) / 1000] + [1 * 0.44 * ((1/0.945 * 17.6 * 2.62 * 365.25 * 8.33 * (125-50.7) * 1)/3412)] 
= 617 + 4103 + 1422 
= 6142 kWh
```

Early Replacement

For example, a 3-ton unit with Part Load EER2 rating of 19 and Part Load COP of 4.4 with desuperheater is installed in single family non-IQ house in Springfield with a 50 gallon electric water heater replacing an existing working Air Source Heat Pump with unknown efficiency ratings:

ΔkWH for remaining life of existing unit (1st 8 years):

```
= [779 * 36,000 * (1/9.3 - 1/19) / 1000] + [1708 * 36,000 * (1/6.8 - 1/(4.4 * 3.412)) / 1000] + [0.44 * 1 * ((1/0.945 * 17.6 * 2.62 * 365.25 * 8.33 * (125-50.7) * 1)/3412)]
= 1540 + 4947 + 1422
= 7,909 \text{ kWh}
\Delta \text{kWH for remaining measure life (next 17 years):}
= (779 * 36,000 * (1/13.4 - 1/19) / 1000] + [1708 * 36,000 * (1/7.5 - 1/ (4.4 * 3.412)) / 1000] + [0.44 * 1 * 1 * 1/19] + [0.44 * 1 * 1/19] + [0.44 * 1 * 1/19] + [0.44 * 1 * 1/19] + [0.44 * 1 * 1/19] + [0.44 * 1 * 1/19] + [0.44 * 1 * 1/19] + [0.44 * 1 * 1/19] + [0.44 * 1 * 1/19] + [0.44 * 1 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] + [0.44 * 1/19] +
```

```
= (//9 * 36,000 * (1/13.4 - 1/19) / 1000] + [1/08 * 36,000 * (1/7.5 - 1/ (4.4 * 3.412)) / 1000] + [0.44 * 1 * ((1/0.945 * 17.6 * 2.62 * 365.25 * 8.33 * (125-50.7) * 1)/3412)]
```

= 617 + 4103 + 1422

= 6142 kWh

Fuel Switch Illustrative Example

[for illustrative purposes 50:50 Incentive is used for joint programs]

New construction using gas furnace and central AC baseline:

For example, a 3-ton unit with Part Load EER2 rating of 19 and Part Load COP of 4.4 in single family non-IQ house in Springfield with a 40 gallon gas water heater is installed in place of a natural gas furnace and 3 ton Central AC unit:

= (1708 * 36,000 * 1/4.4) /1,000,000 = 14.0 MMBtu

Continued on next page

Fuel Switch Illustrative Example continued

 $\mathsf{GSHPSiteCoolingImpact} \quad = (\mathsf{FLHcool} * \mathsf{Capacity_GSHPcool} * (1/\mathsf{SEER2}_\mathsf{base} - 1/\mathsf{EER2}_\mathsf{PL})/1000 * 3412)/1,000,000$

= (779 * 36,000 * (1/13.4 - 1/19) / 1000 * 3412) / 1,000,000 = 2.10 MMBtu

GSHPSiteWaterImpact_{Gas} = $((\%DHWDisplaced * ((1/EF_{Gas} * GPD * Household * 365.25 * <math>\gamma Water * (T_{OUT} - T_{IN}) * 1.0) / 1,000,000)$

= (0.44 * (1/ 0.58 * 17.6 * 2.62 *365.25 * 8.33 * (125-50.7) * 1)) / 1,000,000 = 7.9 MMBtu

SiteEnergySavings (MMBTUs) = 76.9 + 1.4 - 14.0 + 2.10 + 7.9 = 74.3 MMBtu (Measure is eligible)

Savings would be claimed as follows:

Measure supported by:	Electric Utility claims:	Gas Utility claims:
Electric utility only	74.3 * 1,000,000/3412 = 21,776 kWh	N/A
Electric and gas utility	0.5 * 74.3 * 1,000,000/3412 = 10,888 kWh	0.5 * 74.3 * 10 = 372 Therms
Gas utility only	N/A	74.3 * 10 = 743 Therms

SUMMER COINCIDENT PEAK DEMAND SAVINGS

ΔkW = (Capacity_cooling * (1/EER2base - 1/EER2_{FL}))/1000 * CF

Where:

EER2base

= Energy Efficiency Ratio 2 of baseline unit (kBtu/kWh). For early replacment measures, the actual EER2 rating where it is possible to measure or reasonably estimate should be used for the remaining useful life of the existing equipment (6 years for ASHP and Central AC). If using rated efficiencies, derate efficiency value by 1% per year (maximum of 30 years) to account for degradation over time. 622 If unknown, assume default provided below. If unknown value is used, it should not be derated by age.

	EER2_base		
Baseline/Existing Cooling System	Early Replacement (Remaining useful life of existing equipment)	Early Replacement (Remaining measure life)	Time of Sale or New Construction
Air Source Heat Pump	7.4 EER2 ⁶²³	9.4 EER2 ⁶²⁴	
Ground Source Heat Pump	11.2 EER2	11.2 EER2	
Central AC	7.4 EER2	10.6 EER2	
No central cooling	10.6 EER2 ⁶²⁵	10.6 EER2	

⁶²² Justification for degradation factors can be found on page 14 of 'AIC HVAC Metering Study Memo FINAL 2_28_2018'. Estimate efficiency as (Rated Efficiency * (1-0.01)^Equipment Age).

⁶²³ Based on Opinion Dynamics and Cadmus metering study of Ameren HVAC program participants; See 'AIC HVAC Metering Study Memo FINAL 2_28_2018' Converted to EER2.

⁶²⁴ Assumed consistent with the EER2 requirements in the Federal Standard for Southwest standards (in the absence of standards for Northen states).

⁶²⁵ Assumes that the decision to replace existing systems includes desire to add cooling.

EER2_{FL} = Full Load EER2 Efficiency of ENERGY STAR GSHP unit 626 CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C (during system peak hour)

= $72\%^{627}$ CF_{PJM} = PJM Summer Peak Coincidence Factor for Central A/C (average during peak period)

= $46.6\%^{628}$

New Construction or Time of Sale:

For example, a 3-ton unit with Full Load EER2 unit rating of 19:

$$\Delta kW_{SSP}$$
 = (36,000 * (1/9.4 - 1/19))/1000 * 0.72
= 0.9 kW
 ΔkW_{PJM} = (36,000 * (1/9.4 - 1/19))/1000 * 0.466
= 0.71 kW

Early Replacement:

For example, a 3-ton Full Load 19 EER2 unit replaces an existing working Air Source Heat Pump with unknown efficiency ratings in Marion:

 ΔkW_{SSP} for remaining life of existing unit (1st 8 years):

= 2.14 kW

ΔkW_{SSP} for remaining measure life (next 17 years):

= 1.39 kW

 ΔkW_{PJM} for remaining life of existing unit (1st 8 years):

$$= (36,000 * (1/7.4 - 1/19))/1000 * 0.466$$

= 1.38 kW

ΔkW_{PJM} for remaining measure life (next 17 years):

$$= (36,000 * (1/9.4 - 1/19))/1000 * 0.466$$

= 0.902 kW

FOSSIL FUEL SAVINGS

Calculation provided together with Electric Energy Savings above

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

⁶²⁶ As per conversations with David Buss territory manager for Connor Co, the EER rating of an ASHP equate most appropriately with the full load EER of a GSHP.

⁶²⁷ Based on analysis of metering results from 24 heat pumps in Ameren Illinois service territory in PY5 coincident with AIC's 2010 system peak; 'Impact and Process Evaluation of Ameren Illinois Company's Residential HVAC Program (PY5)'.

⁶²⁸ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

COST EFFECTIVENESS SCREENING AND LOAD REDUCTION FORECASTING WHEN FUEL SWITCHING

This measure can involve fuel switching from gas to electric.

For the purposes of forecasting load reductions due to fuel switch GSHP projects per Section 16-111.5B, changes in site energy use at the customer's meter (using ΔkWh algorithm below), customer switching estimates, NTG, and any other adjustment factors deemed appropriate, should be used.

The inputs to cost effectiveness screening should reflect the actual impacts on the electric and fuel consumption at the customer meter and, for fuel switching measures, should therefore reflect the decrease in one fuel and increase in another, as opposed to the single savings value calculated in the "Electric and Fossil Fuel Energy Savings" section above. Therefore in addition to the calculation of savings claimed, the following values should be used to assess the cost effectiveness of the measure. For Early Replacement measures, the efficiency terms of the existing unit should be used for the remaining useful life of the existing equipment (6 years for ASHP and Central AC, 6 years for furnace, 8 years for boilers or GSHP, 15 years for electric resistance), and the efficiency terms for a new baseline unit should be used for the remaining years of the measure.

```
ΔTherms
                   = [Heating Consumption Replaced] + [DHW Savings if gas]
                   = [(HeatLoad * 1/AFUE<sub>base</sub>) / 100,000] + [(1 – ElecDHW) * %DHWDisplaced * (1/ EF<sub>GAS EXIST</sub>
                   * GPD * Household * 365.25 * γWater * (T<sub>OUT</sub> – T<sub>IN</sub>) * 1.0) / 100,000)]
ΔkWh
                   = [FurnaceFanSavings] - [GSHP heating consumption] + [Cooling savings] + [DHW savings
                   if electric]
                   = [FurnaceFlag * HeatLoad * 1/AFUE_{base} * F_e * 0.000293] - [(HeatLoad * (1/COP_{PL} *
                   3.412))/1000] + [(FLHcool * Capacity GSHPcool * (1/SEER2base - 1/EER2pl))/1000] +
                   [ElecDHW * %DHWDisplaced * ((1/EF<sub>ELEC</sub> * GPD * Household * 365.25 * γWater * (T<sub>OUT</sub> –
                   T<sub>IN</sub>) * 1.0) / 3412)]
```

Illustrative Example of Cost Effectiveness Inputs for Fuel Switching

ΛTherms

For example, a 3-ton unit with Part Load EER2 rating of 19 and Part Load COP of 4.4 in single family non-IQ house in Springfield with a 40-gallon gas water heater replaces an existing working natural gas furnace and 3-ton Central AC unit with unknown efficiency ratings. [Note the calculation provides the annual savings for the first 6 years of the measure life, an additional calculation (not shown) would be required to calculate the annual savings for the remaining life (years 7-25)]:

```
= [(HeatLoad * 1/AFUE<sub>exist</sub>) / 100,000] + [(1 - ElecDHW) * %DHWDisplaced * (1/ EF<sub>GAS</sub>
                   EXIST * GPD * Household * 365.25 * \gamma Water * (T_{OUT} - T_{IN}) * 1.0) / 100,067)
         = [1708 * 36,000 * 1/0.644) / 100,000] + [((1-0) * 0.44 * (1/0.58 * 17.6 * 2.62 * 365.25 * 8.33)]
         * (125-54) * 1) / 100,067)]
         = 955 + 76
         = 1031 therms
ΔkWh
                   = [FurnaceFlag * HeatLoad * 1/AFUE<sub>base</sub> * Fe_Exist * 0.000293] - [(HeatLoad * (1/COP<sub>PL</sub>
                   * 3.412))/1000] + [(FLHcool * Capacity GSHPcool * (1/SEERexist - 1/EER<sub>PL</sub>))/1000] +
                   [ElecDHW * %DHWDisplaced * (((1/EF<sub>ELEC</sub>) * GPD * Household * 365.25 * yWater *
                   (T_{OUT} - T_{IN}) * 1.0) / 3412)
         = [1 * 1708 * 3600 * 1/0.644 * 0.0314 * 0.000293] - [(1708 * 36,000 * (1/(4.4 * 3.412)))/ 1000]
         + [(779 * 36,000 * (1/9.2 - 1/19))/ 1000)] + [0 * 0.44 * (((1/0.904) * 17.6 * 2.62 *365.25 * 8.33
         * (125-50.7) * 1)/3412)]
         = 88 - 4096 + 1572 + 0
```

MEASURE CODE: RS-HVC-GSHP-V15-250101

REVIEW DEADLINE: 1/1/2027

5.3.9 High Efficiency Bathroom Exhaust or Radon Mitigation Fan

DESCRIPTION

This market opportunity measure is split into the purchase of a new bathroom fan for typical usage, meet the need for continuous mechanical ventilation due to reduced air-infiltration from a tighter building shell, and for Radon mitigation. In retrofit projects, existing fans may be too loud, or insufficient in other ways, to be operated as required. This measure assumes fan capacities between 10 and 200 CFM rated at a sound level of less than 2.0 sones at 0.1 inches of water column static pressure, or 50 CFM if used for continuous ventilation, or 120 CFM for Radon mitigation. All eligible installations shall be sized to provide the mechanical ventilation rate indicated by ASHRAE 62.2 or for Radon mitigation.

This measure was developed to be applicable to the following program types: TOS, NC, RF.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

New efficient ENERGY STAR or ENERGY STAR Most Efficient exhaust-only ventilation fan, quiet (< 2.0 sones) operating in accordance with recommended ventilation rate indicated by ASHRAE 62.2 – 2016 or for Radon mitigation. ENERGY STAR specifications (effective October 1, 2015) and 2018 Most Efficient specifications are provided below:

Efficiency Level	Fan Capacity	Minimum Efficacy Level (CFM/Watts)	Maximum Allowable Sound Level (sones)	
ENERGY STAR	10 – 89 CFM	2.8		
ENERGY STAR	90 – 200 CFM	3.5	2.0	
ENERGY STAR Most Efficient	All	10	2.0	
ENERGY STAR (In-Line)	All	3.8		

DEFINITION OF BASELINE EQUIPMENT

New standard efficiency exhaust-only ventilation fan.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 19 years. 629

DEEMED MEASURE COST

Incremental cost per installed fan is \$48 for ENERGY STAR qualified fans. 630

LOADSHAPE

Loadshape R11 - Residential Ventilation

COINCIDENCE FACTOR

The summer Peak Coincidence Factor is assumed to be 100% because the fan runs continuously.

_

⁶²⁹ Conservative estimate based upon GDS Associates Measure Life Report "Residential and C&I Lighting and HVAC measures" 25 years for whole-house fans, and 19 for thermostatically-controlled attic fans.

⁶³⁰ VEIC analysis using cost data collected from wholesale and retail vendors.

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 Δ kWh = (CFM * (1/ η , BASELINE - 1/ η efficient)/1000) * Hours

Where:

CFM = Nominal Capacity of the exhaust fan

= Actual or use defaults provided below

= Assume 50CFM for continuous ventilation⁶³¹

 $\eta_{BASELINE}$ = Average efficacy for baseline fan (CFM/watts)

= See table below

 η_{EFFCIENT} = Average efficacy for efficient fan (CFM/watts)

= Actual or use defaults provided below

Hours = assumed annual run hours,

= 1089 for standard usage⁶³²

= 8766 for continuous ventilation.

Defaults provided below:633

					ENERGY	STAR	ENERGY STA Efficie	
Application	Min CFM	Max CFM	Average CFM	Base CFM/Watts	CFM/Watts	ΔkWh Savings	CFM/Watts	ΔkWh Savings
Standard	10	89	71.0	1.7	4.7	28.9	11.9	38.9
	90	200	115.9	2.7	5.4	23.1	14.2	37.8
usage	Unkr	nown	94.2	2.2	5.1	26.9	13.3	39.4
Continuous usage	N,	/A	50	1.7	5.0	164.6	11.3	213.8
Continuous usage (Radon)	N,	/A	120	2.5	5.0	203.2	n/a	n/a

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = (CFM * (1/\eta_{BASELINE} - 1/_{EFFICIENT})/1000) * CF$

Where:

⁶³¹ 50CFM is the closest available fan size to ASHRAE 62.2 Section 4.1 Whole House Ventilation rates based upon typical square footage and bedrooms.

⁶³² Assumed to be consistent with Residential Indoor Lighting hours of use.

⁶³³ Based on review of Bathroom Exhaust Fan product available on CEC Appliance Database, accessed 4/6/2023. See 'CEC-resvent-fans-4.6.23.xlsx' for more information.

CF = Summer Peak Coincidence Factor

= 0.135 for standard usage

= 1.0 for continuous operation

Other variables as defined above

Application	Min CFM	Max CFM	Average CFM	ENERGY STAR ΔkW Savings	ENERGY STAR Most Efficient ΔkW Savings
	10	89	70.6	0.0036	0.0048
Standard usage	90	200	116.1	0.0029	0.0047
	Unkr	nown	92.4	0.0033	0.0049
Continuous usage	N,	/A	50	0.0188	0.0244

FOSSIL FUEL SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-HVC-BAFA-V04-250101

REVIEW DEADLINE: 1/1/2029

5.3.10 HVAC Tune Up (Central Air Conditioning or Air Source Heat Pump)

DESCRIPTION

This measure involves the measurement of refrigerant charge levels and airflow over the central air conditioning or heat pump unit coil, correction of any problems found and post-treatment re-measurement. Measurements must be performed with standard industry tools and the results tracked by the efficiency program.

Savings from this measure are developed using a reputable Wisconsin study. It is recommended that future evaluation be conducted in Illinois to generate a more locally appropriate characterization.

This measure was developed to be applicable to the following program types: RF. If applied to other program types, the measure savings should be verified.

For tune-up of central systems in multifamily buildings, use Volume 2 Commercial and Industrial Measures.

DEFINITION OF EFFICIENT EQUIPMENT

N/A

DEFINITION OF BASELINE EQUIPMENT

This measure assumes that the existing unit being maintained is either a residential central air conditioning unit or an air source heat pump that has not been serviced for at least 3 years.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The measure life is assumed to be 3 years. 634

DEEMED MEASURE COST

If the implementation mechanism involves delivering and paying for the tune up service, the actual cost should be used. If however the customer is provided a rebate and the program relies on private contractors performing the work, the measure cost should be assumed to be \$225.635

LOADSHAPE

Loadshape R08 - Residential Cooling

COINCIDENCE FACTOR

The summer peak coincidence factor for cooling is provided in two different ways below. The first is used to estimate peak savings during the utility peak hour and is most indicative of actual peak benefits, and the second represents the *average* savings over the defined summer peak period and is presented so that savings can be bid into PJM's capacity market.

CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C (during utility peak hour)
 = 68%⁶³⁶
 CF_{SSP} = Summer System Peak Coincidence Factor for Heat Pumps (during system peak hour)
 = 72%⁶³⁷

⁶³⁴ Based on DEER 2014 EUL Table for "Clean Condenser Coils – Residential" and "Refrigerant Charge – Residential".

⁶³⁵ Based on personal communication with HVAC efficiency program consultant Buck Taylor or Roltay Inc., 6/21/10, who estimated the cost of tune up at \$125 to \$225, depending on the market and the implementation details. The average value of \$175 has been increased by inflation to give an estimate of \$225 in 2021.

⁶³⁶ Based on metering of 24 homes with central AC during PY4 and PY5 in Ameren Illinois service territory.

⁶³⁷ Based on analysis of metering results from 24 heat pumps in Ameren Illinois service territory in PY5 coincident with AIC's 2010 system peak; 'Impact and Process Evaluation of Ameren Illinois Company's Residential HVAC Program (PY5)'.

 CF_{PJM} = PJM Summer Peak Coincidence Factor for Central A/C (average during PJM peak period) = $46.6\%^{638}$

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 Δ kWh_{Central AC} = (FLHcool * Capacity_cooling* (1/SEER2_{CAC}))/1,000 * MFe

ΔkWh_{Air Source Heat Pump} = ((FLHcool * Capacity_cooling * (1/SEER2_{ASHP}))/1,000 * MFe) + (FLHheat *

Capacity_heating * (1/HSPF2_{ASHP}))/1,000 * MFe)

Where:

FLHcool = Full load cooling hours

Dependent on location as below:639

FLHcool	FLHcool
Single Family	Multifamily
547	499
709	629
779	707
1,082	982
956	868
676 875 731	603 791 655
	547 709 779 1,082 956 676 875

Use Multifamily if: Building meets utility's definition for multifamily and system serves single unit. For residential sized systems serving 2 or more units, assume single family hours. For central systems use Volume 2 Commercial and Industrial Measures.

Capacity cooling = Cooling cpacity of equipment in Btu/hr (note 1 ton = 12,000 Btu/hr)

= Actual

SEER2_{CAC} = SEER2 Efficiency of existing central air conditioning unit receiving maintenance

= Actual. If unknown assume 9.5 SEER2 ⁶⁴¹

MFe = Maintenance energy savings factor

 $= 0.05^{642}$

⁶³⁸ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

⁶³⁹ Based on Full Load Hours from ENERGY STAR with adjustments made in a Navigant Evaluation, other cities were scaled using those results and CDD. There is a county mapping table in Volume 1, Section 3.7 providing the appropriate city to use for each county of Illinois.

⁶⁴⁰ Weighting for Ameren is based on electric accounts in each of the cooling zones. Weighting for ComEd and Statewide average is based on number of occupied residential housing units in each zone. ComEd is weighted average of Zones 1-2. Alternative program-weighted assumptions can be used if appropriate.

⁶⁴¹ Use actual SEER2 rating where it is possible to measure or reasonably estimate. Unknown default of 9.5 SEER2 is a VEIC estimate of existing unit efficiency, based on minimum federal standard between the years of 1992 and 2006, converted to SEER2.

SEER2_{ASHP} = SEER2 Efficiency of existing air source heat pump unit receiving maintenance

= Actual. If unknown assume 9.5 SEER2 ⁶⁴³

FLHheat = Full load heating hours

Dependent on location:644

Climate Zone (City based upon)	FLHheat
1 (Rockford)	1924
2 (Chicago)	1726
3 (Springfield)	1708
4 (Belleville)	1195
5 (Marion)	1270
Weighted Average ⁶⁴⁵	
ComEd	1766
Ameren	1547
Statewide	1700

Capacity_heating = Heating cpacity of equipment in Btu/hr (note 1 ton = 12,000 Btu/hr)

= Actual

HSPF2_{ASHP} = Heating Season Performance Factor of existing air source heat pump unit receiving

maintenence

= Actual. If unknown assume 5.8 HSPF2 ⁶⁴⁶

For example, maintenance of a 3-ton, SEER2 10 air conditioning unit in a single family house in Springfield:

 ΔkWh_{CAC} = (779 * 36,000 * (1/10))/1,000 * 0.05

= 140 kWh

For example, maintenance of a 3-ton, SEER2 10, HSPF2 6.8 air source heat pump unit in a single family house in Springfield:

 ΔkWh_{ASHP} = ((779 * 36,000 * (1/10))/1,000 * 0.05) + (1,708 * 36,000 * (1/6.8))/1,000 *

0.05)

= 592 kWh

⁶⁴³ Use actual SEER2 rating where it is possible to measure or reasonably estimate. Unknown default of 9.5 SEER2 is a VEIC estimate of existing unit efficiency, based on minimum federal standard between the years of 1992 and 2006, converted to SEER2.

⁶⁴⁴ Full load heating hours for heat pumps are provided for Rockford, Chicago and Springfield in the ENERGY STARCalculator. Estimates for the other locations were calculated based on the FLH to Heating Degree Day (from NCDC) ratio. VEIC consider ENERGY STARestimates to be high due to oversizing not being adequately addressed. Using average Illinois billing data (from Illinois Commerce Commission) VEIC estimated the average gas heating load and used this to estimate the average home heating output (using 83% average gas heat efficiency). Dividing this by a typical 36,000 Btu/hr ASHP gives an estimate of average ASHP FLH_heat of 1821 hours. We used the ratio of this value to the average of the locations using the ENERGY STAR data (1994 hours) to scale down the ENERGY STAR estimates. There is a county mapping table in Volume 1, Section 3.7 providing the appropriate city to use for each county of Illinois.

⁶⁴⁵ Weighting for Ameren is based on electric heat accounts in each of the heating zones. Weighting for ComEd and Statewide average is based on number of occupied residential housing units in each zone. ComEd is weighted average of Zones 1-2. Alternative program-weighted assumptions can be used if appropriate.

⁶⁴⁶ Use actual HSPF2 rating where it is possible to measure or reasonably estimate. Unknown default of 5.8 HSPF2 is a VEIC estimate based on minimum Federal Standard between 1992 and 2006, converted to HSPF2.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 Δ kW = Capacity cooling * (1/EER2)/1,000 * MFd * CF

Where:

EER2 = EER2 Efficiency of existing unit receiving maintenance in Btu/H/Watts

= Calculate using Actual SEER2 = - 0.02*SEER2² + 1.12*SEER2 ⁶⁴⁷

MFd = Maintenance demand savings factor

CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C (during system peak

hour)

= 68%⁶⁴⁸

CF_{SSP} = Summer System Peak Coincidence Factor for Heat Pumps (during system peak hour)

= **72**%⁶⁴⁹

CF_{PJM} = PJM Summer Peak Coincidence Factor for Central A/C and Heat Pumps (average during

peak period)

 $=46.6\%^{650}$

For example, maintenance of 3-ton, SEER2 10 (equals EER2 9.2) CAC unit:

 ΔkW_{SSP} = 36,000 * 1/(9.2)/1,000 * 0.02 * 0.68

= 0.0532 kW

 ΔkW_{PJM} = 36,000 * 1/(9.2)/1,000 * 0.02 * 0.466

= 0.0365 kW

FOSSIL FUEL SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

Conservatively not included.

MEASURE CODE: RS-HVC-TUNE-V09-250101

REVIEW DEADLINE: 1/1/2025

⁶⁴⁷ Based on Wassmer, M. (2003). A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations. Masters Thesis, University of Colorado at Boulder. Note this is appropriate for single speed units only.

⁶⁴⁸ Based on metering of 24 homes with central AC during PY4 and PY5 in Ameren Illinois service territory.

⁶⁴⁹ Based on analysis of metering results from 24 heat pumps in Ameren Illinois service territory in PY5 coincident with AIC's 2010 system peak; 'Impact and Process Evaluation of Ameren Illinois Company's Residential HVAC Program (PY5)'.

⁶⁵⁰ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

5.3.11 Programmable Thermostats

DESCRIPTION

This measure characterizes the household energy savings from the installation of a new or reprogramming of an existing Programmable Thermostat for reduced heating energy consumption through temperature set-back during unoccupied or reduced demand times. Because a literature review was not conclusive in providing a defensible source of prescriptive cooling savings from programmable thermostats, cooling savings from programmable thermostats are assumed to be zero for this version of the measure. It is not appropriate to assume a similar pattern of savings from setting a thermostat down during the heating season and up during the cooling season. Since energy savings are applicable at the household level, savings should only be claimed for one thermostat of any type (i.e., one programmable thermostat or one advanced thermostat), installation of multiple thermostats per home does not accrue additional savings.

This measure was developed to be applicable to the following program types: TOS, NC, RF, DI.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The criteria for this measure are established by replacement of a manual-only temperature control, with one that has the capability to adjust temperature setpoints according to a schedule without manual intervention. This category of equipment is broad and rapidly advancing in regards to the capability, and usability of the controls and their sophistication in setpoint adjustment and information display, but for the purposes of this characterization, eligibility is perhaps most simply defined by what it is not: a manual only temperature control.

For the thermostat reprogramming measure, the auditor consults with the homeowner to determine an appropriate set back schedule, reprograms the thermostat and educates the homeowner on its appropriate use.

DEFINITION OF BASELINE EQUIPMENT

For new thermostats the baseline is a non-programmable thermostat requiring manual intervention to change temperature setpoint.

For the purpose of thermostat reprogramming, an existing programmable thermostat that an auditor determines is being used in override mode or otherwise effectively being operated like a manual thermostat.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life of a programmable thermostat is assumed to be 16 years, however concerns over persistence over a population result in the application of a mid-life adjustment to reduce annual savings during the measure lifetime.⁶⁵¹ For reprogramming, the measure life of 2 years is assumed.

DEEMED MEASURE COST

Actual material and labor costs should be used if the implementation method allows. If unknown (e.g., through a retail program) the capital cost for the new installation measure is assumed to be \$30.652 The cost for reprogramming is assumed to be \$10 to account for the auditor's time to reprogram and educate the homeowner.

LOADSHAPE

Loadshape R09 - Residential Electric Space Heat

⁶⁵¹ ASHRAE Applications (2003), Section 36, Table 3 provides an estimate of 16 years for the equipment life, however the TAC agreed to reduce by 50% to account for persistence issues. This is applied via a midlife adjustment (see later section) rather than a reduction in the measure life to 8 years.

⁶⁵² Market prices vary significantly in this category, generally increasing with thermostat capability and sophistication. The basic functions required by this measure's eligibility criteria are available on units readily available in the market for the listed price.

COINCIDENCE FACTOR

N/A due to no savings attributable to cooling during the summer peak period.

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 Δ kWh⁶⁵³ = %ElectricHeat * Elec_Heating_Consumption * Heating_Reduction * HF * Eff_ISR + (Δ Therms * F_e * 29.3)

Where:

%ElectricHeat = Percentage of heating savings assumed to be electric

Heating fuel	%ElectricHeat
Electric	100%
Natural Gas	0%
Unknown	3% ⁶⁵⁴

Elec_Heating_ Consumption

= Estimate of annual household heating consumption for electrically heated homes. 655 If location and heating type is unknown, assume 15,683 kWh. 656

	Electric Resistance	Electric Heat Pump
Climate Zone	Elec_Heating_	Elec_Heating_
(City based upon)	Consumption	Consumption
	(kWh)	(kWh)
1 (Rockford)	21,748	12,793
2 (Chicago)	20,777	12,222
3 (Springfield)	17,794	10,467
4 (Belleville)	13,726	8,074
5 (Marion)	13,970	8,218
Average	19,749	11,617

Heating Reduction

= Assumed percentage reduction in total household heating energy consumption due to programmable thermostat

⁶⁵³ Note the second part of the algorithm relates to furnace fan savings if the heating system is Natural Gas.

⁶⁵⁴ Value used is based on known PY8 percent of electric heat provided by Navigant as part of the ongoing evaluation work source: "Slide 21: May 22, 2018, Second Addendum IL TRM Advanced Thermostat Cooling Savings Evaluation"

⁶⁵⁵ Values in table are based on converting an average household heating load (834 therms) for Chicago based on 'Table E-1, Energy Efficiency/Demand Response Nicor Gas Plan Year 1: Research Report: Furnace Metering Study, Draft, Navigant, August 1 2013 to an electric heat load (divide by 0.03412) to electric resistance and ASHP heat load (resistance load reduced by 15% to account for distribution losses that occur in furnace heating but not in electric resistance while ASHP heat is assumed to suffer from similar distribution losses) and then to electric consumption assuming efficiencies of 100% for resistance and 200% for HP (see 'Household Heating Load Summary Calculations_08222018.xls'). Finally these values were adjusted to a statewide average using relative HDD assumptions to adjust for the evaluation results focus on northern region. Values for individual cities are then calculated by comparing average HDD to the individual city's HDD.

⁶⁵⁶ Assumption that 1/2 of electrically heated homes have electric resistance and 1/2 have Heat Pump, based on 2010 Residential Energy Consumption Survey for Illinois.

 $=6.2\%^{657}$

HF

= Household factor, to adjust heating consumption for non-single-family households.

Household Type	HF
Single-Family	100%
Mobile home	83% ⁶⁵⁸
Multifamily	65% ⁶⁵⁹
Unknown	96.5% ⁶⁶⁰
Actual	Custom ⁶⁶¹

Use Multifamily if: Building meets utility's definition for multifamily and system serves single unit. For residential sized systems serving 2 or more units, assume single family hours. For central systems use Volume 2 Commercial and Industrial Measures.

Eff_ISR = Effective In-Service Rate, the percentage of thermostats installed and programmed effectively

Program Delivery	Eff_ISR
Direct Install	100%
Other, or unknown	56% ⁶⁶²

ΔTherms	= Therm savings if Natural Gas heating system

= See calculation in Fossil Fuel section below

Fe = Furnace Fan energy consumption as a percentage of annual fuel

consumption

 $= 3.14\%^{663}$

= kWh per therm

⁶⁵⁷ The savings from programmable thermostats are highly susceptible to many factors best addressed, so far for this category, by a study that controlled for the most significant issues with a very large sample size. To the extent that the treatment group is representative of the program participants for IL, this value is suitable. Higher and lower values would be justified based upon clear dissimilarities due to program and product attributes. Future evaluation work should assess program specific impacts associated with penetration rates, baseline levels, persistence, and other factors which this value represents.
658 Since mobile homes are similar to Multifamily homes with respect to conditioned floor area but to single-family homes with respect to exposure (i.e., all four wall orientations are adjacent to the outside), this factor is estimated as an average of the single family and multifamily household factors.

⁶⁵⁹ Multifamily household heating consumption relative to single-family households is affected by overall household square footage and exposure to the exterior. This 65% factor is applied to MF homes based on professional judgment that average household size, and heat loads of MF households are smaller than single-family homes

 $^{^{660}}$ When Household type is unknown, a value of 96.5% may be used as a weighted average of 90% SF and 10% MF (96.5% = 100%*90% + 65%*10%) based on a Navigant evaluation of PY8 participants in ComEd's advanced thermostat program.

Frogram-specific household factors may be utilized on the basis of sufficiently validated program evaluations.
 Programmable Thermostats. Report to KeySpan Energy Delivery on Energy Savings and Cost Effectiveness," GDS Associates,
 Marietta, GA. 2002GDS

 $^{^{663}}$ F_e is not one of the AHRI certified ratings provided for residential furnaces, but can be reasonably estimated from a calculation based on the certified values for fuel energy (Ef in MMBtu/yr) and Eae (kWh/yr). An average of a 300 record sample (non-random) out of 1495 was 3.14%. This is, appropriately, ~50% greater than the ENERGY STAR version 3 criteria for 2% F_e. See "Programmable Thermostats Furnace Fan Analysis.xlsx" for reference.

For example, a programmable thermostat direct-installed in an electric resistance heated, single-family home in Springfield:

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A due to no savings from cooling during the summer peak period.

NATURAL GAS ENERGY SAVINGS

ΔTherms = %FossilHeat * Gas Heating Consumption * Heating Reduction * HF * Eff ISR

Where:

%FossilHeat = Percentage of heating savings assumed to be Natural Gas

Heating fuel	%FossilHeat
Electric	0%
Natural Gas	100%
Unknown	97% ⁶⁶⁴

Gas_Heating_Consumption

= Estimate of annual household heating consumption for gas heated single-family homes. If location is unknown, assume the average below:⁶⁶⁵

Climate Zone (City based upon)	Gas_Heating_ Consumption (therms)
1 (Rockford)	1,052
2 (Chicago)	1,005
3 (Springfield)	861
4 (Belleville)	664
5 (Marion)	676
Average	955

For example, a programmable thermostat directly-installed in a gas heated single-family home in Chicago:

= 62.3 therms

Mid-Life Baseline Adjustment

664 Value used is based on known PY8 percent of electric heat provided by Navigant as part of the ongoing evaluation work source: "Slide 21: May 22, 2018, Second Addendum IL TRM Advanced Thermostat Cooling Savings Evaluation"
665 Values are based on adjusting the average household heating load (834 therms) for Chicago based on 'Table E-1, Energy Efficiency / Demand Response Nicor Gas Plan Year 1, Research Report: Furnace Metering Study', divided by standard assumption of existing unit efficiency of 83% (estimate based on 24% of furnaces purchased in Illinois were condensing in 2000 (based on data from GAMA, provided to Department of Energy), assuming typical efficiencies: (0.24*0.92) + (0.76*0.8) = 0.83) to give 1005 therms. This Chicago value was then adjusted to a statewide average using relative HDD assumptions to adjust for the evaluation results focus on northern region. Values for individual cities are then calculated by comparing average HDD to the individual city's HDD.

Due to concerns that across a population the savings for programmable thermostats are likely to decline through the technical lifetime of the thermostat, ⁶⁶⁶ a mid-life adjustment should be applied. The mid-life adjustment should be applied in year 6 (i.e., after five years of full savings) and is calculated as 28%. This results in a consistent lifetime savings as applying a 50% reduction to the technical lifetime. This adjustment should be applied to both electric and therm heating savings.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-HVC-PROG-V09-250101

REVIEW DEADLINE: 1/1/2029

of Programmable Thermostats", US DOW Building Technologies Program, December 2012, p35; "low proportion of households that ended up using thermostat-enabled energy saving settings", and Meier et al., "Usability of residential thermostats: Preliminary investigations", Lawrence Berkeley National Laboratory, March 2011, p1; "The majority of occupants operated thermostats manually, rather than relying on their programmable features and almost 90% of respondents reported that they rarely or never adjusted the thermostat to set a weekend or weekday program. Photographs of thermostats were collected in one on-line survey, which revealed that about 20% of the thermostats displayed the wrong time and that about 50% of the respondents set their programmable thermostats on "long term hold" (or its equivalent)."

5.3.12 Ductless Heat Pumps – Removed in v12

Measure now combined with 5.3.1 Air Source Heat Pump (Centrally Ducted and Ductless)

5.3.13 Residential Furnace Tune-Up

DESCRIPTION

This measure is for a natural gas Residential furnace that provides space heating. The tune-up will improve furnace performance by inspecting, cleaning and adjusting the furnace and appurtenances for correct and efficient operation. Additional savings maybe realized through a complete system tune-up.

This measure was developed to be applicable to the following program types: RF.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure an approved technician must complete the tune-up requirements listed below:⁶⁶⁷

- Measure combustion efficiency using an electronic flue gas analyzer
- Check and clean blower assembly and components per manufacturer's recommendations
- Where applicable Lubricate motor and inspect and replace fan belt if required
- Inspect for gas leaks
- Clean burner per manufacturer's recommendations and adjust as needed
- Check ignition system and safety systems and clean and adjust as needed
- Check and clean heat exchanger per manufacturer's recommendations
- Inspect exhaust/flue for proper attachment and operation
- Inspect control box, wiring and controls for proper connections and performance
- Check air filter and clean or replace per manufacturer's
- Inspect duct work connected to furnace for leaks or blockages
- Measure temperature rise and adjust flow as needed
- Check for correct line and load volts/amps
- Check thermostat operation is per manufacturer's recommendations(if adjustments made, refer to 'Residential Programmable Thermostat' measure for savings estimate)
- Perform Carbon Monoxide test and adjust heating system until results are within standard industry acceptable limits

DEFINITION OF BASELINE EQUIPMENT

The baseline is furnace assumed not to have had a tune-up in the past 3 years.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The measure life for the clean and check tune up is 3 years. 668

DEEMED MEASURE COST

The incremental cost for this measure should be the actual cost of tune up.

DEEMED O&M COST ADJUSTMENTS

There are no expected O&M savings associated with this measure.

⁶⁶⁷ American Standard Maintenance for Indoor Units (see 'HVAC Maintenance American Standard')

⁶⁶⁸ Assumed consistent with other tune-up measures.

LOADSHAPE

Loadshape R09 - Residential Electric Space Heat

COINCIDENCE FACTOR

N/A

Algorithms

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

 ΔkWh = $\Delta Therms * F_e * 29.3$

Where:

ΔTherms = as calculated below

F_e = Furnace Fan energy consumption as a percentage of annual fuel consumption

= 3.14%⁶⁶⁹

= kWh per therm

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

FOSSIL FUEL SAVINGS

 $\Delta Therms = \frac{(CAPInputPre * EFLH * (1/ Effbefore - 1/ (Effbefore + Ei)))}{100,000}$

Where:

CAPInput_{Pre} = Gas Furnace input capacity pre tune-up (Btuh)

= Measured input capacity from HVAC SAVE

EFLH = Equivalent Full Load Hours for heating

Climate Zone (City based upon)	EFLH ⁶⁷⁰	
1 (Rockford)	1022	
2 (Chicago)	976	
3 (Springfield)	836	
4 (Belleville)	645	
5 (Marion)	656	
Weighted Average ⁶⁷¹		

 $^{^{669}}$ F_e is not one of the AHRI certified ratings provided for residential furnaces, but can be reasonably estimated from a calculation based on the certified values for fuel energy (Ef in MMBtu/yr) and Eae (kWh/yr). An average of a 300 record sample (non-random) out of 1495 was 3.14%. This is, appropriately, ~50% greater than the ENERGY STAR version 3 criteria for 2% F_e. See "Programmable Thermostats Furnace Fan Analysis.xlsx" for reference.

⁶⁷⁰ Full load hours for Chicago, are based on findings in 'Energy Efficiency / Demand Response Nicor Gas Plan Year 1 (6/1/2011-5/31/2012) Research Report: Furnace Metering Study (August 1, 2013), prepared by Navigant Consulting, Inc. Values for other cities are then calculated by comparing relative HDD at base 60F.

⁶⁷¹ Weighting for Ameren is based on gas accounts in each of the heating zones. Weighting for ComEd and Statewide average is based on number of occupied residential housing units in each zone. ComEd is weighted average of Zones 1-2. Alternative program-weighted assumptions can be used if appropriate.

Climate Zone (City based upon)	EFLH ⁶⁷⁰	
ComEd	978	
Ameren	800	
Statewide	928	

Effbefore = Efficiency of the furnace before the tune-up

= Actual

Note: Contractors should select a mid-level firing rate that appropriately represents the average building operating condition over the course of the heating season and take readings at a consistent firing rate for pre and post tune-up.

EI = Efficiency Improvement of the furnace tune-up measure

= Actual

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-HVC-FTUN-V08-240101

REVIEW DEADLINE: 1/1/2025

5.3.14 Boiler Reset Controls

DESCRIPTION

This measure relates to improving system efficiency by adding controls to residential heating boilers to vary the boiler entering water temperature relative to heating load as a function of the outdoor air temperature to save energy. The water can be run a little cooler during fall and spring, and a little hotter during the coldest parts of the winter. A boiler reset control has two temperature sensors - one outside the house and one in the boiler water. As the outdoor temperature goes up and down, the control adjusts the water temperature setting to the lowest setting that is meeting the house heating demand. There are also limits in the controls to keep a boiler from operating outside of its safe performance range.⁶⁷²

This measure was developed to be applicable to the following program types: RF.

DEFINITION OF EFFICIENT EQUIPMENT

Natural gas single family residential customer adding boiler reset controls capable of resetting the boiler supply water temperature in an inverse fashion with outdoor air temperature. The system must be set so that the minimum temperature is not more than 10 degrees above manufacturer's recommended minimum return temperature. This boiler reset measure is limited to existing condensing boilers serving a single family residence. Boiler reset controls for non-condensing boilers in single family residences should be implemented as a custom measure, and the cost-effectiveness should be confirmed.

DEFINITION OF BASELINE EQUIPMENT

Existing condensing boiler in a single family residential setting without boiler reset controls.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The life of this measure is 16 years, which is assumed to be the remaining life of the existing boiler.⁶⁷³

DEEMED MEASURE COST

The cost of this measure is \$612.674

LOADSHAPE

NA

COINCIDENCE FACTOR

N/A

Algorithm

⁶⁷² Energy Solutions Center, a consortium of natural gas utilities, equipment manufacturers and vendors, See 'Boiler Reset Control – NaturalGasEfficiency.org'.

⁶⁷³ This is intentionally longer than the assumptions found in the early replacement residential HVAC measures as the application of boiler reset controls will occur in a variety of homes that will not be targeted for early replacement HVAC systems.

⁶⁷⁴ Nexant. Questar DSM Market Characterization Report. August 9, 2006.

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

N/A

SUMMER COINCIDENT PEAK DEMAND SAVINGS

NA

FOSSIL FUEL SAVINGS

ΔTherms = Gas Boiler Load * (1/AFUE) * Savings Factor

Where:

Gas Boiler Load⁶⁷⁵

= Estimate of annual household Load for gas boiler heated single-family homes. If location is unknown, assume the average below. 676

= or Actual if informed by site-specific load calculations, ACCA Manual J, or equivalent. 677

Climate Zone	Gas_Boiler Load	
(City based upon)	(therms)	
1 (Rockford)	1275	
2 (Chicago)	1218	
3 (Springfield)	1043	
4 (Belleville)	805	
5 (Marion)	819	
Average	1158	

AFUE = Existing Condensing Boiler Annual Fuel Utilization Efficiency Rating

= Actual. If unknown, default to 90%.678

= Savings Factor, 5%⁶⁷⁹ SF

⁶⁷⁵ Boiler consumption values are informed by an evaluation which did not identify any fraction of heating load due to domestic hot water (DHW) provided by the boiler. Thus these values are an average of both homes with boilers only providing heat, and homes with boilers that also provide DHW. Heating load is used to describe the household heating need, which is equal to (gas heating consumption * AFUE)

⁶⁷⁶ Values are based on household heating consumption values and inferred average AFUE results from Table 3-4, Program Sample Analysis, Nicor R29 Res Rebate Evaluation Report 092611 REV FINAL to Nicor). Adjusting to a statewide average using relative HDD values to adjust for the evaluation results focus on northern region. Values for individual cities are then calculated by comparing average HDD to the individual city's HDD.

⁶⁷⁷ The Air Conditioning Contractors of America Manual J, Residential Load Calculation 8th Edition produces equipment sizing loads for Single Family, Multi-single, and Condominiums using input characteristics of the home. A best practice for equipment selection and installation of Heating and Air Conditioning, load calculations should be completed by contractors during the selection process and may be readily available for program data purposes.

⁶⁷⁸ Condensing boilers typically have an AFUE greater than 90%. This is also a consistent assumption with the '5.3.6 High Efficiency Boiler' measure.

⁶⁷⁹ Energy Solutions Center, a consortium of natural gas utilities, equipment manufacturers and vendors. See 'Boiler Reset Control - NaturalGasEfficiency.org'. This savings value is also supported by Cadmus impact evaluation for the Electric and Gas Program Administrators of Massachusetts: Cadmus, Home Energy Services Impact Evaluation, August 2012.

For example, boiler reset controls on a 92.5 AFUE boiler at a household in Rockford, IL

 Δ Therms = 1275 * (1/0.925) * 0.05

= 69 Therms

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-HVC-BREC-V04-240101

REVIEW DEADLINE: 1/1/2027

5.3.15 ENERGY STAR Ceiling Fan

DESCRIPTION

A ceiling fan/light unit meeting the efficiency specifications of ENERGY STAR version 4.0 is installed in place of a model meeting the federal standard. ENERGY STAR qualified ceiling fan/light combination units are over 60% more efficient than conventional fan/light units and use improved motors and blade designs.

Due to the savings from this measure being derived from more efficient ventilation and more efficient lighting, and the loadshape and measure life for each component being very different, the savings are split into the component parts and should be claimed together. Lighting savings should be estimated utilizing the 5.5.9 LED Fixtures measure.

This measure was developed to be applicable to the following program types: TOS, NC, RF.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient equipment is defined as an ENERGY STAR certified ceiling fan with integral CFL or LED bulbs. Upon review of the ENERGY STAR Qualified Products List, it was determined that 91% of ceiling fans with integrated light kits leverage LED lamps; with the remaining 9% using CFLs.⁶⁸⁰ Concurrently, ENERGY STAR criteria require ceiling fans with light kits to provide the consumer with either CFLs or LEDs. In the cases where light kits require screw-base sockets, the efficient lamps have to be included in the packaging of the ceiling fan.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is assumed to be a standard fan with efficient incandescent or halogen light bulbs. Production of 100W, standard efficacy incandescent lamps ended in 2012 followed by restrictions on 75W in 2013 and 60W and 40W in 2014, due to the Energy Independence and Security Act of 2007 (EISA). Finally, a provision in the EISA regulations requires that by January 1, 2020, all lamps meet efficiency criteria of at least 45 lumens per watt, in essence making the baseline equivalent to a current day CFL. Therefore the measure life (number of years that savings should be claimed) for the lighting portion of the savings should be reduced once the assumed lifetime of the bulb exceeds 2020. Due to expected delay in clearing retail inventory and to account for the operating life of a halogen incandescent potentially spanning over 2020, this shift is assumed not to occur until 2021.

Effective January 21, 2020, all ceiling fan light kits manufactured after this date must be packaged with lamps to fill all screw-base sockets, further limiting the potential for inefficient light bulbs to be utilized. Additionally, ceiling fan light kits with pin-based sockets for fluorescent lamps must use electronic ballasts. Integrated ceiling fan light kits must adhere to the same lighting efficiency requirements.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The fan savings measure life is assumed to be 10 years. 681

The lighting savings measure life is assumed to be 1 year for lighting savings for units installed in 2020 (see 5.5.9 LED Fixtures measure). 682

DEEMED MEASURE COST

Incremental cost of a ceiling fan with light kit is \$46.

⁶⁸⁰ ENERGY STAR version 4.0, Product Specification for Residential Ceiling Fans and Ceiling Fan Light Kits, effective June 15, 2018. Qualified Products List data pulled on 5/5/2022.

⁶⁸¹ Lifetime estimate is sourced from the ENERGY STAR Ceiling Fan Savings Calculator.

⁶⁸² Since the replacement baseline bulb from 2020 on will be equivalent to a CFL, no additional savings should be claimed from that point. Due to expected delay in clearing stock from retail outlets and to account for the operating life of a halogen incandescent potentially spanning over 2020, this shift is assumed not to occur until 2021.

Incremental cost of only a ceiling fan is \$30.71. 683

LOADSHAPE

R06 - Residential Indoor Lighting

R11 - Residential Ventilation

COINCIDENCE FACTOR

The summer peak coincidence factor for the ventilation savings is assumed to be 30%. 684

For lighting savings, see 5.5.9 LED Fixtures measure.

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 ΔkWh = $\Delta kWh_{fan} + \Delta kWh_{Light}$

ΔkWh_{fan} = [Days * FanHours * ((%Low_{base} * WattsLow_{base}) + (%Med_{base} * WattsMed_{base}) + (%High_{base}

* WattsHigh_{base}))/1000] - [Days * FanHours * ((%Low_{ES} * WattsLow_{ES}) + (%Med_{ES} *

WattsMedes) + (%Highes * WattsHighes))/1000]

 ΔkWh_{light} = see 5.5.9 LED Fixtures measure.

Where:685

Days = Days used per year

= Actual. If unknown use 365.25 days/year

FanHours = Daily Fan "On Hours"

= Actual. If unknown use 3 hours

%Low_{base} = Percent of time spent at Low speed of baseline

= 40%

WattsLow_{base} = Fan wattage at Low speed of baseline

= Actual. If unknown use 15 watts

%Med_{base} = Percent of time spent at Medium speed of baseline

= 40%

WattsMed_{base} = Fan wattage at Medium speed of baseline

⁶⁸³ The incremental cost of \$46 is sourced from the ENERGY STAR Ceiling Fan Savings Calculator, which is based on a ceiling fan and a light kit. In order to determine the incremental cost of only a ceiling fan, the incremental cost of the lights were factored in and removed accordingly. Through review of the ENERGY STAR Qualified Products List, accessed on October 11, 2018, the average ceiling fan LED light kit had 1.2 lamps, with an average wattage of 11.8W. The comparable baseline wattage, baseline cost, and efficient lamp cost is based on a scaled equivalence from the 5.5.9 LED Fixtures measure.

⁶⁸⁴ Assuming that the CF same as a Room AC. Consistent with coincidence factors found in: RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008.

⁶⁸⁵ All fan operating conditions and baseline default assumptions are based upon assumptions provided in the ENERGY STAR Ceiling Fan Savings Calculator. The efficient wattages at the low and high speed settings are sourced from the average of available products on the ENERGY STAR Qualified Products List (QPL), as pulled on 5/5/2022. The efficient wattage at the medium speed is interpolated based on the varying speed wattages from the ENERGY STAR version 4.0 specifications. For more information on the QPL data set, please see "Illinois Residential Ceiling Fan Analysis_2022.xlsx".

= Actual. If unknown use 34 watts

%High_{base} = Percent of time spent at High speed of baseline

= 20%

WattsHigh_{base} = Fan wattage at High speed of baseline

= Actual. If unknown use 67 watts

%LowES = Percent of time spent at Low speed of ENERGY STAR

= 40%

WattsLow_{ES} = Fan wattage at Low speed of ENERGY STAR

= Actual. If unknown use 5 watts

%Med_{ES} = Percent of time spent at Medium speed of ENERGY STAR

= 40%

WattsMed_{ES} = Fan wattage at Medium speed of ENERGY STAR

= Actual. If unknown use 14 watts

%High_{ES} = Percent of time spent at High speed of ENERGY STAR

= 20%

WattsHigh_{ES} = Fan wattage at High speed of ENERGY STAR

= Actual. If unknown use 32 watts

For ease of reference, the fan assumptions are provided below in table form:

	Low Speed	Medium Speed	High Speed
Percent of Time at Given Speed	40%	40%	20%
Conventional Unit Wattage	15	34	67
ENERGY STAR Unit Wattage	5	14	32
ΔW	10	20	35

If the lighting WattsBase and WattsEE is unknown, assume the following: 686

WattsBase =1.2 x 46.5 = 55.8 W

WattsEE = 1.2 x 17.3 = 20.1 W

For example, an ENERGY STAR ceiling fan with one, 22.4W LED lamp as part of its light kit were purchased and installed to replace an existing ceiling fan that was no longer operational, the savings are:

 ΔkWh_{fan} = [365.25*3*((0.4*15)+(0.4*34)+(0.2*67))/1000] -

[365.25*3*((0.4*5)+(0.4*14)+(0.2*32))/1000]

= 36.2 - 15.3 = 20.9 kWh

 Δ kWh_{light} =((88.5 – 22.4)/1000) *759 * 1.06

= 53.2 kWh

 Δ kWh = 20.9+53.2= 74.1 kWh

⁶⁸⁶ Through review of the ENERGY STAR Qualified Products List, accessed on May 5, 2022, the average ceiling fan LED light kit had 1.2 lamps, with an average wattage of 17.3 W. The comparable baseline is based on a scaled equivalent wattage from the 5.5.9 LED Fixtures measure.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kW_{Fan} + \Delta kW_{light}$

 $\Delta kW_{Fan} = ((WattsHigh_{base} - WattsHigh_{ES})/1000) * CF_{fan}$

 ΔkW_{Light} = see 5.5.9 LED Fixtures measure.

Where:

CF_{fan} = Summer Peak coincidence factor for ventilation savings

= 30%687

CF_{light} = Summer Peak coincidence factor for lighting savings

 $=7.1\%^{688}$

For example, an ENERGY STAR ceiling fan with one 22.4W LED lamp as part of its light kit were purchased and installed to replace an existing ceiling fan that was no longer operational, the savings are:

 $\Delta kW_{fan} = ((67-32)/1000) * 0.3$

= 0.0105 kW

 $\Delta kW_{light} = ((88.5 - 22.4)/1000) * 1.11 * 0.071$

= 0.0052 kW

 Δ kW = 0.0105 + 0.0052

= 0.016 kW

FOSSIL FUEL SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

See 5.5.9 LED Fixtures measure for bulb replacement costs.

MEASURE CODE: RS-HVC-CFAN-V04-230101

REVIEW DEADLINE: 1/1/2026

⁶⁸⁷ Assumes the CF is the same as a Room AC. Consistent with coincidence factors found in: RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008.

⁶⁸⁸ Based on lighting logger study conducted as part of the PY5/6 ComEd Residential Lighting Program evaluation.

5.3.16 Advanced Thermostats

DESCRIPTION

This measure characterizes the household energy savings from the installation of a new thermostat(s) for reduced heating and cooling consumption through a configurable schedule of temperature setpoints (like a programmable thermostat) and automatic variations to that schedule to better match HVAC system runtimes to meet occupant comfort needs. These schedules may be defaults, established through user interaction, and be changed manually at the device or remotely through a web or mobile app. Automatic variations to that schedule could be driven by local sensors and software algorithms, and/or through connectivity to an internet software service. Data triggers to automatic schedule changes might include, for example: occupancy/activity detection, arrival & departure of conditioned spaces, optimization based on historical or population-specific trends, weather data and forecasts. 689 This class of products and services are relatively new, diverse, and rapidly changing. Generally, the savings expected for this measure aren't yet established at the level of individual features, but rather at the system level and how it performs overall. Like programmable thermostats, it is not suitable to assume that heating and cooling savings follow a similar pattern of usage and savings opportunity, and so here too this measure treats these savings independently. Note that this is an active area of ongoing work to better map features to savings value, and establish standards of performance measurement based on field data so that a standard of efficiency can be developed. 690 Since energy savings are applicable at the household level, savings should only be claimed for one thermostat of any type (i.e., one programmable thermostat or one advanced thermostat), and installation of multiple thermostats per home does not accrue additional savings.

Note that though these devices and service could potentially be used as part of a demand response program, the costs, delivery, impacts, and other aspects of DR-specific program delivery are not included in this characterization at this time, though they could be added in the future.

This measure was developed to be applicable to the following program types: TOS, NC, RF, DI.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The criteria for this measure are established by replacement of a manual-only or programmable thermostat, with one that has the default enabled capability—or the capability to automatically—establish a schedule of temperature setpoints according to driving device inputs above and beyond basic time and temperature data of conventional programmable thermostats. As summarized in the description, this category of products and services is broad and rapidly advancing in regard to their capability, usability, and sophistication, but at a minimum must be capable of two-way communication⁶⁹¹ and exceed the typical performance of manual and conventional programmable thermostats through the automatic or default capabilities described above.

DEFINITION OF BASELINE EQUIPMENT

The baseline is either the actual type (manual or programmable) if it is known,⁶⁹² or an assumed mix of these two types based upon information available from evaluations or surveys that represent the population of program

2025 IL TRM v13.0 Vol. 3 September 20, 2024 FINAL

⁶⁸⁹ For example, the capabilities of products and added services that use ultrasound, infrared, or geofencing sensor systems, automatically develop individual models of home's thermal properties through user interaction, and optimize system operation based on equipment type and performance traits based on weather forecasts demonstrate the type of automatic schedule change functionality that apply to this measure characterization.

⁶⁹⁰ The ENERGY STAR program released version 1.0 of its Connected Thermostats Specification in 2017. Details and active discussion can be found on ENERGY STAR website; 'Connected Thermostats Specifications v1.0'.

⁶⁹¹ This measure recognizes that field data may be available, through this 2-way communication capability, to better inform characterization of efficiency criteria and savings calculations. It is recommended that program implementations incorporate this data into their planning and operation activities to improve understanding of the measure to manage risks and enhance savings results.

⁶⁹² If the actual thermostat is programmable and it is found to be used in override mode or otherwise effectively being operated like a manual thermostat, then the baseline may be considered to be a manual thermostat.

participants. This mix may vary by program, but as a default, 51% programmed programmable and 49% manual or non-programmed programmable thermostats may be assumed. 693

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life for advanced thermostats is assumed to be 11 years. 694

DEEMED MEASURE COST

For DI and other programs for which installation services are provided, the actual material, labor, and other costs should be used. For retail, Bring Your Own Thermostat (BYOT) programs, ⁶⁹⁵ or other program types, actual costs are still preferable,⁶⁹⁶ but if unknown, then the average incremental cost for the new installation measure is assumed to be \$79.697

LOADSHAPE

ΔkWh → Loadshape R10 - Residential Electric Heating and Cooling

 $\Delta kWh_{heating}$ → Loadshape R09 - Residential Electric Space Heat

→ Loadshape R08 - Residential Cooling $\Delta kWh_{cooling}$

COINCIDENCE FACTOR

In the absence of conclusive results from empirical studies on peak savings, the TAC agreed to a temporary assumption of 50% of the cooling coincidence factor, acknowledging that while the savings from the advanced Thermostat will track with the cooling load, the impact during peak periods may be lower. This is an assumption that could use future evaluation to improve these estimates.

CFSSP = Summer System Peak Coincidence Factor for Central A/C (during system peak hour)

= PJM Summer Peak Coincidence Factor for Central A/C (average during PJM peak period) **CF**_{PJM}

= 23.3%699

⁶⁹³ Based on Opinion Dynamics Corporation, "ComEd Residential Saturation/End Use, Market Penetration & Behavioral Study", Appendix 3: Detailed Mail Survey Results, p34, April 2013.

⁶⁹⁴ Based on 2017 Residential Smart Thermostat Workpaper, prepared by SCE and Nest for SCE (Work Paper SCE17HC054, Revision #0). Estimate ability of smart systems to continue providing savings after disconnection and conduct statistical survival analysis which yields 9.2-13.8 year range.

⁶⁹⁵ In contrast to program designs that utilize program affiliated contractors or other trade ally partners that support customer participation through thermostat distribution, installation and other services , BYOT programs enroll customers after the time of purchase through online rebate and program integration sign-ups.

⁶⁹⁶ Including any one-time software integration or annual software maintenance, and or individual device energy feature fees. ⁶⁹⁷ Market prices vary considerably in this category, generally increasing with thermostat capability and sophistication. The core suite of functions required by this measure's eligibility criteria are available on units readily available in the market roughly in the range of \$100 and \$150, excluding the availability of time or market-limited wholesale or volume pricing. Analysis of the 2021 Pricing data from AIC's Retail Products Program finds an average retail cost of \$129 for Advanced Thermostats. The assumed cost for the baseline equipment (blend of manual and programmable thermostats) is \$50 which leads to an incremental cost of \$79 for the measure. See AIC_RetailProducts_2021Costdata_AdvThermostats_051322.xlsx for analysis of the AIC program data. Note that any add-on energy service costs, which may include one-time setup and/or annual per device costs are not included in this assumption.

⁶⁹⁸ Assumes 50% of the cooling coincidence factor (based on metering of 24 homes with central AC during PY4 and PY5 in Ameren Illinois service territory).

⁶⁹⁹ Assumes 50% of the cooling coincidence factor (based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.)

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 ΔkWh^{700} = $\Delta kWh_{heating} + \Delta kWh_{cooling}$

ΔkWh_{heating} = %ElectricHeat * Elec_Heating_Consumption * Heating_Reduction * HF *

Eff_ISR_Heat + (Δ Therms * F_e * 29.3)

ΔkWh_{cool} = %AC*((FLH * Capacity * 1/SEER2)/1000) * Cooling Reduction * Eff ISR Cool

Where:

%ElectricHeat = Percentage of heating savings assumed to be electric

Heating fuel	%ElectricHeat
Electric	100%
Natural Gas	0%
Unknown	3% ⁷⁰¹

Elec Heating Consumption

= Estimate of annual household heating consumption for electrically heated homes. ⁷⁰² If location and heating type is unknown, assume 15,683 kWh. ⁷⁰³

Climate Zone (City based upon)	Electric Resistance Elec_Heating_ Consumption (kWh)	Electric Heat Pump Elec_Heating_ Consumption (kWh)
1 (Rockford)	21,748	12,793
2 (Chicago)	20,777	12,222
3 (Springfield)	17,794	10,467
4 (Belleville)	13,726	8,074
5 (Marion)	13,970	8,218
Average	19,749	11,617

Heating Reduction

= Assumed percentage reduction in total household heating energy consumption due to advanced thermostat including accounting for Thermostat

⁷⁰⁰ Electrical savings are a function of both heating and cooling energy usage reductions. For heating this is a function of the percent of electric heat (heat pumps) and fan savings in the case of a natural gas furnace.

⁷⁰¹ Value used is based on known PY8 percent of electric heat provided by Navigant as part of the ongoing evaluation work source: "Slide 21: May 22, 2018, Second Addendum IL TRM Advanced Thermostat Cooling Savings Evaluation"

⁷⁰² Values in table are based on converting an average household heating load (834 therms) for Chicago based on 'Table E-1, Energy Efficiency/Demand Response Nicor Gas Plan Year 1: Research Report: Furnace Metering Study, Draft, Navigant, August 1 2013 to an electric heat load (divide by 0.03412) to electric resistance and ASHP heat load (resistance load reduced by 15% to account for distribution losses that occur in furnace heating but not in electric resistance while ASHP heat is assumed to suffer from similar distribution losses) and then to electric consumption assuming efficiencies of 100% for resistance and 200% for HP (see 'Household Heating Load Summary Calculations_08222018.xls'). Finally these values were adjusted to a statewide average using relative HDD assumptions to adjust for the evaluation results focus on northern region. Values for individual cities are then calculated by comparing average HDD to the individual city's HDD.

⁷⁰³ Assumption that 1/2 of electrically heated homes have electric resistance and 1/2 have Heat Pump, based on 2010 Residential Energy Consumption Survey for Illinois.

Optimization services⁷⁰⁴

Existing Thermostat Type	Heating_Reduction ⁷⁰⁵
Manual	10.2%
Programmable	7.1%
Unknown (Blended)	8.5%

HF = Household factor, to adjust heating consumption for non-single-family households.

Household Type	HF
Single-Family	100%
Mobile home	83% ⁷⁰⁶
Multifamily	65% ⁷⁰⁷
Actual	Custom ⁷⁰⁸
Unknown	96.5% ⁷⁰⁹

Use Multifamily if: Building meets utility's definition for multifamily and system serves single unit. For residential sized systems serving 2 or more units, assume single family hours. For central systems use Volume 2 Commercial and Industrial Measures.

Eff ISR Heat

= Effective In-Service Rate for heating, the percentage of thermostats installed and configured effectively for 2-way communication. Note that retrospective adjustments should be made during evaluation verification activities through the use of a realization rate if the program design does not ensure that each advanced thermostat is actually installed and/or if the evaluation determines that the advanced thermostat is not actually installed in the Program Administrator's service territory.

Program Delivery	Eff_ISR_Heat
Direct Install	100%

⁷⁰⁴ This estimate is based on a consumption data analysis with matching to non-participants and is therefore net with respect to participant spillover and between net and gross with respect to free ridership. Like all consumption data analyses, it is gross with respect to non-participant spillover. For more detail, see Table 5-3 in Volume 4 of the IL-TRM. Consistent with Section 7.2 of the Illinois EE Policy Manual, applicable net-to-gross adjustments to these factors will be determined as part of the annual SAG net-to-gross process.

⁷⁰⁵ These values represent adjusted baseline savings values (8.8% for manual, and 5.6% for programmable thermostats) as presented in Navigant's PowerPoint on Impact Analysis from Preliminary Gas savings findings (slide 28 of 'IL SAG Smart Thermostat Preliminary Gas Impact Findings 2015-12-08 to IL SAG.ppt'), and incorporate any inherent in service rate impact. These values are adjusted upwards in v9 to account for inclusion of Thermostat Optimization savings in an estimated 40% of future participants (based on reported share of Nest and ecobee participants and 2020 rates of Thermostat Optimization and including an assumed 90% ISR consistent with the Guidehouse cooling savings study). The basis for the Thermostat Optimization savings is Navigant "ComEd CY2018 Seasonal Savings Heating Season Impact Evaluation Report", March 2019.

These values are used as the basis for the weighted average savings value when the type of existing thermostat is not known. Using weightings updated from PY8 data, based upon baseline type, and allocating programmability into manual and programmable based upon programmed status yields a weighted new blend of 43% manual (or non-programmed programmable) and 57% programmed. Further evaluation and regular review of this key assumption is encouraged.

⁷⁰⁶ Since mobile homes are similar to Multifamily homes with respect to conditioned floor area but to single-family homes with respect to exposure (i.e., all four wall orientations are adjacent to the outside), this factor is estimated as an average of the single family and multifamily household factors.

⁷⁰⁷ Multifamily household heating consumption relative to single-family households is affected by overall household square footage and exposure to the exterior. This 65% reduction factor is applied to MF homes, based on professional judgment that average household size, and heat loads of MF households are smaller than single-family homes

⁷⁰⁸ Program-specific household factors may be utilized on the basis of sufficiently validated program evaluations.

 $^{^{709}}$ When Household type is unknown, a value of 96.5% may be used as a weighted average of 90% SF and 10% MF (96.5% = 100%*90% + 65%*10%) based on a Navigant evaluation of PY8 participants in ComEd's advanced thermostat program.

Program Delivery	Eff_ISR_Heat
Self-install with Thermostat provided	54% ⁷¹⁰
free of charge	
Other programs where not evaluated	100% ⁷¹¹

ΔTherms = Therm savings if Natural Gas heating system

= See calculation in Fossil Fuel section below

Fe = Furnace Fan energy consumption as a percentage of annual fuel consumption

 $= 3.14\%^{712}$

29.3 = kWh per therm

%AC = Fraction of customers with thermostat-controlled air-conditioning

Thermostat control of air conditioning?	%AC ⁷¹³
Yes	100%
No	0%
Unknown (AC-targeted program)	99%
Unknown (general program)	82.5%

FLH

= Estimate of annual household full load cooling hours for air conditioning equipment based on location and home type. If climate zone is unknown, assume the weighted average for the relevant home type. If both climate zone and home type are unknown, assume 723 hours.⁷¹⁴

Climate zone (city based upon)	FLH (single family) 715	FLH (general multifamily) ⁷¹⁶	FLH_cooling (weatherized multifamily) 717
1 (Rockford)	547	499	320
2 (Chicago)	709	629	403

⁷¹⁰ The 2022 and 2023 Opinion Dynamics evaluations showed that many single family participants who signed up to receive a self-install advanced thermostat did not install it. The value represents an average of the two evaluation years.

⁷¹¹ As a function of the method for determining savings impact of these devices, in-service rate effects are already incorporated into the savings value for heating_reduction above.

 $^{^{712}}$ F_e is not one of the AHRI certified ratings provided for residential furnaces, but can be reasonably estimated from a calculation based on the certified values for fuel energy (Ef in MMBTU/yr) and Eae (kWh/yr). An average of a 300 record sample (non-random) out of 1495 was 3.14%. This is, appropriately, ~50% greater than the ENERGY STARversion 3 criteria for 2% F_e. See "Programmable Thermostats Furnace Fan Analysis.xlsx" for reference.

⁷¹³ 99% of ComEd PY8 program participants (AC targeted programs) have Central AC per communication with Navigant's ongoing 2017/2018 cooling savings evaluation. Non-targeted programs are still expected to have participation with %AC above general population rates. 82.5% is an average of the 99% program participation rate, and the 66% of homes in Illinois having central cooling ("Table HC7.9 Air Conditioning in Homes in Midwest Region, Divisions, and States, 2009 from Energy Information Administration", 2009 Residential Energy Consumption Survey;

⁷¹⁴ When both climate zone and home type are unknown, a value of 723 hours may be used as a weighted average of 90% SF and 10% MF (723 = 731*90% + 655*10%) based on a Navigant evaluation of PY8 participants in ComEd's advanced thermostat program.

⁷¹⁵ Full load hours for Chicago, Moline and Rockford are provided in "Final Evaluation Report: Central Air Conditioning Efficiency Services (CACES), 2010, Navigant Consulting", p.33. An average FLH/Cooling Degree Day (from NCDC) ratio was calculated for these locations and applied to the CDD of the other locations in order to estimate FLH. There is a county mapping table in Volume 1, Section 3.7 providing the appropriate city to use for each county of Illinois.

⁷¹⁶ Ibid.

⁷¹⁷ All-Electric Homes PY6 Metering Results: Multifamily HVAC Systems, Cadmus, October 2015

Climate zone (city based upon)	FLH (single family) 715	FLH (general multifamily) ⁷¹⁶	FLH_cooling (weatherized multifamily) 717
3 (Springfield)	779	707	453
4 (Belleville)	1082	982	630
5 (Marion/Murphysboro)	956	868	557
Weighted Average ⁷¹⁸			
ComEd	676	603	386
Ameren	875	791	507
Statewide	731	655	420

Use Multifamily if: Building meets utility's definition for multifamily and system serves single unit. For residential sized systems serving 2 or more units, assume single family hours. For central systems use Volume 2 Commercial and Industrial Measures.

Capacity

- = Size of AC unit. (Note: One refrigeration ton is equal to 12,000 Btu/hr)
- = Use actual when program delivery allows size of AC unit to be known. If unknown assume 33,600 Btu/hr for single family homes, 28,000 Btu/hr for multifamily or 24,000 Btu/hr for mobile homes. Tie building type is unknown, assume 33,040 Btu/hr.

SEER2

- = the cooling equipment's Seasonal Energy Efficiency Ratio rating (kBtu/kWh)
- = Use actual SEER2 rating where it is possible to measure or reasonably estimate. If using rated efficiencies, derate efficiency value by 1% per year (maximum of 30 years) to account for degradation over time, ⁷²¹. If unknown, use the following assumption (do not derate further by age):

Cooling System	SEER2 ⁷²²
Air Source Heat Pump	11 4
Central AC	11.4

1/1000

= kBtu per Btu

Cooling_Reduction

= Assumed average percentage reduction in total household cooling energy consumption due to installation of advanced thermostat including accounting for Thermostat Optimization:⁷²³

⁷¹⁸ Weighted based on number of occupied residential housing units in each zone. Weighting for Ameren is based on electric accounts in each of the cooling zones. Weighting for ComEd and Statewide average is based on number of occupied residential housing units in each zone. ComEd is weighted average of Zones 1-2. Alternative program-weighted assumptions can be used if appropriate.

⁷¹⁹ Single family cooling capacity based on Final Evaluation Report: Central Air Conditioning Efficiency Services (CACES), October 19, 2010, ComEd, Navigant Consulting. Multifamily capacity based on weighted average of PY9 Ameren and ComEd MF cooling capacities. Mobile home capacity based on ENERGY STAR's Manufactured Home Cooling Equipment Sizing Guidelines which vary by climate zone and home size. The average size of a mobile home in the East North Central region (1,120 square feet) from the 2015 RECS data is used to calculated appropriate size.

⁷²⁰ Unknown is based on statewide weighted average of 90% single family and 10% multifamily, based on a Navigant evaluation of PY8 participants in ComEd's advanced thermostat program.

⁷²¹ Justification for degradation factors can be found on page 14 of 'AIC HVAC Metering Study Memo FINAL 2_28_2018'. Estimate efficiency as (Rated Efficiency * (1-0.01)^Equipment Age).

⁷²² Estimate based upon Navigant, 2018 "EIA – Technology Forecast Updates – Residential and Commercial Building Technologies – Reference Case", converted to SEER2.

⁷²³ Note that "Cooling_Reduction" percentage is the savings expected from reduced cooling use, and is not the same as % cooling savings that are based on total kWh saved (including fan and heating kWh savings) as a percent of total kWh used for cooling.

= 8.4% ⁷²⁴

Eff_ISR_Cool

= Effective In-Service Rate for cooling, the percentage of thermostats installed and configured effectively for 2-way communication. Note that retrospective adjustments should be made during evaluation verification activities through the use of a realization rate if the program design does not ensure that each advanced thermostat is actually installed and/or if the evaluation determines that the advanced thermostat is not actually installed in the Program Administrator's service territory.

Program Delivery	Eff_ISR_Cool
Direct Install	100%
Self-install with Thermostat provided 54% ⁷²⁵	
free of charge	
Other programs where not evaluated	90% ⁷²⁶

For example, an advanced thermostat replacing a programmable thermostat direct-installed in an electric heat pump heated, single-family home in Springfield with advanced thermostat-controlled air conditioning of a system of unknown size and seasonal efficiency rating:

```
\DeltakWH = \DeltakWh<sub>heating</sub> + \DeltakWh<sub>cooling</sub>

= 1 * 10,464 * 7.1% * 100% * 100% + (0 * 0.0314 * 29.3) + 100% * ((779 * 33,600 * (1/11.4))/1000) * 8.4% * 100%

= 743kWh + 193 kWh

= 936 kWh
```

SUMMER COINCIDENT PEAK DEMAND SAVINGS

ΔkW = %AC * (Cooling_DemandReduction * Btu/hr * (1/EER2)/1000) * EFF_ISR_Cool * CF

⁷²⁴ The Cooling_Reduction assumption is based on a TAC agreement to weight the consumption data analysis result (econometric) and the adjusted ENERGY STAR method for estimating runtime savings for advanced thermostats with stakeholder assumptions about baseline behavior (ENERGY STAR), provided by Guidehouse in 2020. The econometric result (7.8%) is weighted at 90%, and the ENERGY STAR result (10-14% range taken as reasonable by stakeholders, however 14% is used to account for increased Thermostat Optimization) weighted at 10%.

This econometric value is based upon the non-weather normalized savings percentage, adjusted for selection bias, %AC and ISR, with additional adjustment to account for the anticipated growth in Thermostat Optimization savings, from 12% of participants in the study to 45% of future participants (based on reported share of Nest and ecobee participants and 2020 rates of Thermostat Optimization). The basis for the Thermostat Optimization savings is Navigant's "ComEd CY2018 Seasonal Savings Cooling Season Impact Evaluation Report", March 2019. The estimate of cooling reduction factor includes an adjustment for apparent selection bias, per stakeholder request as part of a 2020 study by Guidehouse involving a consumption analysis of ComEd advanced thermostat rebate recipients. Guidehouse acknowledges that this adjustment is a coarse method of addressing potential bias, but believes that this adjustment may not be accurate or applicable for future studies of this type.

The adjusted ENERGY STAR analysis is gross with respect to all components of net-to-gross (free ridership, and participant and non-participant spillover). The econometric analysis uses matching to future participants and is therefore gross with respect to free ridership. Like all consumption data analyses, it is net with respect to participant spillover and gross with respect to non-participant spillover. For more detail, see Table 5-3 in Volume 4 of the IL-TRM. Consistent with Section 7.2 of the Illinois EE Policy Manual, applicable net-to-gross adjustments to these factors will be determined as part of the annual SAG net-to-gross process. The 2022 and 2023 Opinion Dynamics evaluations showed that many single family participants who signed up to receive a self-install advanced thermostat did not install it. The value represents an average of the two evaluation years.

⁷²⁶ The 2020 Guidehouse evaluation indicated that 6.75% of participants installed the advanced thermostat out of state. An additional reduction is applied to account for purchases that are never installed. Based on the available data this is estimated as an additional 3.75%.

Where:

Cooling_DemandReduction = Assumed average percentage reduction in total household cooling demand due to installation of advanced thermostat including accounting for Thermostat Optimization services

$$= 16.4\%^{727}$$

EER2 = Energy Efficiency Ratio of existing cooling system (kBtu/hr / kW)

= Use actual EER2 rating where it is possible to measure or reasonably estimate. If EER2 unknown but SEER2 available convert using the equation:

$$EER2 = (-0.02 * SEER2_exist^2) + (1.12 * SEER2_exist)^{728}$$

If SEER2 or EER2 rating unavailable, use:

Cooling System	EER2 ⁷²⁹
Air Source Heat Pump	10.0
Central AC	10.0

CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C (during system peak hour)

 $=34\%^{730}$

CF_{PJM} = PJM Summer Peak Coincidence Factor for Central A/C (average during PJM peak period)

 $= 23.3\%^{731}$

For example, an advanced thermostat replacing a programmable thermostat directly installed in an electric resistance heated, single-family home in Springfield with advanced thermostat-controlled air conditioning of a system of unknown size and seasonal efficiency rating:

FOSSIL FUEL SAVINGS

ΔTherms = %FossilHeat * Gas_Heating_Consumption * Heating_Reduction * HF * Eff_ISR_Heat

⁷²⁷ The current Cooling_DemandReduction assumption is based on results presented on August 4th, 2020 from a Guidehouse econometric analysis and further refinements discussed throughout August.

The final value is based upon the non-weather normalized savings percentage, adjusted for selection bias, %AC and ISR, provided by the Guidehouse econometric results, and includes an additional adjustment to account for the anticipated growth in Thermostat Optimization savings, The estimate of cooling reduction factor includes an adjustment for apparent selection bias, per stakeholder request as part of a 2020 study by Guidehouse involving a consumption analysis of ComEd advanced thermostat rebate recipients. Guidehouse acknowledges that this adjustment is a coarse method of addressing potential bias, but believes that this adjustment may not be accurate or applicable for future studies of this type.

⁷²⁸ From Wassmer, M. (2003). A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations. Masters Thesis, University of Colorado at Boulder.

⁷²⁹ Based on converting SEER2 assumption to EER2.

⁷³⁰ Assumes 50% of the cooling coincidence factor (based on metering of 24 homes with central AC during PY4 and PY5 in Ameren Illinois service territory.)

⁷³¹ Assumes 50% of the cooling coincidence factor (based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.)

Where:

%FossilHeat

= Percentage of heating savings assumed to be Natural Gas

Heating fuel	%FossilHeat
Electric	0%
Natural Gas	100%
Unknown	97% ⁷³²

Gas Heating Consumption

= Estimate of annual household heating consumption for gas heated single-family homes. If location is unknown, assume the average below.⁷³³

Climate Zone (City based upon)	Gas_Heating_ Consumption (therms)
1 (Rockford)	1,052
2 (Chicago)	1,005
3 (Springfield)	861
4 (Belleville)	664
5 (Marion)	676
Average	955

Other variables as provided above.

For example, an advanced thermostat replacing a programmable thermostat directly-installed in a gas heated single-family home in Chicago:

$$\Delta$$
Therms = 1.0 * 1005 * 7.1% * 100% * 100%

= 71.4 therms

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-HVC-ADTH-V10-250101

REVIEW DEADLINE: 1/1/2028

⁷³² Value used is based on known PY8 percent of electric heat provided by Navigant as part of the ongoing evaluation work source: "Slide 21: May 22, 2018, Second Addendum IL TRM Advanced Thermostat Cooling Savings Evaluation"
⁷³³ Values are based on adjusting the average household heating consumption (849 therms) for Chicago based on 'Table 3-4, Program Sample Analysis, Nicor R29 Res Rebate Evaluation Report 092611_REV FINAL to Nicor', calculating inferred heating load by dividing by average efficiency of new in program units in the study (94.4%) and then applying standard assumption of existing unit efficiency of 83% (estimate based on 24% of furnaces purchased in Illinois were condensing in 2000 (based on data from GAMA, provided to Department of Energy), assuming typical efficiencies: (0.24*0.92) + (0.76*0.8) = 0.83). This Chicago value was then adjusted to a statewide average using relative HDD assumptions to adjust for the evaluation results focus on northern region. Values for individual cities are then calculated by comparing average HDD to the individual city's HDD.

5.3.17 Gas High Efficiency Combination Boiler

DESCRIPTION

Space heating boilers are pressure vessels that transfer heat to water for use in space heating. Boilers either heat water using a heat exchanger that works like an instantaneous water heater or by adding/connecting a separate tank with an internal heat exchanger to the boiler. A combination boiler contains a separate heat exchanger that heats water for domestic hot water use. Qualifying combination boilers must be whole-house units used for both space heating and domestic water heating with one appliance and energy source. Only participants who have a natural gas account with a participating natural gas utility are eligible for this rebate.

Optionally, when applying an early replacement rate for two-in-one boiler upgrades, the following weighted average is provided for use in downstream programs when the actual baseline early replacement rates are unknown. 734

Deemed Early Replacement Rates for Boilers

	Deemed Early Replacement Rate
Early Replacement Rate for Boiler participants	7%

This measure was developed to be applicable to the following program types: TOS or ER. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient condition is a condensing combination boiler unit with boiler AFUE of 90% or greater. The combination boiler must have a sealed combustion unit and be capable of modulating the firing rate and must be accompanied by a programmed outdoor reset control.⁷³⁵ Measures that do not qualify for this incentive include boilers with a storage tank and redundant or backup boilers.

DEFINITION OF BASELINE EQUIPMENT

The baseline condition is a boiler with the federal minimum of 84% AFUE and a residential, natural gas-fueled storage water heater meeting minimum Federal efficiency standards as described below:

Equipment Type	Sub Category	Draw Pattern	Federal Standard – Uniform Energy Factor ⁷³⁶
	≤55 gallon tanks	Very small	UEF = 0.3456 – (0.0020 * Rated Storage Volume in Gallons)
		Low	UEF = 0.5982 – (0.0019 * Rated Storage Volume in Gallons)
Residential Gas Storage Water Heaters ≤75,000 Btu/h		Medium	UEF = 0.6483 – (0.0017 * Rated Storage Volume in Gallons)
		High	UEF = 0.6920 – (0.0013 * Rated Storage Volume in Gallons)
	>55 gallon and ≤100 gallon tanks	Very small	UEF = 0.6470 – (0.0006 * Rated Storage Volume in Gallons)
		Low	UEF = 0.7689 – (0.0005 * Rated Storage Volume in Gallons)
		Medium	UEF = 0.7897 – (0.0004 * Rated Storage Volume in Gallons)
		High	UEF = 0.8072 – (0.0003 * Rated Storage Volume in Gallons)

⁷³⁴ Based upon research from "Home Energy Efficiency Rebate Program GPY2 Evaluation Report" which outlines early replacement rates for both primary and secondary central air cooling (CAC) and residential furnaces. This is used as a reasonable proxy for boiler installations since boiler specific data is not available. Report presented to Nicor Gas Company February 27, 2014.

⁷³⁵ In a 2015 study, the Cadmus Group team conducted an analysis of optimal outdoor reset curves and discovered that "a boiler in Massachusetts with well-programmed outdoor reset controls could see an operating efficiency improvement of up to 3 to 4 percentage points from the average efficiency of 88.4% observed".

⁷³⁶ DOE Standard 10 CFR 430, Residential-Duty and Commercial Federal Standard are from DOE Standard 10 CFR 431. Minimum Federal standard as of 4/16/2015, confirmed no changes as of 6/20/2021;

https://www.ecfr.gov/cgi-bin/text-idx?SID=80dfa785ea350ebeee184bb0ae03e7f0&mc=true&node=se10.3.430_132&rgn=div8

Draw patterns are based on first hour rating (gallons) for storage tanks as shown below:⁷³⁷

Storage Water Heater Draw Pattern					
Draw Pattern First Hour Rating (gallons)					
Very Small ≥ 0 and < 18					
Low ≥ 18 and < 51					
Medium	≥ 51 and < 75				
High ≥ 75					

If using a deemed approach, for storage water heaters with a storage capacity equal to or less than 55 gallons, the Federal energy factor requirement is calculated as 0.6483 – (0.0017 * storage capacity in gallons) assuming a Medium draw and 50 gallon tank (resulting in 0.5633 EF).

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 21.5 years.⁷³⁸

DEEMED MEASURE COST

The incremental measure cost is assumed to be \$1,663 for a 90-94% AFUE unit and \$2,421 for a unit greater than or equal to 95% AFUE.⁷³⁹

LOADSHAPE

N/A

COINCIDENCE FACTOR

N/A

⁷³⁷ Definitions provided in 10 CFR 430, Subpart B, Appendix E, Section 5.4.1

⁷³⁸ US Department of Energy, Technical Support Document: Energy Efficiency Program for Consumer Products and Commercial and Industrial Equipment: Residential Furnaces." February 10, 2015. Table 8.2.1, p. 8-23. The document's definition of furnaces includes hot water boilers with firing rates of less than 300,000 Btu/h.

⁷³⁹ Northeast Energy Efficiency Partnerships. Incremental Cost Study Report. September 23, 2011. Incremental measure cost of \$2,791.00 for a combination boiler and \$2,461.00 for a high efficiency boiler sized at 110 Mbh. The percentage increase is applied to the current boiler incremental cost assumptions.

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

N/A

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

FOSSIL FUEL SAVINGS

 Δ Therms = Δ Therm_{Boiler} + Δ Therm_{WH}

ΔTherms_{Boiler} = (EFLH * CAP_{Input} * (AFUE_{Eff} / AFUE_{Base} -1)) / 100,000

ΔThermsw_H = (1/UEF_{Base} - 1/UEF_{Eff}) * (GPD * Household * 365.25 * γ_{Water} * (T_{OUT} - T_{IN}) * 1.0) / 100,000

Where:

CAP_{Input} = Gas Furnace input capacity (Btuh)

= Actual

EFLH = Equivalent Full Load Hours for gas heating

Climate Zone (City based upon)	EFLH ⁷⁴⁰		
1 (Rockford)	1022		
2 (Chicago)	976		
3 (Springfield)	836		
4 (Belleville)	645		
5 (Marion)	656		
Weighted Average ⁷⁴¹			
ComEd	978		
Ameren	800		
Statewide	928		

AFUE_{Base} = Baseline boiler annual fuel utilization efficiency rating

= 84%

AFUE_{Eff} = Efficent boiler annual fuel utilization efficiency rating

= Actual. If unknown, use defaults dependent on tier as listed below:⁷⁴²

Measure Type	AFUE _{Eff}
AFUE ≥ 90%	92.5%
AFUE ≥ 95%	95%

⁷⁴⁰ Full load hours for Chicago, are based on findings in 'Energy Efficiency / Demand Response Nicor Gas Plan Year 1 (6/1/2011-5/31/2012) Research Report: Furnace Metering Study (August 1, 2013), prepared by Navigant Consulting, Inc. Values for other cities are then calculated by comparing relative HDD at base 60F.

2025 IL TRM v13.0 Vol. 3_September 20, 2024_FINAL

⁷⁴¹ Weighting for Ameren is based on gas accounts in each of the heating zones. Weighting for ComEd and Statewide average is based on number of occupied residential housing units in each zone. ComEd is weighted average of Zones 1-2. Alternative program-weighted assumptions can be used if appropriate.

⁷⁴² Default values per tier selected based upon the average AFUE value for the tier range except for the top tier where the minimum is used due to proximity to the maximum possible.

UEF_{Base} = Uniform Energy Factor rating of standard storage water heater according to federal

standards provided in table in baseline section. For a deemed approach:

= For gas storage water heaters \leq 55 gallons: 0.6483 – (0.0017 * storage capacity in gallons)

= For gas storage water heaters >55 gallons: $0.8072 - (0.0003 \times storage capacity in gallons)$

= If tank size is unknown, assume 0.563 for a gas storage water heater with a 50-gallon storage capacity

=Uniform Energy Factor rating for efficient combination boiler. This is assumed consistent

with a condensing instantaneous gas-fired water heater.

 $= 0.954^{743}$

UEFEff

GPD = Gallons per day of hot water use per person

= 45.5 gallons hot water per day per household/2.59 people per household ⁷⁴⁴

= 17.6

Household = Average number of people per household

	Household ⁷⁴⁵						
Household Unit Type	IQ Participants	Non-IQ Participants	All Participants				
Single-Family - Deemed	2.76	2.62	2.67				
Multifamily - Deemed	2.3	2.18					
Household type unknown	2.52 ⁷⁴⁶						
Custom	Actual Occupancy or Number of Bedrooms ⁷⁴⁷						

Use Multifamily if: Building meets utility's definition for multifamily

365.25	= Days per year, on average
γ Water	= Specific weight of water
	= 8.33 pounds per gallon
T _{OUT}	= Tank temperature
	− 125°E

T_{IN} = Incoming water temperature from well or municipal system

= 50.7°F 748

1.0 = Heat capacity of water (1 Btu/lb*°F)

2025 IL TRM v13.0 Vol. 3_September 20, 2024_FINAL

⁷⁴³ Average Uniform Energy Factor from CAC appliance database accessed 4/22/2022 for instantaneous gas-fired water heaters. The water heater portion of a gas high efficiency combination boiler is essentially a tankless water heater.

⁷⁴⁴ Deoreo, B., and P. Mayer. Residential End Uses of Water Study Update. Forthcoming. ©2015 Water Research Foundation. Reprinted With Permission.

⁷⁴⁵ Assumptions are taken from the draft unadjusted 2024 Baseline Study evaluation data provided in 07/2024 by GDS Associates.

⁷⁴⁶ Unknown is based on statewide weighted average of 69% single family and 31% multifamily, based on IL data from 2009 RECS Table HC2.9 Structural and Geographic Characteristics of Homes in Midwest Region, Divisions and States, 2009.

⁷⁴⁷ Bedrooms are suitable proxies for household occupancy, and may be preferable to actual occupancy due to turnover rates in residency and non-adult population impacts.

⁷⁴⁸ Table 4 in Chen, et. al., "Calculating Average Hot Water Mixes of Residential Plumbing Fixtures", June 2020, reports a value of 50.7°F for inlet water temperature for U.S. Census Division 3.

For example, a Rockford single-family IQ home installing an 80,000 Btuh condensing combination boiler unit with boiler AFUE of 95%:

 Δ Therms_{Boiler} = (1,022 * 80,000 * (0.95/0.84 - 1))/100,000

 Δ Therms_{WH} = (1/0.5863 - 1/0.954) * (17.6 * 2.76 * 365.25 * 8.33 * (125-50.7) * 1.0)/100,000

 Δ Therms = 107.1 + 72.2

= 179.3 Therms

WATER AND OTHER NON-ENERGY IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-HVC-COMB-V05-250101

REVIEW DEADLINE: 1/1/2026

5.3.18 Furnace Filter Alarm – Provisional Measure

Measure has been removed in v9.0 due to evaluation results showing filter alarms being ineffectual at indicating a dirty filter.

5.3.19 Thermostatic Radiator Valves – Provisional Measure

DESCRIPTION

Thermostatic Radiator Valves (TRVs) are installed on hydronic or steam radiators to provide temperature control within a room or space. The TRV is a self-regulating valve requiring no auxiliary power, allowing the user to set the temperature to their preferred set point. On hydronic and two-pipe steam systems, as the room temperature rises the valve head expands, blocking the flow of hot water or steam into the radiator. On a one-pipe steam system the TRVs are installed on the air vent and limit the amount of air escaping the radiator, which in turn limits the amount of steam filling the radiator.

The current measure is limited to retrofit application in Multifamily buildings. TRVs are particularly effective in large multifamily buildings where some rooms tend to be overheated resulting in tenants leaving windows open even in winter.

From limited evaluation results, savings appear to be dependent on being part of a whole system commissioning and balancing project.

This measure was developed to be applicable to the following program types: RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the TRV is installed on an existing hydronic or steam heated radiator in a multifamily building.

DEFINITION OF BASELINE EQUIPMENT

The baseline is an existing hydronic or steam heated radiator without a TRV installed.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life of a TRV is estimated as 15 years. 749

DEEMED MEASURE COST

The actual cost per TRV should be used. If unknown assume a measure cost of \$200 for steam systems and \$250 for hot water per TRV.⁷⁵⁰ If the heating system is required to be drained, the full cost should be used and split between all TRVs installed.

LOADSHAPE

N/A

COINCIDENCE FACTOR

N/A

⁷⁴⁹ Estimate based on assumption used in Department of Energy, Dentz et al, "Thermostatic Radiator Valve Evaluation", January 2015.

⁷⁵⁰ Department of Energy, Dentz et al, "Thermostatic Radiator Valve Evaluation", January 2015, Table 2, Page 7.

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

N/A

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

FOSSIL FUEL SAVINGS

ΔTherms = Gas_Heating_Load/(μBoiler * #Radiators) * %TRVSavings

Where:

ΔTherms = Therm savings per TRV installed

Gas_Heating_Load = Estimated Gas heating Load per multi family unit.⁷⁵¹

Climate Zone (City based upon)	Gas_Heating_Load per Multi family unit (therms)
1 (Rockford)	567
2 (Chicago)	542
3 (Springfield)	464
4 (Belleville)	358
5 (Marion)	365
Average	515

μBoiler = AFUE Efficiency of the boiler system

= Actual. If unknown assume 75%

#Radiators = Number of radiators in the multifamily unit.

= Actual. If unknown estimated as five.

%TRVSavings = Estimate of heating consumption savings from installing a TRV⁷⁵²

= 15% when part of a system balancing project to address overheated spaces

= 5% if installed without system balancing

⁷⁵¹ This assumption is based on the Single Family Gas Heating Consumption for boiler values provided in 5.3.14 Boiler Reset Controls (based on Table 3-4, Program Sample Analysis, *Nicor R29 Res Rebate Evaluation Report 092611_REV FINAL to Nicor*) multiplied by a 65% adjustment factor, which is used to account for the expected lower multifamily heating consumption relative to single-family households due to overall household square footage and exposure to the exterior.

⁷⁵² Based on literature review of a limited number of studies available including:

Department of Energy, Dentz et al, "Thermostatic Radiator Valve Evaluation", January 2015.

NYSERDA "Thermostatic Radiator Valve Demonstration Project", 1995.

Lublin University of Technology Cholewa et al "Actual energy savings from the use of thermostatic radiator valves in residential buildings – Long term field evaluation", July 2017.

For example, a TRV is installed on three of five radiators in a multifamily unit with a central 75% AFUE hydronic boiler, as part of a system balancing project in Chicago.

 Δ Therms per TRV = Gas_Heating_Load/(μ Boiler * #Radiators) * %TRVSavings = 542 / (0.75 * 5) * 0.15 = 21.7 Therms

Total of 19.6 * 3 = 65.1 Therms for the multi family unit

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-HVC-TRVS-V01-210101

REVIEW DEADLINE: 1/1/2023

5.3.20 Residential Energy Recovery Ventilator (ERV)

DESCRIPTION

Unconditioned outdoor air is typically warmer or cooler than desired by the occupants and is often also more humid than desired. A Residential ERV system provides necessary outdoor air ventilation while preheating or precooling the outdoor air, and, in some Residential ERV systems, pre-dehumidifying the outdoor air as well. This saves energy required for heating, cooling, and dehumidifying the residence.

An ERV generally comprises two fans (Exhaust and Outdoor Intake) that pass the two streams of air through a heat exchanger, which may be a fixed plate heat exchanger or a rotary heat recovery wheel. Sensible heat from the warmer air stream is transferred to the cooler air stream, thereby reducing the amount of heating energy or cooling energy needed to condition the outdoor air to desired indoor air temperature and humidity levels. The heat exchanger surfaces, in some ERV models, may be coated with a hydroscopic material that absorbs/releases or transfers latent moisture from one air stream to the other. This increases the overall energy transfer efficiency during humid summer months by partially dehumidifying moist outdoor air using the relatively drier indoor exhaust air. In the winter, this same effect serves to humidify the outdoor air, making the space more comfortable, but not saving significant energy.

The current measure serves all residential single family and Group R2, R3 and R4 dwellings of 3 stories or less, both existing and new, where ERV is not required to comply with energy code.

This measure was developed to be applicable to electric cooling systems and electric or natural gas heating systems in the following program types: RF, NC, TOS. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The Residential ERV, proposed for installation, must be listed in the Home Ventilation Institute's HVI-Certified Ratings Listing by its Brand and Model Number, and the HVI-Certified Ratings Listing must include the Model's Maximum CFM, ASRE (Adjusted Sensible Recovery Efficiency) and ATRE (Adjusted Total Recovery Efficiency) ratings values.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a residential HVAC system with no energy recovery ventilator installed.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life of an ERV is estimated as 15 Years. 753

DEEMED MEASURE COST

The actual cost of the ERV should be used. If unknown assume an incremental measure cost of \$25.00 per Maximum CFM HVI-Certified Rating of proposed Brand and Model Number.⁷⁵⁴

LOADSHAPE

R11 - Residential Ventilation

⁷⁵³ State of Minnesota Technical Reference Manual, version 3, pp. 350+. https://mn.gov/commerce/industries/energy/utilities/cip/technical-reference-manual/

⁷⁵⁴ This installed cost amount is estimated by Leidos based on 2Q2021 list prices from SupplyHouse.com for a variety of ERVs of nominally 95-117 CFM capacity plus an estimated \$2,000 per ERV for electrical and mechanical installation services, divided by the Maximum listed CFM specified in the Home Ventilating Institute's Certified Products Directory for the specific ERVs offered by SupplyHouse.com. Unit installed prices ranged from \$24.27 to \$28.93 per CFM based on the above.

COINCIDENCE FACTOR

The summer peak coincidence factor for cooling is provided in two different ways below. The first is used to estimate peak savings during the utility peak hour and is most indicative of actual peak benefits, and the second represents the average savings over the defined summer peak period and is presented so that savings can be bid into PJM's Forward Capacity Market.

= Summer System Peak Coincidence Factor for ERV (during utility peak hour) CFSSP SF

 $=95\%^{755}$

CFPJM SF = PJM Summer Peak Coincidence Factor for ERV (average during PJM peak period)

 $=95\%^{756}$

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

ERV Electric Heating Savings

If residence uses Electric heating,

ΔkWh_heating = 1.08 * HVI_Max_CFM * HDD60 * 24 * HVI_Rated_ASRE / ηHeat / 3412 * Daily Hrs Ventilation / 24 * %ElectricHeat

Where:

1.08 = Specific heat of air x density of inlet air @ 70F x 60 min/hr in BTU/hr-F-CFM

HVI Max CFM = HVI-Certified Maximum CFM of the Brand/Model of ERV proposed to be used⁷⁵⁷

> If ERV Brand and Model are unknown, use the appropriate values in following Table of ERV Default Values⁷⁵⁸:

ERV Default Values:

	ERV Default Heating and Cooling CFM	ERV Default ASRE	ERV Default ATRE	ERV Default Watts
Single-family	114	70%	56%	94
Multi-family	64	65%	53%	49
Unknown Residence ⁷⁵⁹	99	68%	55%	80
Custom	Actual	Actual	Actual	Actual

HDD60 = Heating Degree Days, base 60F, for the Climate Zone of Customer's site, from the

⁷⁵⁵ Based on 24 hr /day, 7 day/w operation.

⁷⁵⁷ Please see file 'HVIProd_ER.xlsx' for all related values. This is a lookup based on Customer inputs of ERV Brand and Model Number, which must match one of the HVI-Certified listings.

⁷⁵⁸ Table of ERV Default Values is based on all available ERV Certified Data from file 'HVIProd_ER.xlsx' published by Home Ventilating Institute (https://www.hvi.org/hvi-certified-products-directory/section-iii-hrv-erv-directory-listing/). This table lists certified values of 387 models of ERVs. The default values above assume that Single-family residences will install ERVs with Heating CFM > 75 and Multi-family residences will install ERVs with Heating CFM <= 75 cfm. The respective default values represent arithmetic averages of the respective HVI ERV values separated into these two ERV CFM ranges.

⁷⁵⁹Table HC2.9 Structural and Geographic Characteristics of Homes in Midwest Region, Divisions, and States, 2009. 69% Multi-Family and 31% Single Family.

following Table 760

Table 1: Climate Variables

Climate Zone (City based upon)	Climate Heating Factor (CHF)	Heating based on Sensible: HDD60	Cooling based on Sensible: CDD65	Heating Design Day DBT	Cooling Design Day DBT	Cooling Design Day OA Enthalpy	Heating Design Day OA Enthalpy	Cooling Design Day RA Enthalpy	Heating Design Day RA Enthalpy	ΔEnthalpy ⁷⁶¹ (Btu- hr/lb)	Daily fan use ⁷⁶²
1 (Rockford)	58%	5,230	877	0.3	88.0	41.0	0.07	28.36	25.34	6,375	17.8
2 (Chicago)	55%	4,798	1,047	4.4	88.5	40.8	1.06	28.36	25.34	7,243	18.9
3 (Springfield)	48%	4,266	1,183	7.3	90.7	42.8	1.75	28.36	25.34	11,311	18.9
4 (Belleville)	49%	3,188	1,641	12.7	92.7	43.3	3.05	28.36	25.34	11,885	18.4
5 (Marion)	46%	3,390	1,450	12.1	92.7	44.5	2.90	28.36	25.34	11,885	18.4

24 = Number of Hours in a Day ⁷⁶³

HVI_Rated_ASRE = HVI-Certified Adjusted Sensible Recovery Efficiency of the Brand/Model of ERV proposed to be used⁷⁶⁴

= If ERV Brand and Model are unknown, use default values in previous table of ERV Default Values.

ηHeat

- = Efficiency of heating system
- = Actual (where new or where it is possible to measure or reasonably estimate, assuming heat pump 85% distribution efficiency if only equipment efficiency is available). If using rated efficiencies, derate efficiency value by 1% per year (maximum of 30 years) to account for degradation over time, ⁷⁶⁵ or if not available refer to default table below ⁷⁶⁶. If unknown value is used, it should not be derated by age.

System Type	Age of Equipment	HSPF2 Estimate	ηHeat (Effective COP Estimate)= (HSPF2/3.413)*0.85
Heat Pump	Before 2006	5.8	1.44
(if age unknown assume	2006 - 2014	6.5	1.62
2006-2014)	2015 on	7.0	1.74
Resistance	N/A	N/A	1

⁷⁶⁰ National Climatic Data Center, Cooling Degree Days are based on a base temp of 65°F and Heating Degree Days are based on a base temp of 60F. There is a county mapping table Volume 1, Section 3.7 providing the appropriate city to use for each county of Illinois.

⁷⁶¹ Base: 28.4 BTU/lb Return Air

⁷⁶² Based on defrost oversizing factor.

⁷⁶³ Used to convert Annual HDD (F-Days) to total deltaT-hours (F-Hr) per year. Also used to convert daily ERV run hours to % runtime.

⁷⁶⁴ Please see file 'HVIProd_ER.xlsx' for all related values. This is a lookup based on Customer inputs of ERV Brand and Model Number, which must match one of the HVI-Certified listings.

⁷⁶⁵ Justification for degradation factors can be found on page 14 of 'AIC HVAC Metering Study Memo FINAL 2_28_2018'. Estimate efficiency as (Rated Efficiency * (1-0.01)^Equipment Age).

⁷⁶⁶ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time means that using the minimum standard is appropriate. An 85% distribution efficiency is then applied to account for duct losses for heat pumps.

System Type	Age of Equipment	HSPF2 Estimate	ηHeat (Effective COP Estimate)= (HSPF2/3.413)*0.85
Unknown (for use in program evaluation only) ⁷⁶⁷	N/A	N/A	1.28

3412 = Converts Btu to kWh

Daily_Hrs_Ventilation = Average annual daily ERV run time during which heat/cooling is being recovered, based on the assumption that ERV is selected to provide adequate ventilation rate when operated continuously on the coldest day of the year, when the defrost cycle interrupts heat recovery for a period of time depending on outdoor air temperature. ERV is assumed to be oversized so that on this coldest day, the ERV will provide the total ventilation air quantity during the minutes that is is not in defrost. As an example, if a coldest day results in 20% defrost time, the ERV is assumed to be selected at 1/0.8 or 125% oversizing. On the coldest day, the fan would operate 100% of the time. When not in defrost, it is assumed the homeowner would reduced fan operation to 80% runtime to avoid overventilating the residence. This assumed behavior results in an average annual runtime per day ranging from 17.8 to 18.9 hours/day.

The following defrost schedule is typical of ERV manufacturers and was used to calcuate average daily run hours:

OA DBT	Defrost	On	Total	% Runtime
27 F	3.0 Min.	25.0 Min.	28.0 Min.	89.3%
-4 F	4.5 Min.	17.0 Min.	21.5 Min.	79.1%
-31 F	7.0 Min.	15.0 Min.	22.0 Min.	68.2%

%ElectricHeat

- = Percent of homes that have electric space heating
- = 100 % for Electric Resistance or Heat Pump
- = 0 % for Natural Gas
- = If unknown⁷⁶⁸, use the following table:

	Location				
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown
Ameren	18%	26%	38%	39%	29%
ComEd	14%	22%	43%	48%	21%
PGL	1.0%	1.5%	4.0%	2.8%	2.2%
NSG	1.3%	0.8%	32.5%	1.2%	3.3%
Nicor	1.3%	0.8%	32.5%	1.2%	3.3%

⁷⁶⁷ Calculation assumes 35% Heat Pump and 65% Resistance, which is based upon data from Energy Information Administration, 2009 Residential Energy Consumption Survey, see "HC6.9 Space Heating in Midwest Region.xls", using average for East North Central Region. Average efficiency of heat pump is based on assumption that 50% are units from before 2006 and 50% from 2006-2014. Program or evaluation data should be used to improve this assumption if available.

⁷⁶⁸ Based on the average % Natural Gas used for space heating in Unknown residential structure types across all utilities covered by the IL program. Residence types include: SF, SF LI, MF & MF LI. Utilities included: Ameren, ComEd, People's Gas, Northshore Gas & Nicor. Data provided from 2016 Ameren Illinois Demand Side Management (DSM) Market Potential Study by Applied Energy Group, ComEd's 2019 Baseline Survey on residential space heating share, and PY2022-2023 Implementation Contractors Data for People's Gas, Northshore Gas & Nicor .

			Location		
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown
All DUs ⁷⁶⁹					26%

<u>Note</u>: If a measure is supported by a gas and electric utility through a joint program, and it is unknown whether the participant has a gas supply, the electric utility values in the table above should be used. If it is known that the participant has a gas supply, the values from the gas utility above should be applied.

For example, assuming HVI Max CFM = 117 cfm; HDD60 = 5,552 (Rockford, IL); Electric Resistance Heat (COP=1.0); HVI Rated ASRE = 75%; Heating COP = 1.0; Daily_Hrs_Ventilation = 17.8; %ElectricHeat = 100%

$$\Delta$$
kWh_heating = ((1.08 * 117 * 5,552 * 24) * 75% / 1.0 / 3,412) * 17.8 / 24 * 100%

= 2,742 kWh of heating energy saved

ERV Electric Cooling Savings

If residence uses Electric cooling, the cooling savings is calculated by the following equation:

$$\Delta$$
kWh_cooling = 4.5 * HVI_Max_CFM * Δ Enthalpy * HVI_Rated_ATRE / 1000 / η Cool * Daily_Hrs_Ventilation / 24 * %Cool

Where:

4.5 = Density of inlet air at 70F x 60 min/hr in lb-min/ft3 -hr

HVI_Max_CFM = HVI-Certified Maximum CFM of the Brand/Model of ERV proposed to be used⁷⁷⁰

= If ERV Brand and Model are unknown, use default values in previous "Table of ERV Default Values".

ΔEnthalpy

= Difference between Outdoor Air and Return Air Enthalpies (Btu/lb air) for each weather bin of the Climate Zone of Customer's site⁷⁷¹ times the number of hours of occurrence per year of each weather bin

= Values contained in Table 1, above, for 5 representative climate zones

= \sum [(H_OA_Cool_bin - H_RA_Cool_bin) * Annual Hours_bin] summed over all temperature bins where H_OA_Cool_bin > H_RA_Cool_bin.

Where:

H_OA_Cool = Weather Bin Outdoor Air Enthalpy

H RA Cool = Cooling Mode Return Air Enthalpy = 28.36 Btu/lb, a deemed value.

⁷⁶⁹ For the weighted average calculations, please see the Analysis file. PGL, NSG, Nicor & gas customers were assumed to follow the provided split. ComEd total customers, minus overlap with PGL,NSG & Nicor, therefore electric only homes. Ameren is total customers minus Nicor.

⁷⁷⁰ Please see HVI Table at the end of this document. This is a lookup based on Customer inputs of ERV Brand and Model Number, which must match one of the HVI-Certified listings".

⁷⁷¹ This is based the Climate Zone based on the Customer's Site Address, informed by the Minnesota Technical Reference Manual v.3, page 350, commercial ERV measure assumptions modified for Illinois climate conditions using ASHRAE Design Data Tables. The table recreates enthalpy assumptions originating in the Minnesota TRM v3 for commercial ERV measure, page 350, tables 1 and 2, modified for Illinois climate conditions

1000 = Conversion of btu to kbtu.

ηCool = Seasonal Cooling = Efficiency (SEER2) of Air Conditioning equipment (kBtu/kWh)

= Actual (where new or where it is possible to measure or reasonably estimate). If using rated efficiencies, derate efficiency value by 1% per year (maximum of 30 years) to account for degradation over time, ⁷⁷² or if unknown assume the following. ⁷⁷³ If unknown value is used, it should not be derated by age.

Age of Equipment	SEER2 Estimate
Window Air Conditioner	8.6
Central AC before 2006	9.5
Central AC 2006 - 2014	12.4
Central AC After 1/1/2015	12.4
Heat Pump After 1/1/2015	13.3
Unknown (for use in program evaluation only)	10.0

HVI_Rated_ATRE = HVI-Certified Adjusted Total Heat Recovery Efficiency of the Brand/Model of ERV proposed to be used⁷⁷⁴.

Daily_Hrs_Ventilation = As previously defined

24 = Hours in a day

%Cool = Percent of homes that have cooling

Is Residence Cooled?	%Cool
Yes	100%
No	0%
Unknown (for use in program evaluation only) ⁷⁷⁵	66%

For example, assuming HVI Max CFM = 117 cfm; Δ Enthalpy = 6,375 BTU-hr/lb (Rockford, IL); Air Conditioner, vintage older than 2006 (η Cool = 9.3); HVI Rated ATRE = 48%; Daily_Hrs_Ventilation = 17.8; %Cool = 100%

= 128 kWh

ERV Fan Energy Savings

For all heating or heating/cooling ERV applications, the ERV fan savings represents the change in energy usage of the ERV fan annual energy use versus the base case standard (non-ERV) exhaust fan energy use.

The base case non-ERV exhaust fan energy use is deemed to be equal to the average ERV daily exhaust volume of

⁷⁷² Justification for degradation factors can be found on page 14 of 'AIC HVAC Metering Study Memo FINAL 2_28_2018'. Estimate efficiency as (Rated Efficiency * (1-0.01)^Equipment Age).

⁷⁷³ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Central AC was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate. Note all ratings have been converted to SEER2 equivalents – since the new rating better reflects the actual efficiency of the units.

⁷⁷⁴ Please see file 'HVIProd_ER.xlsx' for all related values. This is a lookup based on Customer inputs of ERV Brand and Model Number, which must match one of the HVI-Certified listings.

⁷⁷⁵ Percentage of homes in Illinois that have central cooling from "Table HC7.9 Air Conditioning in Homes in Midwest Region, Divisions, and States, 2009" from Energy Information Administration, 2009 Residential Energy Consumption Survey

air exhausted, times the deemed fan efficiency of a continuously-operated bathroom exhaust fan, as defined in Section 5.3.9 of IL-TRM_Effective_010122_v10.0_Vol_3_Res_08062021_DRAFT.docx: 1.7 CFM/Watt. The daily average total exhaust volume of the existing bathroom exhaust fan(s) is deemed to be equal to the proposed ERV daily average total exhaust volume, after taking into account the defrost cycle periods wherein ERV fan energy is consumed but no ventilation occurs.

Therefore:

Exist_Exh_Fan_Use = HVI_Rated_CFM * Daily_Hrs_Ventilation / 24 / 1.7 CFM/Watt / 1000 * Daily Hrs Fan Use * 365.25

Where:

HVI_Rated_CFM = HVI-Certified Heating CFM at Maximum Air Flow of the Brand/Model of ERV proposed to be used⁷⁷⁶

= If ERV Brand and Model are unknown, use default values in previous "Table of ERV Default Values".

Daily_Hrs_Ventilation = As previously defined.

1.7 CFM/Watt = Deemed base case bathroom exhaust fan efficiency

= Hours in a Day

Daily_Hrs_Fan_Use = Deemed 24 hr/day because of continuous ERV fan use whether ERV is in defrost cycle or in ventilation cycle

365.25 = Days in a Year

1000 = Conversion of watts to kW

8766 = Annual Hours of Bathroom Fan Use

ERV Fan Use = HVI Rated W / 1000 * Daily Hrs Fan Use * 365

Where:

HVI_Rated_W = HVI-Certified Wattage at Maximum Air Flow of the Brand/Model of ERV proposed to be used⁷⁷⁷

= If ERV Brand and Model are unknown, use default Watts/CFM in previous "Table of ERV Default Values" x ERV CFM (also from "Table of ERV Default Values").

1000 = Conversion of watts to kW

Daily_Hrs_Fan_Use = Deemed to be 24 hr/day because of continuous ERV fan use whether ERV is in defrost cycle or in ventilation cycle.

Savings (positive or negative) therefore are calculated by the following equation:

Exist Exh Fan Use - ERV Fan Use

Where both terms in the equation are as previously defined.

⁷⁷⁶ Please see file 'HVIProd_ER.xlsx' for all related values. This is a lookup based on Customer inputs of ERV Brand and Model Number, which must match one of the HVI-Certified listings.

⁷⁷⁷ Please see file 'HVIProd_ER.xlsx' for all related values. This is a lookup based on Customer inputs of ERV Brand and Model Number, which must match one of the HVI-Certified listings".

For Example, assuming HVI_Rated_CFM = 117 CFM; HVI Rated Watts = 106 W; Daily_Hrs_Ventilation = 17.8; Daily_Hrs_Fan_Use = 24; Base Case Bathroom Exhaust Fan Efficiency = 1.7 CFM/Watt.

Exist_Exh_Fan_Use = 117 * 17.8 / 24 / 1.7 / 1000 * 24 * 365.25 = 447 kWh/Year

ERV_Fan_Use = 106 / 1,000* 24 * 365.25 = 929 kWh

ERV Fan Energy Savings = 447 kWh - 929 kWh = - (482) kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 ΔkW = ΔkWh_{Annual} / HOU * CF * Daily_Hrs_Ventilation / 24

Where:

 ΔkWh_{Annual} = ΔkWh heating + ΔkWh cooling

HOU = Annual Hours of Use of ERV, including defrost hours where fan recirculates indoor air

through outdoor air heat exchanger.

= Actual. Use 8,766 hours/year if actual is not available. 778

CFSSP SF = Summer System Peak Coincidence Factor for ERV (during utility peak hour)

= 95%779

CF_{PJM SF} = PJM Summer Peak Coincidence Factor for ERV (average during PJM peak period)

 $=95\%^{780}$

Daily Hrs Ventilation = As defined previously.

= Hours in a day

For example, assuming Annual kWh Saved = 1,989 kWh/year; HOU = 8,766 Hr/Yr; CF = 0.95; Daily_hr_use = 17.8

 Δ kW = 1,989 / 8,766 * 0.95 * 17.8 / 24

= 0.16 kW

FOSSIL FUEL SAVINGS

ΔTherms_{Annual} = 1.08 * HVI_Max_CFM * HDD60 * 24 * HVI_Rated_ASRE / ηHeat / 100,000 *

Daily Hrs Ventilation / 24 * %FossilHeat

Where:

1.08 = Conversion of CFM air * delta T to BTU/hr

HVI_Max_CFM = HVI-Certified Maximum CFM of the Brand/Model of ERV proposed to be used⁷⁸¹

⁷⁸¹ Please see file 'HVIProd_ER.xlsx' for all related values. This is a lookup based on Customer inputs of ERV Brand and Model Number, which must match one of the HVI-Certified listings.

⁷⁷⁸ Deemed continual operation of ERV throughout year.

⁷⁷⁹ Based on 24 hr /day, 7 day/w operation.

⁷⁸⁰ Ibid.

HDD60 = Heating Degree Days base 60F, for the Climate Zone of Customer's site

= Value obtained from Table 1, above.

= Converts Days to Hours⁷⁸²

HVI_Rated_ASRE = HVI-Certified Adjusted Sensible Recovery Efficiency of the Brand/Model of ERV

proposed to be used⁷⁸³

= If ERV Brand and Model are unknown, use default values in previous table of ERV Default

Values.

ηHeat = Efficiency of heating system

= Equipment efficiency * distribution efficiency

= Actual (where new or where it is possible to measure or reasonably estimate, assuming 85% distribution efficiency if only equipment efficiency is available).⁷⁸⁴ If using rated efficiencies, derate efficiency value by 1% per year (maximum of 30 years) to account for degradation over time,⁷⁸⁵ or if Equipment Efficiency is not available, use Section 5.3 to select the appropriate equipment efficiency for the project. If unknown value is used, it

should not be derated by age.

100,000 = Converts Btu/hr to Therms

%FossilHeat = Percent of homes that have fossil fuel space heating

= 100 % for fossil fuel

= 0 % for Electric Resistance or Heat Pump

= If unknown⁷⁸⁶, use the following table:

	Location				
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown
Ameren	82%	74%	62%	61%	71%
ComEd	86%	78%	57%	52%	79%
PGL	98.9%	98.5%	96.0%	96.9%	97.7%
NSG	98.3%	99.2%	67.5%	98.8%	96.6%
Nicor	98.3%	99.2%	67.5%	98.8%	96.6%
All DUs ⁷⁸⁷					74%

Note: If a measure is supported by a gas and electric utility through a joint program, and it is unknown

⁷⁸² Used to convert Annual HDD (F-Days) to total deltaT-hours (F-Hr) per year.

⁷⁸³ Please see file 'HVIProd_ER.xlsx' for all related values. This is a lookup based on Customer inputs of ERV Brand and Model Number, which must match one of the HVI-Certified listings.

⁷⁸⁴ Ideally, the System Efficiency should be obtained either by recording the AFUE of the unit, or performing a steady state efficiency test. The Distribution Efficiency can be estimated via a visual inspection and by referring to a look up table such as that provided by the Building Performance Institute: (see 'BPI Distribution Efficiency Table') or by performing duct blaster testing.

⁷⁸⁵ Justification for degradation factors can be found on page 14 of 'AIC HVAC Metering Study Memo FINAL 2_28_2018'. Estimate efficiency as (Rated Efficiency * (1-0.01)^Equipment Age).

⁷⁸⁶ Based on the average % Natural Gas used for space heating in Unknown residential structure types across all utilities covered by the IL program. Residence types include: SF, SF LI, MF & MF LI. Utilities included: Ameren, ComEd, People's Gas, Northshore Gas & Nicor. Data provided from 2016 Ameren Illinois Demand Side Management (DSM) Market Potential Study by Applied Energy Group, ComEd's 2019 Baseline Survey on residential space heating share, and PY2022-2023 Implementation Contractors Data for People's Gas, Northshore Gas & Nicor .

⁷⁸⁷ For the weighted average calculations, please see the Analysis file. PGL, NSG, Nicor & gas customers were assumed to follow the provided split. ComEd total customers, minus overlap with PGL,NSG & Nicor, therefore gas only homes. Ameren is total customers minus Nicor.

whether the participant has a gas supply, the electric utility values in the table above should be used. If it is known that the participant has a gas supply, the values from the gas utility above should be applied.

Other factors as defined above.

For example, assuming: HVI_Max_CFM =117; HDD60 = 5,552; HVI_Rated_ASRE = 75%; η Heat = 0.80 (Noncondensing Gas Heat); Daily_Hrs_Ventilation = 17.8, then $\Delta Therms_{Annual} = 1.08 * 117 * 5,552 * 24 * 75\% / 0.80 / 100,000 * 17.8 / 24$ = 117 Therms

WATER AND OTHER NON-ENERGY IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-HVC-ERVS-V04-250101

REVIEW DEADLINE: 1/1/2029

5.3.21 Air Handler Filter Cleaning/Replacement

DESCRIPTION

A dirty air handler filter increases electricity consumption for circulating fans and decreases system heating and cooling efficiencies. This measure characterizes a direct install style program whereby an existing dirty filter is either cleaned or replaced. This measure applies to central forced-air furnaces, central AC and heat pump systems. Where homes do not have central cooling, only the annual heating savings will apply.

This measure was developed to be applicable to the following program types: DI. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient condition is a cleaned or replaced air handler filter.

DEFINITION OF BASELINE EQUIPMENT

The baseline condition is an air handler filter with dirt build up and result in a blower fan motor working harder and the heating/cooling system efficiency degrading.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 3 years⁷⁸⁸.

DEEMED MEASURE COST

The actual measure cost to clean or replace the filter should be used. If costs are unavailable assume \$30 for a filter clean (assuming ½ hour at \$60 an hour) or \$50 for a new filter (\$20 for the filter plus ½ hour at \$60 an hour).

LOADSHAPE

Loadshape R10 - Residential Electric Heating and Cooling

Loadshape R09 - Residential Electric Space Heat

COINCIDENCE FACTOR

The summer peak coincidence factor for cooling is provided in two different ways below. The first is used to estimate peak savings during the utility peak hour and is most indicative of actual peak benefits, and the second represents the *average* savings over the defined summer peak period, and is presented so that savings can be bid into PJM's Forward Capacity Market.

CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C (during system peak hour)

 $=68\%^{789}$

CF_{PJM} = PJM Summer Peak Coincidence Factor for Central A/C (average during PJM peak period)

 $=46.6\%^{790}$

Algorithm

⁷⁸⁸ Consistent with furnace tune-up measure.

⁷⁸⁹ Based on metering of 24 homes with central AC during PY4 and PY5 in Ameren Illinois service territory.

⁷⁹⁰ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

ΔkWh = kW_{motor} * (EFLH_{heat} + (%AC * EFLH_{cool})) * %FanSave

Where:

= Average air handler fan motor full load electric demand kW_{motor}

 $= 0.377 \text{ kW}^{791}$

EFLHheat = Equivalent Full Load Hours for heating. Depends on location. See table below

Climate Zone (City based upon)	EFLH _{heat} ⁷⁹²
1 (Rockford)	1,520
2 (Chicago)	1,421
3 (Springfield)	1,347
4 (Belleville)	977
5 (Marion)	994
Weighted Average	1,406

= Fraction of customers with thermostat-controlled air-conditioning

Thermostat control of air conditioning?	%AC ⁷⁹³
Yes	100%
No	0%
Unknown	82.5%

= Equivalent Full Load Hours for cooling. Depends on location. If no cooling, assume 0. See table below⁷⁹⁴.

Climate Zone (City based upon)	EFLH _{cool}
1 (Rockford)	323
2 (Chicago)	308
3 (Springfield)	468
4 (Belleville)	629

⁷⁹¹ Typical blower motor capacity for gas furnace is ¼ to ¾ HP. Midpoint is ½ HP. ½ HP × 0.746 (kW/hp)=0.377kW.

⁷⁹² All-Electric Homes PY6 Metering Results: Multifamily HVAC Systems, Cadmus, October 2015. FLH values are based on metering of Multifamily units that were used as the primary heating source to the whole home, and in buildings that had received weatherization improvements. A DMSHP installed in a single-family home may be used more sporadically, especially if the DMSHP serves only a room, and buildings that have not been weatherized may require longer hours. Additional evaluation is recommended to refine the EFLH assumptions for the general population.

^{793 99%} of ComEd PY8 program participants (AC targeted programs) have Central AC per communication with Navigant's ongoing 2017/2018 cooling savings evaluation. Non-targeted programs are still expected to have participation with %AC above general population rates. 82.5% is an average of the 99% program participation rate, and the 69% of homes in Illinois having central cooling ("Table HC7.9 Air Conditioning in Homes in Midwest Region, Divisions, and States, 2009 from Energy Information Administration", 2009 Residential Energy Consumption Survey;

⁷⁹⁴ All-Electric Homes PY6 Metering Results: Multifamily HVAC Systems, Cadmus, October 2015. FLH values are based on metering of Multifamily units, and in buildings that had received weatherization improvements. Additional evaluation is recommended to refine the EFLH assumptions for the general population.

Climate Zone (City based upon)	EFLH _{cool}
5 (Marion)	549
Weighted Average ⁷⁹⁵	364

%FanSave = Assumed percent fan savings

 $= 10\%^{796}$

For example, replacing an air handler filter in a home with a gas furnace and central cooling in Chicago:

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = kW_{motor} * %AC * %FanSave * CF$

Where:

CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C (during system peak hour)

 $=68\%^{797}$

CF_{PJM} = PJM Summer Peak Coincidence Factor for Central A/C (average during peak period)

 $=46.6\%^{798}$

For example, replacing an air handler filter in a home with a gas furnace and central cooling in Chicago:

$$\Delta kW_{SSP} = 0.377 * 1 * 0.1 * 0.68$$

= 0.0256 kW

FOSSIL FUEL SAVINGS

ΔTherms = %FossilHeat * Gas_Heating_Consumption * EI

Where:

%FossilHeat = Percentage of heating savings assumed to be Natural Gas

Heating fuel	%FossilHeat
Electric	0%
Natural Gas	100%
Unknown	97% ⁷⁹⁹

⁷⁹⁵ Weighted based on number of residential occupied housing units in each zone.

⁷⁹⁶ Based on Energy.gov website; "Maintaining Your Air Conditioner". Accessed 7/16/2014, which states that replacing a dirty air filter with a clean one can lower total air conditioner energy consumption by 5-15%. Since most savings will be to the fan motor, assuming 10%.

⁷⁹⁷ Based on metering of 24 homes with central AC during PY4 and PY5 in Ameren Illinois service territory.

⁷⁹⁸ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

⁷⁹⁹ Value used is based on known PY8 percent of electric heat provided by Navigant as part of the ongoing evaluation work source:

[&]quot;Slide 21: May 22, 2018, Second Addendum IL TRM Advanced Thermostat Cooling Savings Evaluation"

Gas_Heating_Consumption

= Estimate of annual household heating consumption for gas heated single-family homes. If location is unknown, assume the average below⁸⁰⁰.

Climate Zone (City based upon)	Gas_Heating_ Consumption (therms)
1 (Rockford)	1,052
2 (Chicago)	1,005
3 (Springfield)	861
4 (Belleville)	664
5 (Marion)	676
Average	955

EI = Estimated savings from efficiency Improvement

 $= 1\%^{801}$

For example, replacing an air handler filter in a home with a gas furnace and central cooling in Chicago:

 Δ Therms = 1.0 * 1005 * 0.01

= 10.1therms

WATER AND OTHER NON-ENERGY IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-HVC-AHFR-V01-230101

REVIEW DEADLINE: 1/1/2025

⁸⁰⁰ Values are based on adjusting the average household heating load (834 therms) for Chicago based on 'Table E-1, Energy Efficiency / Demand Response Nicor Gas Plan Year 1, Research Report: Furnace Metering Study', divided by standard assumption of existing unit efficiency of 83% (estimate based on 24% of furnaces purchased in Illinois were condensing in 2000 (based on data from GAMA, provided to Department of Energy), assuming typical efficiencies: (0.24*0.92) + (0.76*0.8) = 0.83) to give 1005 therms. This Chicago value was then adjusted to a statewide average using relative HDD assumptions to adjust for the evaluation results focus on northern region. Values for individual cities are then calculated by comparing average HDD to the individual city's HDD.

⁸⁰¹ Based on Michael Blasnik estimate of 1% gas savings for 25% air flow change; final slide of presentation: https://buildingscience.com/sites/default/files/01_Lies_Damned_Lies_and_Modeling_rev.pdf

5.3.22 High Efficiency Kitchen Exhaust Fans

DESCRIPTION

This measure will serve to capture the savings from the installation of a new kitchen exhaust fan, also known as a Range Hood, for typical usage. Existing kitchen exhaust fans may be too noisy, inefficient, or in need of replacement if beyond repair. This measure assumes fan capacities between 10 and 200 CFM rated at a sound level of maximum 2.0 sones at 0.1 inches of water column static pressure. All eligible installations shall be sized to provide the mechanical ventilation rate indicated by ASHRAE 62.2.

This measure was developed to be applicable to the following program types: TOS, NC, RF.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

New efficient ENERGY STAR exhaust-only ventilation fan, quiet (≤ 2.0 sones) operating in accordance with recommended ventilation rate indicated by ASHRAE 62.2 – 2016. ENERGY STAR specifications (effective October 1, 2015) are provided below:

Efficiency Level	Fan Capacity	Minimum Efficacy Level (CFM/Watts)	Maximum Allowable Sound Level (sones)	
ENERGY STAR	≤ 75 W	2.8	2.0	

DEFINITION OF BASELINE EQUIPMENT

New standard efficiency exhaust-only ventilation fan.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 19 years.802

DEEMED MEASURE COST

Incremental cost per installed fan is \$107.803

LOADSHAPE

Loadshape R11 - Residential Ventilation

COINCIDENCE FACTOR

N/A

⁸⁰² Conservative estimate based upon GDS Associates Measure Life Report "Residential and C&I Lighting and HVAC measures" 25 years for whole-house fans, and 19 for thermostatically-controlled attic fans.

⁸⁰³ Analysis using cost data collected from online resources. See 'Kitchen Exhaust Fans Supplementary Data' workbook for more information.

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

 Δ kWh = (CFM * (1/ η , BASELINE - 1/ η efficient)/1000) * Hours

Where:

CFM = Nominal Capacity of the exhaust fan

= Actual or use defaults provided below

 $\eta_{BASELINE}$ = Average efficacy for baseline fan (CFM/watts)

= Actual or use defaults provided below

 η_{EFFCIENT} = Average efficacy for efficient fan (CFM/watts)

= Actual or use defaults provided below

Hours = assumed annual run hours of stove

= 120⁸⁰⁴

Defaults provided below:805

Average CFM	Base CFM/Watts	ENERGY STAR CFM/Watts	ΔkWh	
145.5	2.4 ⁸⁰⁶	4.5	3.4	

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

FOSSIL FUEL SAVINGS

N/A

WATER AND OTHER NON-ENERGY IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-HVC-KEXF-V01-240101

REVIEW DEADLINE: 1/1/2029

⁸⁰⁴ Assumes that 50% of cooking events utilize the kitchen exhaust fan. Number of cooking events is consistent with the 5.1.14 Residential Induction Cooktop measure which assumes 1 hours per cycle and 239 cycles per year therefore 239 operating hours per year. 239 cycles per year is based on a 2016 CASE study for PG&E modeling Plug Loads.

⁸⁰⁵ Average CFM and EnergyStar CFM/Watts calculated using EnergyStar's list of qualified products, accessed 5/2023.

⁸⁰⁶ Based on review of Range Hood products available on CEC Appliance Database, accessed 5/12/2023. See 'Kitchen Exhaust Fans Supplementary Data' spreadsheet, "All Fans less than 75W" tab for more details.

5.4 Hot Water End Use

5.4.1 Domestic Hot Water Pipe Insulation

DESCRIPTION

This measure describes adding insulation to un-insulated domestic hot water pipes. The measure assumes the pipe wrap is installed either to the first length of both the hot and cold pipe (this is the most cost-effective section to insulate in non-circulating systems, since the water pipes act as an extension of the hot water tank) or to a hot water recirculating loop. Insulating this length therefore helps reduce standby losses. Default savings are provided per 3ft length and are appropriate up to 6ft of the hot water pipe and 3ft of the cold. Where a hot water recirculating pump is in use, this measure is viable for the entire hot water loop.

This measure was developed to be applicable to the following program types: TOS, NC, RF, KITS.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient case is installing pipe wrap insulation to a length of hot water pipe.

DEFINITION OF BASELINE EQUIPMENT

The baseline is an un-insulated hot water pipe.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The measure life is assumed to be 12 years.807

DEEMED MEASURE COST

The actual installation cost should be used if known. If unknown, the measure cost including material and installation is assumed to be \$3 per linear foot. 808 For foam pipe insulation assume a measure cost of 0.26/ft for 2 insulation and 0.31/ft for 2 insulation. 809

LOADSHAPE

Loadshape C53 - Flat

COINCIDENCE FACTOR

This measure assumes a flat loadshape since savings relate to reducing standby losses and as such the coincidence factor is 1.

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 Δ kWh = %Electric_DHW * ((1 / R_{exist} - 1 / R_{new}) * C_{inside} * L_{effective} * Δ T * 8,766 * ISR)/ η DHW / 3,412

Where:

%Electric_DHW = Percentage of DHW savings assumed to be electric

⁸⁰⁷ . California DEER EUL Table Update 2014-02-05. Average of values for electric DHW (13 years) and gas DHW (11 years).

⁸⁰⁸ Consistent with DEER 2008 Database Technology and Measure Cost Data (www.deeresources.com).

⁸⁰⁹ Review of website cost data for Homedepot.com, Lowes.com, and Menards.com for locations in Peoria, IL.

- = 100 % for Electric
- = 0 % for Fossil Fuel
- = If unknown⁸¹⁰, use the following table:

	Location				
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown
Ameren ⁸¹¹	24%	25%	40%	43%	28%
ComEd ⁸¹²	8%		11%		9%
People's Gas ⁸¹³	2.0%	2.0%	1.7%	2.1%	2.0%
Northshore Gas ⁸¹⁴	1.3%	1.8%	10.0%	2.4%	2.3%
Nicor Gas ⁸¹⁵	1.3%	1.8%	10.0%	2.4%	2.3%
All DUs ⁸¹⁶					25%

<u>Note</u>: If a measure is supported by a gas and electric utility through a joint program, and it is unknown whether the participant has a gas supply, the electric utility values in the table above should be used. If it is known that the participant has a gas supply, the values from the gas utility above should be applied.

Rexist = Pipe heat loss coefficient of uninsulated pipe (existing) [(hr-°F-ft)/Btu]

= Varies based on pipe size and material. See table below for values.

R_{new} = Pipe heat loss coefficient of insulated pipe (new) [(hr-°F-ft)/Btu]

= Actual (R_{exist} + R value of insulation⁸¹⁷)

C_{inside} = Inside circumference of the pipe [ft]

= Actual (0.5" pipe = 0.1427 ft, 0.75" pipe = 0.2055 ft); See table below for values.

L_{effective} = Effective length of pipe from water heating source covered by pipe insulation (ft) 818

= $L_{Horizontal} + \alpha L_{Vertical}$

= Actual; See table below for α values. If unknown, assume 3ft of vertical and remaining horizontal.

815 Comparable service area & customers to NSG, therefore using their survey data.

⁸¹⁰ Based on the average % electricity used for water heating in Unknown residential structure types across all utilities covered by the IL program. Residence types include: SF, SF LI, MF & MF LI. Utilities included: Ameren, ComEd, People's Gas, Northshore Gas & Nicor. Please see subsequent table and citations for specific sources.

⁸¹¹ Provided by AEG from the 2020 Market Potential Study completed for AIC, as well as AIC Income Qualified Initiative: 2021 Participant Survey Results Memo (February 1, 2022) p. 17.

⁸¹² Commonwealth Edison Residential Baseline Study (2020). p.4.4 & 4.19; Section 4-7 Water Heating. Prepared by Itron.

⁸¹³ Implementation Contractors data from Peoples Gas and North Shore Gas for PY2022-2023.

⁸¹⁴ Ibid.

⁸¹⁶ For the weighted average calculations, please see the Analysis file. PGL, NSG, Nicor & gas customers were assumed to follow the provided split. ComEd total customers, minus overlap with PGL,NSG & Nicor, therefore electric only homes. Ameren is total customers minus Nicor.

⁸¹⁷ Where possible it should be ensured that the R-value of the insulation is at the appropriate mean rating temperature (100F).
818 In cases with zero wind, heat loss (and therefore) savings is larger from horizontal pipe configurations than vertical pipe configurations due, perhaps to the way in which convective losses are handled. Given that most DHW pipe insulation installations begin with a vertical orientation from the water heater, an adjustment to the engineering calculation is needed. An analysis of the 3E PLUS tool by NAIMA (https://insulationinstitute.org/tools-resources/free-3e-plus/) yielded adjustment factors for horizontal to vertical loss and savings values. See DHW_PipeInsulationCalcs_062121.xlsx for details of the analysis and comparisons.

ΔT = Average temperature difference between supplied water and outside air temperature (°F)
 = 60°F ⁸¹⁹
 8,766 = Hours per year
 ISR = In Service Rate
 = 0.50 for Kits distribution⁸²⁰, 0.78 for Virtual Assessment followed by Self-Installation⁸²¹, and 1.0 for Direct Install, TOS, or Verified Install program types
 ηDHW = Recovery efficiency of electric hot water heater
 = 0.98 ⁸²²
 3412 = Conversion from Btu to kWh

Parameter assumptions for various pipe sizes and materials:

Type and Size	C _{Inside} ⁸²³ (I.D.*π/12) (ft)	Product of Overall Heat Transfer Coefficient and Pipe Area (UA) per foot ⁸²⁴ from bare pipe (BTU/hr·ft·°F)	Pipe Area per linear foot (ft³) ⁸²⁵	R _{exist} ((hr·ft·°F)/BTU)	Horizontal to Vertical Adjustment Factor (α)
½" Copper Pipe	0.1427	0.345	0.153	0.444	0.67
¾" Copper Pipe	0.2055	0.417	0.217	0.521	0.72
½" PEX	0.1270	0.438	0.145	0.332	0.73
¾" PEX	0.1783	0.545	0.204	0.374	0.77

Home Energy Worksheets also establish the fraction of participants who indicate they "will install later" for specific measures. Follow-up research completed by Guidehouse for Nicor Gas in 2022 found that, on average, 51.3% of respondents who initially reported that they hadn't installed specific kit measures, but "planned to" subsequently had installed the measures. Combining these findings allows for an ISR that accounts for initial and one round of subsequent installations. To maintain a conservative estimate of ISR, the remaining 48.7% are presumed uninstalled. See: EESchoolKitSubsequentInstall_HEW.xlsx for data and calculations.

-

⁸¹⁹ Assumes 125°F water leaving the hot water tank and average temperature of basement of 65°F.

⁸²⁰ Results from Home Energy Worksheets completed by student/families in 2020, 2021, and 2022 were nearly the same as values from: 2020 survey research by Guidehouse, conducted with Peoples Gas income qualified recipients of self-install efficiency kits distributed by mail in late 2019 (with 117 survey respondents) and research from 2021 Ameren Illinois Income Qualified participant survey, available on IL SAG website:

https://ilsag.s3.amazonaws.com/AIC-Income-Qualified-Initiative-Participant-Survey-Results-Memo-FINAL-2022-02-01.pdf.

⁸²¹ An equal weighted average of Direct Install and Kit ISRs. Interest and applicability of measures confirmed through virtual assessment followed by self-installation without verification of install.

⁸²² Electric water heaters have recovery efficiency of 98%.

See: https://energy-models.com/pipe-sizing-charts-tables (last accessed 5/7/21) for copper pipe sizes and https://www.garagesanctum.com/size-chart/pex-tubing-size-chart/ (last accessed 5/7/21) for PEX pipe sizes.

 $^{^{824}\,\}mbox{Laboratory}$ measured values from Hoeschele and Weitzel (2012), Figure 1.

⁸²⁵ Calculated using the average pipe thickness (I.D. + O.D.)*0.5.

For example, insulating 6 feet of 0.75" copper pipe (4ft vertical + 2ft horizontal) with R-5 wrap for electric DHW through a Direct Install program:

```
 \Delta kWh = \%Electric\_DHW *(((1 / R_{exist} - 1 / R_{new}) * C_{inside} * L_{effective} * \Delta T * 8,766 * 1.0) / \eta DHW) / 3,412   = 1 * (((1/0.521 - 1/3.521) * 0.2055 * (2 + 4 * 0.72) * 60 * 8,766 * 1.0) / 0.98) / 3,412   = 258 \text{ kWh}
```

The following table provides annual energy savings per foot of pipe insulation for various configurations with electric DHW:

	ΔkWh Savings per Foot of Insulation (kWh/ft)		
Measure Configuration	Kit Distribution (ISR = 50%)	All Other Programs (ISR = 100%)	
Horizontal Pipe Orientation			
½" Copper Pipe insulated with R-3, ½" thick insulation	22	44.0	
¾" Copper Pipe insulated with R-3, ½" thick insulation	26.5	52.9	
½" PEX insulated with R-3, ½" thick insulation	27.1	54.2	
¾" PEX insulated with R-3, ½" thick insulation	33.4	66.7	
Vertical Pipe Orientation			
½" Copper Pipe insulated with R-3, ½" thick insulation	14.8	29.5	
¾" Copper Pipe insulated with R-3, ½" thick insulation	19.1	38.1	
½" PEX insulated with R-3, ½" thick insulation	19.8	39.5	
¾" PEX insulated with R-3, ½" thick insulation	25.7	51.3	
Unknown			
R-3, ½" thick insulation for ½" pipes – pipe type and configuration unknown (average of vertical and horizontal configurations for ½"pipe)	20.9	41.8	
R-3, ½" thick insulation for ¾" pipes – pipe type and configuration unknown (average of vertical and horizontal configurations for ¾"pipe)	26.1	52.2	
Unknown pipe type (straight average) and configuration (average of all vertical and horizontal configurations) insulated with R-3, ½" thick insulation	23.5	46.9	

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh / 8766$

Where:

 Δ kWh = kWh savings from pipe wrap installation

8766 = Number of hours in a year (since savings are assumed to be constant over year).

For example, insulating 6 feet of 0.75" copper pipe (4ft vertical + 2ft horizontal) with R-5 wrap through a Direct Install program:

 Δ kW = 258/8766 = 0.0294kW

The following table provides peak demand savings per foot of pipe insulation for various configurations with electric DHW:

	ΔkW Savings per Foot of Insulation (kW/ft)		
Measure Configuration	Kit Distribution (ISR = 50%)	All Other Programs (ISR = 100%)	
Horizontal Pipe Orientation			
½" Copper Pipe insulated with R-3, ½" thick insulation	0.0025	0.0050	
¾" Copper Pipe insulated with R-3, ½" thick insulation	0.0030	0.0060	
½" PEX insulated with R-3, ½" thick insulation	0.0031	0.0062	
¾" PEX insulated with R-3, ½" thick insulation	0.0038	0.0076	
Vertical Pipe Orientation			
½" Copper Pipe insulated with R-3, ½" thick insulation	0.0017	0.0034	
¾" Copper Pipe insulated with R-3, ½" thick insulation	0.0022	0.0043	
½" PEX insulated with R-3, ½" thick insulation	0.0023	0.0045	
¾" PEX insulated with R-3, ½" thick insulation	0.0030	0.0059	
Unknown			
R-3, ½" thick insulation for ½" pipes – pipe type and configuration unknown (average of vertical and horizontal configurations for ½"pipe)	0.0024	0.0048	
R-3, ½" thick insulation for ¾" pipes – pipe type and configuration unknown (average of vertical and horizontal configurations for ¾"pipe)	0.0030	0.0060	
Unknown pipe type (straight average) and configuration (average of vertical and horizontal configurations for all pipes) insulated with R-3, ½" thick insulation	0.0027	0.0053	

FOSSIL FUEL SAVINGS

For Natural Gas DHW systems:

 Δ Therm = %Fossil_DHW * (((1 / R_{exist} - 1 / R_{new}) * C_{inside} * L_{effective} * Δ T * 8,766 * ISR) /

ηDHW) /100,000

Where:

%Fossil_DHW = Percentage of DHW savings assumed to be fossil fuel

= 100 % for Fossil Fuel

= 0 % for Electric

			Location		
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown
Ameren ⁸²⁷	76%	75%	60%	57%	72%
ComEd ⁸²⁸	9	2%	8	9%	91%
People's Gas ⁸²⁹	97.9%	98.0%	98.3%	97.6%	97.8%
Northshore Gas ⁸³⁰	98.5%	98.2%	90.0%	97.6%	97.6%
Nicor Gas ⁸³¹	98.5%	98.2%	90.0%	97.6%	97.6%
All DUs ⁸³²					75%

= If unknown⁸²⁶, use the following table:

<u>Note</u>: If a measure is supported by a gas and electric utility through a joint program, and it is unknown whether the participant has a gas supply, the electric utility values in the table above should be used. If it is known that the participant has a gas supply, the values from the gas utility above should be applied.

ηDHW

- = Recovery efficiency of fossil hot water heater
- $= 0.78^{833}$

Other variables as defined above

For example, insulating 6 feet of 0.75" copper pipe (4ft vertical + 2ft horizontal) with R-5 wrap for Gas DHW through a Direct Install program:

$$\Delta$$
Therm = %Fossil_DHW * (((1 / R_{exist} - 1 / R_{new}) * C_{inside} * L_{effective} * Δ T * 8,766 * ISR) / η DHW) /100,000 = 1 * (((1/0.521 - 1/3.521) * 0.2055 * (2 + 4 * 0.72) * 60 * 8766 * 1.0) / 0.78 / 100,000 = 11.06 therms

The following table provides Natural Gas savings per foot of pipe insulation for various configurations for natural gas DHW:

	ΔTherm Savings per Foot of Insulation (Therms/ft)	
Measure Configuration	Kit Distribution All Other Programs (ISR = 50%) (ISR = 100%)	
Horizontal Pipe Orientation		

⁸²⁶ Based on the average % electricity used for water heating in Unknown residential structure types across all utilities covered by the IL program. Residence types include: SF, SF LI, MF & MF LI. Utilities included: Ameren, ComEd, People's Gas, Northshore Gas & Nicor. Please see subsequent table and citations for specific sources.

⁸²⁷ Provided by AEG from the 2020 Market Potential Study completed for AIC, as well as AIC Income Qualified Initiative: 2021 Participant Survey Results Memo (February 1, 2022) p. 17.

⁸²⁸ Commonwealth Edison Residential Baseline Study (2020). p.4.4 & 4.19; Section 4-7 Water Heating. Prepared by Itron.

⁸²⁹ Residential Appliance Saturation Survey of natural gas for space heating and water heating (2021). Note, Multifamily customers have a residential billing rate code and responded on the survey that they live in an apartment or condominium in a building that has either 2-4 or 5+ units.

⁸³⁰ Ihid

⁸³¹ Comparable service area & customers to NSG, therefore using their survey data.

⁸³² For the weighted average calculations, please see the Analysis file. PGL, NSG, Nicor & gas customers were assumed to follow the provided split. ComEd total customers, minus overlap with PGL,NSG & Nicor, therefore gas only homes. Ameren is total customers minus Nicor.

⁸³³ Review of AHRI Directory suggests range of recovery efficiency ratings for new Gas DHW units of 70-87%. Average of existing units is estimated at 78%

	ΔTherm Savings per Foot of Insulation (Therms/ft)		
Measure Configuration	Kit Distribution (ISR = 50%)	All Other Programs (ISR = 100%)	
½" Copper Pipe insulated with R-3, ½" thick insulation	0.95	1.89	
¾" Copper Pipe insulated with R-3, ½" thick insulation	1.14	2.27	
½" PEX insulated with R-3, ½" thick insulation	1.16	2.32	
¾" PEX insulated with R-3, ½" thick insulation	1.43	2.86	
Vertical Pipe Orientation			
½" Copper Pipe insulated with R-3, ½" thick insulation	0.63	1.26	
¾" Copper Pipe insulated with R-3, ½" thick insulation	0.82	1.63	
½" PEX insulated with R-3, ½" thick insulation	0.85	1.70	
¾" PEX insulated with R-3, ½" thick insulation	1.1	2.20	
Unknown			
R-3, ½" thick insulation for ½" pipes – pipe type and configuration unknown (average of vertical and horizontal configurations for ½"pipe)	0.9	1.79	
R-3, ½" thick insulation for ¾" pipes – pipe type and configuration unknown (average of vertical and horizontal configurations for ¾"pipe)	1.12	2.24	
Unknown pipe type (straight average) and configuration (average of vertical and horizontal configurations for all pipes) insulated with R-3, $\frac{1}{2}$ " thick insulation	1.01	2.01	

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-HWE-PINS-V09-250101

REVIEW DEADLINE: 1/1/2028

5.4.2 Gas Water Heater

DESCRIPTION

This measure characterizes:

a) Time of sale or new construction:

The purchase and installation of a new efficient gas-fired water heater, in place of a Federal Standard unit in a residential setting. Savings are provided for power-vented, condensing storage, and wholehouse tankless units meeting specific Uniform Energy Factor (UEF) criteria.

b) Early replacement:

The early removal of an existing functioning natural gas water heater from service, prior to its natural end of life, and replacement with a new high efficiency unit. Savings are calculated between existing unit and efficient unit consumption during the remaining life of the existing unit, and between new baseline unit and efficient unit consumption for the remainder of the measure life.

This measure was developed to be applicable to the following program types: TOS, NC, EREP.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be a residential gas-fired storage water heater or Instantaneous (tankless) water heater meeting ENERGY STAR criteria. 834

Water Heater Type	Water Heater Tank Volume (gallons)	Draw Pattern	Minimum Uniform Energy Factor
	. [[Medium	≥ 0.81
Gas Storage	≤ 55 High		≥ 0.86
	> 55	All	≥ 0.86
Gas Instantaneous	All	All	≥ 0.95

DEFINITION OF BASELINE EQUIPMENT

2025 IL TRM v13.0 Vol. 3 September 20, 2024 FINAL

Time of Sale or New Construction: The baseline equipment is assumed to be a new, gas-fired storage residential water heater meeting minimum Federal efficiency standards as provided below:

Equipment Type	Sub Category	Draw Pattern	Federal Standard – Uniform Energy Factor ⁸³⁵
		Very small	UEF = 0.3456 – (0.0020 * Rated Storage Volume in Gallons)
	ZEE aallan tanka	Low	UEF = 0.5982 – (0.0019 * Rated Storage Volume in Gallons)
Residential	≤55 gallon tanks	Medium	UEF = 0.6483 – (0.0017 * Rated Storage Volume in Gallons)
Gas Storage		High	UEF = 0.6920 – (0.0013 * Rated Storage Volume in Gallons)
Water Heaters		Very small	UEF = 0.6470 – (0.0006 * Rated Storage Volume in Gallons)
≤75,000 Btu/h	>55 gallon and ≤100	Low	UEF = 0.7689 – (0.0005 * Rated Storage Volume in Gallons)
	gallon tanks	Medium	UEF = 0.7897 – (0.0004 * Rated Storage Volume in Gallons)
		High	UEF = 0.8072 – (0.0003 * Rated Storage Volume in Gallons)

⁸³⁴ ENERGY STAR Product Specification for Residential Water Heaters, Version 5.0, effective April 18, 2023.

⁸³⁵ DOE Standard 10 CFR 430, Residential-Duty and Commercial Federal Standard are from DOE Standard 10 CFR 431. Minimum Federal standard as of 4/16/2015, confirmed no changes as of 4/28/2024;

https://www.ecfr.gov/cgi-bin/text-idx?SID=80dfa785ea350ebeee184bb0ae03e7f0&mc=true&node=se10.3.430_132&rgn=div8

Draw patterns are based on first hour rating (gallons) for storage tanks as shown below:836

Storage Water Heater Draw Pattern			
Draw Pattern First Hour Rating (gallons)			
Very Small	≥ 0 and < 18		
Low	≥ 18 and < 51		
Medium	≥ 51 and < 75		
High	≥ 75		

The same draw pattern (very small, low, medium and high draw) should be used for both baseline and efficient units. If using a deemed approach, for storage water heaters with a storage capacity equal to or less than 55 gallons, the Federal energy factor requirement is calculated as 0.6483 - (0.0017 * storage capacity in gallons) assuming a Medium draw and $0.8072 - (0.0003 \times storage capacity in gallons)$ assuming a High draw for greater than 55 gallon storage water heaters.

Early Replacement: The baseline is the efficiency of the existing gas water heater for the remaining useful life of the unit and the efficiency of a new gas water heater of the same type meeting minimum Federal efficiency standards for the remainder of the measure life.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 14.5 years for gas storage water heaters and 20.0 years for gas instantaneous water heaters.⁸³⁷

For early replacement: Remaining life of existing gas storge and instantaneous water heaters is assumed to be 4.8 and 6.7 years, respectively.⁸³⁸

DEEMED MEASURE COST

Time of Sale or New Construction:

The incremental capital cost for this measure is dependent on the type of water heater as listed below. 839

Early Replacement: The full installed cost is provided in the table below. The assumed deferred cost (after 4 years) of replacing existing equipment with a new baseline unit is also provided in the table below. This cost should be discounted to present value using the nominal discount rate.

Water Heater Type	Water Heater Tank Volume (gallons)	Draw Pattern	Incremental Cost	Full Install Cost	Deferred Baseline Replacement Cost ⁸⁴⁰
	≤ 55	Medium	\$230	\$1,968	\$645
Gas Storage ≥ 33	2 33	High	\$215	\$2,051	\$780
	> 55	All	\$215	\$2,051	\$780
Gas Instantaneous	All	All	\$293	\$1,954	\$937

⁸³⁶ Definitions provided in 10 CFR 430, Subpart B, Appendix E, Section 5.4.1

4 years.

⁸³⁷ Supporting document for Energy Conservation Program: Energy Conservation Standards for Consumer Water Heaters. 2023-07-21 Consumer Water Heater Life-Cycle Cost (LCC) and Payback Period Results Analysis (NOPR), EERE-2017-BT-STD-0019-0061.

⁸³⁸ Assumed to be one third of effective useful life

 ⁸³⁹ Supporting document for Energy Conservation Program: Energy Conservation Standards for Consumer Water Heaters. 2023 07-21 Consumer Water Heater Life-Cycle Cost (LCC) and Payback Period Results Analysis (NOPR), EERE-2017-BT-STD-0019-0061.
 840 The implied baseline cost from the incremental and full cost is calculated and then inflated applying inflation rate of 1.91% for

LOADSHAPE

N/A

COINCIDENCE FACTOR

N/A

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

N/A

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

FOSSIL FUEL SAVINGS

Time of Sale or New Construction:

ΔTherms = (1/ UEF_{BASE} - 1/UEF_{EFFICIENT}) * (GPD * Household * 365.25 * γWater * (T_{OUT} - T_{IN}) * 1.0)/100,000

Early replacement:841

ΔTherms for remaining life of existing unit (1st 3.7 years for gas storage unit and 1st 6.7 years for gas tankless unit):

= (1/ UEF_{EXISTING} - 1/UEF_{EFFICIENT}) * (GPD * Household * 365.25 * γWater * (T_{OUT} – T_{IN}) * 1.0)/100,000

 Δ Therms for remaining measure life (next 7.3 years for gas storage unit and next 13.3 years for gas tankless unit):

= (1/ UEF_{BASE} - 1/UEF_{EFFICIENT}) * (GPD * Household * 365.25 * γWater * (T_{OUT} - T_{IN}) * 1.0)/100,000

Where:

UEF_Baseline

= Uniform Energy Factor rating of standard storage water heater according to federal standards⁸⁴² provided in table in baseline section and using the same draw pattern as the efficient equipment. For a deemed approach:

= For gas storage water heaters \leq 55 gallons: 0.6483 – (0.0017 * storage capacity in gallons)

= For gas storage water heaters >55 gallons: $0.8072 - (0.0003 \times storage capacity in gallons)$

= If tank size is unknown, assume 0.563 for a gas storage water heater with a 50-gallon storage capacity

UEF Efficient

= Uniform Energy Factor Rating for efficient equipment

= Actual. If unknown⁸⁴³ assume:

⁸⁴¹ The two equations are provided to show how savings are determined during the initial phase of the measure (existing to efficient) and the remaining phase (new baseline to efficient). In practice, the screening tools used may either require a First Year savings (using the first equation) and then a "number of years to adjustment" and "savings adjustment" input which would be the (new base to efficient savings)/(existing to efficient savings).

 $^{^{842}}$ Minimum Federal standard as of 4/16/2015, Confirmed no changes as of 4/28/2023.

⁸⁴³ ENERGY STAR Product Specification for Residential Water Heaters, Version 5.0, effective April 23, 2023.

Unit Type	Unit Capacity	Draw Pattern	Uniform Energy Factor
Gas Storage	∠ FF gallons	Medium	0.81
	≤ 55 gallons	High	0.86
	> 55 gallons	All	0.86
Gas Tankless	All	All	0.95

UEF_Existing = Uniform Energy Factor rating for existing equipment

= Use actual UEF rating where it is possible to measure or reasonably estimate.

= if unknown assume 0.52 844

GPD = Gallons Per Day of hot water use per person

= 45.5 gallons hot water per day per household/2.59 people per household.845

= 17.6

Household = Average number of people per household

	Household ⁸⁴⁶			
Household Unit Type	IQ Participants	Non-IQ Participants	All Participants	
Single-Family - Deemed	2.76	2.62	2.67	
Multifamily - Deemed	2.3	2.09	2.18	
Household type unknown			2.52 ⁸⁴⁷	
Custom	Actual Occupa	ncy or Number of	Bedrooms ⁸⁴⁸	

Use Multifamily if: Building meets utility's definition for multifamily

365.25 = Days per year, on average γWater = Specific Weight of water = 8.33 pounds per gallon

T_{OUT} = Tank temperature

= 125°F

T_{IN} = Incoming water temperature from well or municipal system

= 50.7°F 849

1.0 = Heat Capacity of water (1 Btu/lb*°F)

⁸⁴⁴ Based on DCEO Efficient Living Program Data for a sample size of 157 gas water heaters.

Deoreo, B., and P. Mayer. Residential End Uses of Water Study Update. Forthcoming. ©2015 Water Research Foundation. Reprinted With Permission.

⁸⁴⁶ Assumptions are taken from the draft unadjusted 2024 Baseline Study evaluation data provided in 07/2024 by GDS Associates.

⁸⁴⁷ Unknown is based on statewide weighted average of 69% single family and 31% multifamily, based on IL data from 2009 RECS Table HC2.9 Structural and Geographic Characteristics of Homes in Midwest Region, Divisions and States, 2009.

⁸⁴⁸ Bedrooms are suitable proxies for household occupancy, and may be preferable to actual occupancy due to turnover rates in residency and non-adult population impacts.

⁸⁴⁹ Table 4 in Chen, et. al., "Calculating Average Hot Water Mixes of Residential Plumbing Fixtures", June 2020, reports a value of 50.7°F for inlet water temperature for U.S. Census Division 3.

For example, a 40 gallon condensing gas storage water heater, with a uniform energy factor of 0.86 in a single family IQ house:

$$\Delta$$
Therms = (1/0.58 - 1/0.86) * (17.6 * 2.76 * 365.25* 8.33 * (125 – 50.7) * 1) / 100,000 = 61.6 therms

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-HWE-GWHT-V12-250101

REVIEW DEADLINE: 1/1/2027

5.4.3 Heat Pump Water Heaters

DESCRIPTION

A heat pump water heater provides domestic water heating by moving heat between indoor air (conditioned or unconditioned) and a storage water tank.

This measure characterizes:

a) New Construction:

- The installation of a domestic heat pump water heater meeting ENERGY STAR efficiency standards in a new home.
- Note that the baseline in this case should be determined via EM&V and the algorithms are provided to allow savings to be calculated from any baseline condition.

b) Time of Sale:

- The installation of a domestic heat pump water heater in place of a standard electric or fossil fuelfired water heater in a home.
- Note that the baseline in this case is an equivalent replacement system to that which exists currently in the home. Where unknown, the baseline can be assumed to be a 50 gallon electric storage water heater with medium draw pattern.

c) Early Replacement

- The early removal of a functioning fossil-fuel fired water heater from service, prior to its natural end of life, and replacement with a new domestic heat pump water heater.
- Note that the baseline in this case is the existing equipment being replaced. Savings are calculated
 between the existing unit and efficient unit consumption during the remaining life of the existing
 unit, and between a new equivalent replacement system to that which exists currently in the home
 and efficient unit consumption for the remainder of the measure life.

Savings are presented dependent on the heating system installed in the home, presence of cooling, and presence of dehumidification due to the impact of the heat pump water heater on the heating cooling and dehumidification loads.

This measure was developed to be applicable to the following program types: TOS, NC, ER. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the installed equipment must be an ENERGY STAR Heat Pump domestic water heater.

DEFINITION OF BASELINE EQUIPMENT

The baseline condition is a new water heater meeting federal minimum efficiency standards, dependent on the storage volume (in gallons) of the water heater.

Equipment Type	Sub Category	Draw Pattern	Federal Standard – Uniform Energy Factor ⁸⁵⁰
	≤55 gallon tanks	Very small	UEF = 0.8808 – (0.0008 * Rated Storage Volume in Gallons)
Desidential Electric Change		Low	UEF = 0.9254 – (0.0003 * Rated Storage Volume in Gallons)
Residential Electric Storage Water Heaters ≤ 75,000 Btu/h		Medium	UEF = 0.9307 – (0.0002 * Rated Storage Volume in Gallons)
		High	UEF = 0.9349 – (0.0001 * Rated Storage Volume in Gallons)
≤ 75,000 Btu/II	>55 gallon and ≤120	Very small	UEF = 1.9236 – (0.0011 * Rated Storage Volume in Gallons)
	gallon tanks 851	Low	UEF = 2.0440 – (0.0011 * Rated Storage Volume in Gallons)

⁸⁵⁰ All Residential sized Federal Standards are from DOE Standard 10 CFR 430, Residential-Duty and Commercial Federal Standard are from DOE Standard 10 CFR 431.

•

⁸⁵¹ It is assumed that tanks <75,000Btu/h and >55 gallons will not be eligible measures due to the high baseline.

Equipment Type	Sub Category	Draw Pattern	Federal Standard – Uniform Energy Factor ⁸⁵⁰	
		Medium	UEF = 2.1171 – (0.0011 * Rated Storage Volume in Gallons)	
		High	UEF = 2.2418 – (0.0011 * Rated Storage Volume in Gallons)	
Residential Electric Instantaneous	≤12kW and ≤2 gal	All other	UEF = 0.91	
Water Heaters	SIZKW dilu SZ gdi	High	UEF = 0.92	
		Very small	UEF = 0.3456 – (0.0020 * Rated Storage Volume in Gallons)	
	≤55 gallon tanks	Low	UEF = 0.5982 – (0.0019 * Rated Storage Volume in Gallons)	
Residential		Medium	UEF = 0.6483 – (0.0017 * Rated Storage Volume in Gallons)	
		High	UEF = 0.6920 – (0.0013 * Rated Storage Volume in Gallons)	
Gas Storage Water Heaters ≤75,000 Btu/h	>55 gallon and ≤100 gallon tanks	Very small	UEF = 0.6470 – (0.0006 * Rated Storage Volume in Gallons)	
273,000 Btd/11		Low	UEF = 0.7689 – (0.0005 * Rated Storage Volume in Gallons)	
		Medium	UEF = 0.7897 – (0.0004 * Rated Storage Volume in Gallons)	
		High	UEF = 0.8072 – (0.0003 * Rated Storage Volume in Gallons)	
		Very small	UEF = 0.2509 – (0.0012 * Rated Storage Volume in Gallons)	
Residential Oil Storage Water	∠E0 gallon tanks	Low	UEF = 0.5330 – (0.0016 * Rated Storage Volume in Gallons)	
Heater	≤50 gallon tanks	Medium	UEF = 0.6087 - (0.0016 * Rated Storage Volume in Gallons)	
		High	UEF = 0.6815 - (0.0014 * Rated Storage Volume in Gallons)	

The same draw pattern (very small, low, medium and high draw) should be used for both baseline and efficient units. If using a deemed approach, for units ≤55 gallons – baseline is assumed to be a resistance storage unit with efficiency: 0.9307 – (0.0002 * rated volume in gallons) assuming medium draw.

For units >55 gallons – assume a 50 gallon resistance tank baseline; 852 i.e., 0.9299 UEF assuming high draw.

If unknown, assume a 50 gallon resistance tank baseline, at medium draw, therefore 0.9207 UEF. 853

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 15 years.854

DEEMED MEASURE COST

For Time of Sale or New Construction the incremental installation cost (including labor) should be used. Defaults are provided below.⁸⁵⁵ Actual efficient costs can also be used although care should be taken as installation costs can vary significantly due to complexities of a particular site.

For retrofit costs, the actual full installation cost should be used (default provided below if unknown).

Capacity	Efficiency Range	Baseline Installed Cost	Efficient Installed Cost	Incremental Installed Cost
∠CC gallons	<2.6 UEF	\$1,032	\$2,062	\$1,030
≤55 gallons	≥2.6 UEF	\$1,032	\$2,231	\$1,199
> CC callana	<2.6 UEF	\$1,319	\$2,432	\$1,113
>55 gallons	≥2.6 UEF	\$1,319	\$3,116	\$1,797

⁸⁵² A 50 gallon volume tank for the baseline is assumed to capture market practice of using larger heat pump water heaters to achieve greater efficiency of the heat pump cycle and preventing the unit from going in electric resistance mode.

⁸⁵³ About 90% of all water heaters are installed in a replace-on-burnout situation and installers strongly prefer like-for-like equipment replacements in these situations, meaning that fuel switching is unlikely in TOS situations. As stated in Opinion Dynamics Ameren Illinois' Market Effects Pilot – Heat Pump Hot Water Market Characterization Report, March 4, 2021.

⁸⁵⁴ As recommended in Navigant 'ComEd Effective Useful Life Research Report', May 2018.

⁸⁵⁵ Costs for <2.6 UEF are based upon averages from the NEEP Phase 3 Incremental Cost Study. The assumption for higher efficiency tanks is based upon averaged from NEEP Phase 4 Incremental Cost Study. See 'HPWH Cost Estimation.xls' for more information.

LOADSHAPE

Loadshape R18 - Residential Heat Pump Water Heater

COINCIDENCE FACTOR

The summer Peak Coincidence Factor is assumed to be 12%.856

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY AND FOSSIL FUEL SAVINGS

Non fuel switch measures:

```
ΔkWh = (((1/UEF<sub>BASE</sub> – 1/UEF<sub>HPWHEFFICIENT</sub>) * GPD * Household * 365.25 * γWater * (T<sub>OUT</sub> – T<sub>IN</sub>) * 1.0) / 3412) + CoolingImpact - ElecHeatImpact + Deh_Reduction

CoolingImpact<sup>857</sup> = Cooling savings from conversion of heat in home to water heat

=((((GPD * Household * 365.25 * γWater * (T<sub>OUT</sub> – T<sub>IN</sub>) * 1.0) / 3412) – ((1/ UEF<sub>HPWHEFFICIENT</sub> * GPD * Household * 365.25 * γWater * (T<sub>OUT</sub> – T<sub>IN</sub>) * 1.0) / 3412)) * LF * 27%) / COP<sub>COOL</sub>) * LM
```

ElecHeatImpact = Electric heating cost from conversion of heat in home to water heat (dependent on heating fuel)

```
= (((((GPD*Household*365.25*\gamma Water*(T_{OUT} - T_{IN})*1.0) / 3412) - ((1/UEF_{HPWHEFFICIENT}*GPD*Household*365.25*\gamma Water*(T_{OUT} - T_{IN})*1.0) / 3412)) * LF*37%) / COP_{HEAT})*(1-%NaturalGas)
```

Deh_Reduction = Savings resulting from reduced dehumidification (provided in table in variable list below)

 Δ Therms_{HeatImpact} = Fossil heating cost from conversion of heat in home to water heat for homes with Natural Gas heat

```
= - (((((GPD * Household * 365.25 * \gammaWater * (T_{OUT} - T_{IN}) * 1.0) / 3412) – (GPD * Household * 365.25 * \gammaWater * (T_{OUT} - T_{IN}) * 1.0) / 3412) / UEF<sub>HPWHEFFICIENT</sub>)) * LF * 37% * 0.03412) / \etaHeat) * %Fossil
```

Fuel switch measures:

Fuel switch measures must produce positive total lifecycle energy savings (i.e., reduction in Btus at the premises) in order to qualify. This is determined as follows:

SiteEnergySavings (MMBTUs) = [FossilWHReplaced] – [ElectricWHAdded] + [HVACImpacts]

⁸⁵⁶ Calculated from Figure 8 "Combined six-unit summer weekday average electrical demand" in FEMP study; 'Field Testing of Pre-Production Prototype Residential Heat Pump Water Heaters' as (average kW usage during peak period * hours in peak period) / [(annual kWh savings / FLH) * hours in peak period] = (0.1 kW * 5 hours) / [(2100 kWh (default assumptions) / 2533 hours) * 5 hours] = 0.12

⁸⁵⁷ This algorithm calculates the heat removed from the air by subtracting the HPWH electric consumption from the total water heating energy delivered. This is then adjusted to account for location of the HP unit and the coincidence of the waste heat with cooling requirements, the efficiency of the central cooling and latent cooling demands.

```
FossilWHReplaced = Fossil fuel consumption of replaced fossil fuel water heater

= (1/UEF<sub>GASBASE</sub> * GPD * Household * 365.25 * γWater * (T<sub>OUT</sub> – T<sub>IN</sub>) * 1.0)/1,000,000

ElectricWHAdded = Added electric consumption of heat pump water heater

= (1/UEF<sub>HPWHEFFICIENT</sub> * GPD * Household * 365.25 * γWater * (T<sub>OUT</sub> – T<sub>IN</sub>) * 1.0) /1,000,000

HVACImpacts [counted as non-fuel switch savings] = Heating and cooling impact of heat pump water heater

= [CoolingImpact * 3,412/1,000,000] – [ElecHeatImpact * 3,412/1,000,000] + [Deh reduction * 3,412/1,000,000] – [ΔTherms<sub>HeatImpact</sub> * 1/10]
```

If SiteEnergySavings calculated above is positive, the measure is eligible.

The appropriate savings claim is dependent on which utilities are supporting the measure as provided in a table below:

Measure supported by:	Electric Utility claims (kWh):	Gas Utility claims (therms):
Electric utility only	SiteEnergySavings * 1,000,000/3,412	N/A
Electric and gas utility (Note utilities may make alternative agreements to how savings are allocated as long as total MMBtu savings remains the same).	%IncentiveElectric * SiteEnergySavings * 1,000,000/3,412	%IncentiveGas * SiteEnergySavings * 10
Gas utility only	N/A	SiteEnergySavings * 10

Note for Early Replacement measures, the efficiency terms of the existing water heater should be used for the remaining useful life of the existing equipment and the efficiency terms for a new baseline unit should be used for the remaining years of the measure. See assumptions below.

Where:

UEF_{BASE} = Uniform Energy Factor (efficiency) of standard water heater according to federal standards provided in table in baseline section and using the same draw pattern as the efficient equipment. For a deemed approach assume electric water heater:

For <=55 gallons: 0.9307 – (0.0002 * rated volume in gallons)

For >55 gallons: Use 0.9299 858

= If unknown volume, use 0.9207 859

UEF_{HPWHEFFICIENT} = Uniform Energy Factor (efficiency) of Heat Pump water heater

= Actual

GPD = Gallons Per Day of hot water use per person

⁸⁵⁸ Assuming a 50 gallon tank baseline at High Draw due to the accommodate the higher gallon range. 50 gallon is the most common size for HPWHs.

⁸⁵⁹ Assuming a 50 gallon tank baseline at Medium Draw.

= 45.5 gallons hot water per day per household/2.59 people per household 860

= 17.6

Household = Average number of people per household

	Household ⁸⁶¹				
Household Unit Type	IQ Participants	Non-IQ Participants	All Participants		
Single-Family - Deemed	2.76	2.62	2.67		
Multifamily - Deemed	2.3	2.09	2.18		
Household type unknown			2.52 ⁸⁶²		
Custom	Actual Occupancy or Number of Bedrooms ⁸⁶³				

Use Multifamily if: Building meets utility's definition for multifamily

365.25 = Days per year

γWater = Specific weight of water

= 8.33 pounds per gallon

T_{OUT} = Tank temperature

= 125°F

T_{IN} = Incoming water temperature from well or municiple system

= 50.7°F 864

1.0 = Heat Capacity of water (1 Btu/lb*°F)

3412 = Conversion from Btu to kWh

CoolingImpact⁸⁶⁵ = Cooling savings from conversion of heat in home to water heat

 $=(((((GPD * Household * 365.25 * \gamma Water * (T_{OUT} - T_{IN}) * 1.0) / 3412) -$

((1/ UEF_{HPWHEFFICIENT}* GPD * Household * 365.25 * γ Water * ($T_{OUT} - T_{IN}$) * 1.0) /

3412)) * LF * 27%) / COPcool) * LM

Where:

LF = Location Factor

= 1.0 for HPWH installation in a conditioned space

= 0.22 for HPWH installation in an unknown location⁸⁶⁶

= 0.0 for installation in an unconditioned space

RI

⁸⁶⁰ Deoreo, B., and P. Mayer. Residential End Uses of Water Study Update. Forthcoming. ©2015 Water Research Foundation. Reprinted With Permission.

 ⁸⁶¹ Assumptions are taken from the draft unadjusted 2024 Baseline Study evaluation data provided in 07/2024 by GDS Associates.
 862 Unknown is based on statewide weighted average of 69% single family and 31% multifamily, based on IL data from 2009 RECS Table HC2.9 Structural and Geographic Characteristics of Homes in Midwest Region, Divisions and States, 2009.

⁸⁶³ Bedrooms are suitable proxies for household occupancy, and may be preferable to actual occupancy due to turnover rates in residency and non-adult population impacts.

⁸⁶⁴ Table 4 in Chen, et. al., "Calculating Average Hot Water Mixes of Residential Plumbing Fixtures", June 2020, reports a value of 50.7°F for inlet water temperature for U.S. Census Division 3.

⁸⁶⁵ This algorithm calculates the heat removed from the air by subtracting the HPWH electric consumption from the total water heating energy delivered. This is then adjusted to account for location of the HP unit and the coincidence of the waste heat with cooling requirements, the efficiency of the central cooling and latent cooling demands.

⁸⁶⁶ West Hills Energy and Computing (2019) found 78% of HPWHs "are installed in basements that are not intentionally heated."

27% = Portion of heat removed from surrounding air that results in cooling savings⁸⁶⁷

COP_{COOL} = COP of central air conditioning

= Assume 3.3 if central AC or unknown and 3.4 if heat pump 868

LM = Latent multiplier to account for latent cooling demand

= 1.33 869

ElecHeatImpact = Heating cost from conversion of heat in home to water heat (dependent on

heating fuel)

= $((((GPD * Household * 365.25 * \gamma Water * (T_{OUT} - T_{IN}) * 1.0) / 3412) -$

((1/ UEF_{HPWHEFFICIENT}* GPD * Household * 365.25 * γ Water * (T_{OUT} - T_{IN}) * 1.0) /

3412)) * LF * 37%) / COPHEAT) * (1 - %FossilHeat)

Where:

37% = Portion of heat removed from surrounding air that results in

increased heating load⁸⁷⁰

COPHEAT = COP of electric heating system

= actual. If not available use:871

System Type	HSPF2 Estimate	COP _{HEAT} (COP Estimate) = (HSPF2/3.412)*0.85
Heat Pump	7.0	1.74
Resistance	N/A	1.00
Unknown electric ⁸⁷²	N/A	1.35

Deh_Reduction = Savings resulting from reduced dehumidification

⁸⁶⁷ REMRate determined percentage (27%) of lighting savings that result in reduced cooling loads (lighting is used as a proxy for hot water heating since load shapes suggest their seasonal usage patterns are similar).

⁸⁶⁸ To reduce complexity of the measure and since this relates to a small waste heat impact, instead of assuming actual existing unit HVAC efficiency and a mid-life adjustment to account for future replacement efficiency, the code minimum baseline should be applied. Starting from federal baseline of SEER 13 central AC unit, converted to 11.1 EER using algorithm (-0.02 * SEER2) + (1.12 * SEER) (from Wassmer, M. (2003). A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations. Masters Thesis, University of Colorado at Boulder), converted to COP = EER/3.412 = 3.3COP. Same calculation starting with federal baseline of SEER 14 heat pump results in COP of 3.4.

⁸⁶⁹ A sensible heat ratio (SHR) of 0.75 corresponds to a latent multiplier of 4/3 or 1.33. SHR of 0.75 for typical split system from page 10 of "Controlling Indoor Humidity Using Variable-Speed Compressors and Blowers" by M. A. Andrade and C. W. Bullard, 1999.

⁸⁷⁰ The operation of a HPWH causes both sensible and latent heat transfer with the surrounding air (and water vapor). Only the sensible heat transfer increases the heating load. The portion of the energy transferred from the surrounding air is based on the average result from REMRate modeling of several different configurations and IL locations of homes (49%). The portion of that which is sensible heat further depends on the typical sensible heat ratio of 0.75 (see previous note) the resulting portion of sensible heat transferred from the surrounding air is: 49% * 0.75 = 37%.

⁸⁷¹ To reduce complexity of the measure and since this relates to a small waste heat impact, instead of assuming actual existing unit HVAC efficiency and a mid-life adjustment to account for future replacement efficiency, the code minimum baseline should be applied. Note efficiency includes duct losses. Defaults provided assume 15% duct loss for heat pumps.

⁸⁷² Calculation assumes 35% Heat Pump and 65% Resistance, which is based upon data from Energy Information Administration, 2009 Residential Energy Consumption Survey, see "HC6.9 Space Heating in Midwest Region.xls", using average for East North Central Region. Average efficiency of heat pump is based on assumption that 50% are units from before 2006 and 50% from 2006-2014. Program or evaluation data should be used to improve this assumption if available.

= values based on table below⁸⁷³

Dehumidifcation Status	Deh_Reduction (kWh)
If Dehumidifer is in use	359
If unknown	72

ΔTherms_{HeatImpact} = Heating cost from conversion of heat in home to water heat for homes with Natural Gas

heat 874

0.03412 = conversion factor (therms per kWh)

ηHeat = Efficiency of heating system

= Assume 68% for gas furnace or unknown, 71% for oil furnace, 84% for gas boiler and

86% for oil boiler. 875

%FossilHeat = Factor dependent on heating fuel:

= 100 % for fossil fuel heating

= 0 % for Electric Resistance or Heat Pump

= If unknown⁸⁷⁶, use the following table:

	Location				
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown
Ameren	82%	74%	62%	61%	71%
ComEd	86%	78%	57%	52%	79%
PGL	98.9%	98.5%	96.0%	96.9%	97.7%
NSG	98.3%	99.2%	67.5%	98.8%	96.6%
Nicor	98.3%	99.2%	67.5%	98.8%	96.6%
All DUs ⁸⁷⁷					74%

Note: If a measure is supported by a gas and electric utility through a joint program, and it is unknown whether the participant has a gas supply, the electric utility values in the table above should be used. If it is

West Hills Energy and Computing (2019) found that 20% of homes had dehumidifiers in use and in interviews with homeowners found the following reductions in dehumidifier usage: 46% reported "1 month or more reduction", 32% reported "3 months or more reduction", and 15% reported removal of a dehumidifier. kWh savings assumptions are based on an average of: Federal Standard, ENERGY STAR, and ENERGY STAR Most Efficient annual energy usage. See HPWH_CalculationSheet.xlsx for calculations.

⁸⁷⁴ This is the additional energy consumption required to replace the heat removed from the home during the heating season by the heat pump water heater. kWh_heating (electric resistance) is that additional heating energy for a home with electric resistance heat (COP 1.0). This formula converts the additional heating kWh for an electric resistance home to the MMBtu required in a Natural Gas heated home, applying the relative efficiencies.

⁸⁷⁵ To reduce complexity of the measure and since this relates to a small waste heat impact, instead of assuming actual existing unit HVAC efficiency and a mid-life adjustment to account for future replacement efficiency, the code minimum baseline should be applied. Note efficiency includes duct losses. Defaults provided assume 15% duct loss for heat pumps.

⁸⁷⁶ Based on the average % Natural Gas used for space heating in Unknown residential structure types across all utilities covered by the IL program. Residence types include: SF, SF LI, MF & MF LI. Utilities included: Ameren, ComEd, People's Gas, Northshore Gas & Nicor. Data provided from 2016 Ameren Illinois Demand Side Management (DSM) Market Potential Study by Applied Energy Group, ComEd's 2019 Baseline Survey on residential space heating share, and PY2022-2023 Implementation Contractors Data for People's Gas, Northshore Gas & Nicor.

⁸⁷⁷ For the weighted average calculations, please see the Analysis file. PGL, NSG, Nicor & gas customers were assumed to follow the provided split. ComEd total customers, minus overlap with PGL,NSG & Nicor, therefore gas only homes. Ameren is total customers minus Nicor.

known that the participant has a gas supply, the values from the gas utility above should be applied.

For example, a 2.0 UEF heat pump water heater, in a conditioned space in a single family IQ home with gas furnace space heat (68% system efficiency) and central air conditioning (SEER 10.5) in in Belleville and dehumidifier usage is unknown:

```
 \Delta kWh = \left[ \left( 1 \, / \, 0.9207 - 1 \, / \, 2.0 \right) * \, 17.6 * \, 2.76 * \, 365.25 * \, 8.33 * \, \left( 125 - 50.7 \right) * \, 1.0 \right] \, / \, 3412 + 162.4 - 0 + 72 \\ = 2121 \, kWh   \Delta Therms = -\left( \left( \left( \left( \left( 17.6 * \, 2.76 * \, 365.25 * \, 8.33 * \, \left( 125 - 50.7 \right) * \, 1.0 \right) \, / \, 3412 \right) - \left( 17.6 * \, 2.56 * \, 365.25 * \, 8.33 * \, \left( 125 - 50.7 \right) * \, 1.0 \, / \, 3412 \, / \, 2.0 \right) \right) * \, 1 * \, 0.37 * \, 0.03412 \, / \, 0.68 \right) * \, 1 \\ = - \, 32.0 \, therms
```

Fuel Switch example, a 2.0 UEF heat pump water heater, in a conditioned space in a single family IQ home with gas furnace space heat (68% system efficiency) and central air conditioning (SEER 10.5) in in Belleville and dehumidifier usage is unknown, in place of a baseline 0.64UEF gas water heater:

```
SiteEnergySavings (MMBTUs)
                                       = [FossilWHReplaced] – [ElectricWHAdded] + [HVACImpacts]
  FossilWHReplaced = (1/UEF_{GASBASE} * GPD * Household * 365.25 * \gamma Water * (T_{OUT} - T_{IN}) * 1.0)/1,000,000
                     = (1/0.64 * 17.6 * 2.76 * 365.25 * 8.33 * (125 - 50.7) * 1.0)/1,000,000
                     = 17.2 MMBtu
  ElectricWHAdded = (1/UEF_{HPWHEFFICIENT} * GPD * Household * 365.25 * \gamma Water * <math>(T_{OUT} - T_{IN}) * 1.0)
                                       /1,000,000
                     = (1/2.0 * 17.6 * 2.76 * 365.25 * 8.33 * (125 – 50.7) * 1.0)/1,000,000
                     = 5.5 MMBtu
                     = [CoolingImpact * 3,412/1,000,000] - [ElecHeatImpact * 3,412/1,000,000] +
  HVACImpacts
                      [Deh reduction * 3,412/1,000,000] – [ΔTherms<sub>HeatImpact</sub> * 1/10]
                     = (188.9 * 3412/1000000) - (0 * 3412/1000000) + (72 * 3412/1000000) - (27.7 * 1/10)
                      = -1.88 MMBtu
             SiteEnergySavings (MMBTUs)
                                                = 17.2 - 5.5 + (-1.88)
                                                = 9.82 MMBtu
If supported by an electric utility:
                                       \DeltakWh = \DeltaSiteEnergySavings * 1,000,000 / 3,412
                                                = 9.82 * 1,000,000/3,412
                                                = 2,878 kWh
```

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh / Hours * CF$

Where:

 Δ kWh = Electric savings (or increase) of measure

= For non-fuel switch measures, use ΔkWh as provided in Electric Energy Savings section above, for fuel-switch measures use the ΔkWh as provided in the Cost Effectiveness

Screening and Load Reduction Forecasting when Fuel Switching section below

Hours = Full load hours of water heater

= 2533 878

CF = Summer Peak Coincidence Factor for measure

 $= 0.12^{879}$

For example, a 2.0 UEF heat pump water heater, in a conditioned space in a single family IQ home with gas space heat and central air conditioning in Belleville and dehumidifier usage is unknown:

kW = 2121 / 2533 * 0.12 = 0.100kW

FOSSIL FUEL SAVINGS

Calculation provided together with Electric Energy Savings above.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

COST EFFECTIVENESS SCREENING AND LOAD REDUCTION FORECASTING WHEN FUEL SWITCHING

This measure can involve fuel switching from fossil fuel to electric.

For the purposes of forecasting load reductions due to fuel switch projects per Section 16-111.5B, changes in site energy use at the customer's meter (using ΔkWh algorithm below), customer switching estimates, NTG, and any other adjustment factors deemed appropriate, should be used.

The inputs to cost effectiveness screening should reflect the actual impacts on the electric and fuel consumption at the customer meter and, for fuel switching measures, should therefore reflect the decrease in one fuel and increase in another, as opposed to the single savings value calculated in the "Electric and Fossil Fuel Energy Savings" section above. Therefore in addition to the calculation of savings claimed, the following values should be used to assess the cost effectiveness of the measure.

```
 \begin{split} \Delta \text{Therms} &= [\text{Gas Water Heating Consumption Replaced}] - [\Delta \text{Therms}_{\text{HeatImpact}}] \\ &= [(1/\text{UEF}_{\text{GASBASE}} * \text{GPD} * \text{Household} * 365.25 * \gamma \text{Water} * (\text{T}_{\text{OUT}} - \text{T}_{\text{IN}}) * 1.0)/100,000] - \\ [((((\text{GPD} * \text{Household} * 365.25 * \gamma \text{Water} * (\text{T}_{\text{OUT}} - \text{T}_{\text{IN}}) * 1.0) / 3412) - (\text{GPD} * \text{Household} * 365.25 * \gamma \text{Water} * (\text{T}_{\text{OUT}} - \text{T}_{\text{IN}}) * 1.0) / 3412) / \text{UEF}_{\text{HPWHEFFICIENT}})) * \text{LF} * 37\% * 0.03412) / \eta \text{Heat}) * \\ \% \text{FossilHeat}] \end{aligned}
```

⁸⁷⁸ Full load hours assumption based on Efficiency Vermont analysis of Itron eShapes.

⁸⁷⁹ Calculated from Figure 8 "Combined six-unit summer weekday average electrical demand" in FEMP study; 'Field Testing of Pre-Production Prototype Residential Heat Pump Water Heaters' as (average kW usage during peak period * hours in peak period) / [(annual kWh savings / FLH) * hours in peak period] = (0.1 kW * 5 hours) / [(2100 kWh / 2533 hours) * 5 hours] = 0.12

ΔkWh

= - [Electric Water Heating Consumption Added] + [CoolingImpact] - [ElecHeatImpact] + [Deh-Reduction]

 $= - \left(1 \right/ \text{UEF}_{\text{HPWHEFFICIENT}} * \text{GPD} * \text{Household} * 365.25 * \gamma \text{Water} * \left(\text{T}_{\text{OUT}} - \text{T}_{\text{IN}} \right) * 1.0 \right) / 3,412 \right] + \\ \left[\left(\left(\left(\text{GPD} * \text{Household} * 365.25 * \gamma \text{Water} * \left(\text{T}_{\text{OUT}} - \text{T}_{\text{IN}} \right) * 1.0 \right) / 3412 \right) - \left(\left(1 \right/ \text{UEF}_{\text{HPWHEFFICIENT}} * \text{GPD} * \text{Household} * 365.25 * \gamma \text{Water} * \left(\text{T}_{\text{OUT}} - \text{T}_{\text{IN}} \right) * 1.0 \right) / 3412 \right) \right) * \text{LF} * 27\% \right) / \text{COP}_{\text{COOL}} * \text{LM} \right] - \left[\left(\left(\left(\text{GPD} + \text{Household} \right) * 365.25 * \gamma \text{Water} * \left(\text{T}_{\text{OUT}} - \text{T}_{\text{IN}} \right) * 1.0 \right) / 3412 \right) - \left(\left(1 \right/ \text{UEF}_{\text{HPWHEFFICIENT}} * \text{GPD} * \text{Household} * 365.25 * \gamma \text{Water} * \left(\text{T}_{\text{OUT}} - \text{T}_{\text{IN}} \right) * 1.0 \right) / 3412 \right) \right) * \text{LF} * 37\% \right) / \text{COP}_{\text{HEAT}} \right) * \left(1 - \% \text{FossilHeat} \right) \right] + \left[\text{Deh-Reduction} \right]$

MEASURE CODE: RS-HWE-HPWH-V14-250101

REVIEW DEADLINE: 1/1/2027

5.4.4 Low Flow Faucet Aerators

DESCRIPTION

This measure relates to the installation of a low flow faucet aerator in a household kitchen or bath faucet fixture.

This measure may be used for units provided through Efficiency Kits however the in-service rate for such measures should be derived through evaluation results specifically for this implementation methodology.

This measure was developed to be applicable to the following program types: TOS, NC, RF, DI, KITS.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the installed equipment must be a low flow faucet aerator, for bathrooms rated at 1.5 gallons per minute (GPM) or less, or for kitchens rated at 2.2 GPM or less. Savings are calculated on an average savings per faucet fixture basis.

DEFINITION OF BASELINE EQUIPMENT

The baseline condition is assumed to be a standard bathroom faucet aerator rated at 2.2 GPM or greater, or a standard kitchen faucet aerator rated at 2.2 GPM or greater.

Average measured flow rates are used in the algorithm and are lower, reflecting the penetration of previously installed low flow fixtures (and therefore the freerider rate for this measure should be 0), use of the faucet at less than full flow, debris buildup, and lower water system pressure than fixtures are rated at.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 10 years.880

DEEMED MEASURE COST

For time of sale or new construction the incremental cost for this measure is \$3,881 or program actual.

For faucet aerators provided through Direct Install or within Efficiency Kits, the actual program delivery costs (including labor if applicable) should be utilized. If unknown, assume \$8 for Direct Install⁸⁸² and \$3 for Efficiency Kits.

LOADSHAPE

Loadshape R03 - Residential Electric DHW

COINCIDENCE FACTOR

The coincidence factor for this measure is assumed to be 2.2%.883

⁸⁸⁰ As recommended in Navigant 'ComEd Effective Useful Life Research Report', May 2018.

^{881 2011,} Market research average of \$3.

⁸⁸² Includes assess and install labor time of \$5 (20min @ \$15/hr)

⁸⁸³ Calculated as follows: Assume 18% aerator use takes place during peak hours (based on: Oreo et al, "The end uses of hot water in single family homes from flow trace analysis", 2001.) There are 65 days in the summer peak period, so the percentage of total annual aerator use in peak period is 0.18*65/365 = 3.21%. The number of hours of recovery during peak periods is therefore assumed to be 3.21% *180 = 5.8 hours of recovery during peak period where 180 equals the average annual electric DHW recovery hours for faucet use including SF and MF homes. There are 260 hours in the peak period so the probability you will see savings during the peak period is 5.8/260 = 0.022

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Note these savings are per faucet retrofitted⁸⁸⁴ (unless faucet type is unknown, then it is per household).

ΔkWh = %ElectricDHW * ((GPM_base * L_base - GPM_low * L_low) * Household * 365.25 *DF / FPH) * EPG_electric * ISR

Where:

%ElectricDHW = Percentage of DHW savings assumed to be electric

= 100 % for Electric

= 0 % for Fossil Fuel

= If unknown⁸⁸⁵, use the following table:

			Location		
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown
Ameren ⁸⁸⁶	24%	25%	40%	43%	28%
ComEd ⁸⁸⁷	8	3%	1	.1%	9%
People's Gas ⁸⁸⁸	2.0%	2.0%	1.7%	2.1%	2.0%
Northshore Gas ⁸⁸⁹	1.3%	1.8%	10.0%	2.4%	2.3%
Nicor Gas ⁸⁹⁰	1.3%	1.8%	10.0%	2.4%	2.3%
All DUs ⁸⁹¹					25%

<u>Note</u>: If a measure is supported by a gas and electric utility through a joint program, and it is unknown whether the participant has a gas supply, the electric utility values in the table above should be used. If it is known that the participant has a gas supply, the values from the gas utility above should be applied.

GPM base

= Average flow rate, in gallons per minute, of the baseline faucet "as-used."

= If unknown assume values in table below, or custom based on metering studies, ⁸⁹² or if measured during DI:

⁸⁸⁴ This algorithm calculates the amount of energy saved per aerator by determining the fraction of water consumption savings for the upgraded fixture.

⁸⁸⁵ Based on the average % electricity used for water heating in Unknown residential structure types across all utilities covered by the IL program. Residence types include: SF, SF LI, MF & MF LI. Utilities included: Ameren, ComEd, People's Gas, Northshore Gas & Nicor. Please see subsequent table and citations for specific sources.

⁸⁸⁶ Provided by AEG from the 2020 Market Potential Study completed for AIC, as well as AIC Income Qualified Initiative: 2021 Participant Survey Results Memo (February 1, 2022) p. 17.

⁸⁸⁷ Commonwealth Edison Residential Baseline Study (2020). p.4.4 & 4.19; Section 4-7 Water Heating. Prepared by Itron.

⁸⁸⁸ Implementation Contractors data from Peoples Gas and North Shore Gas for PY2022-2023.

⁸⁸⁹ Ibid.

⁸⁹⁰ Comparable service area & customers to NSG, therefore using their survey data.

⁸⁹¹ For the weighted average calculations, please see the Analysis file. PGL, NSG, Nicor & gas customers were assumed to follow the provided split. ComEd total customers, minus overlap with PGL,NSG & Nicor, therefore electric only homes. Ameren is total customers minus Nicor.

⁸⁹² Measurement should be based on actual average flow consumed over a period of time rather than a onetime spot measurement for maximum flow. Studies have shown maximum flow rates do not correspond well to average flow rate due to occupant behavior which does not always use maximum flow.

= Measured full throttle flow * 0.83 throttling factor⁸⁹³

Note, if GPM_base is based upon the deemed assumptions below, since these include participants that had existing low flow fixtures, the freerider rate for this measure should be 0.

Faucet Type	GPM ⁸⁹⁴
Kitchen	1.63
Bathroom	1.53
If faucet location unknown	1.58

GPM low

- = Average flow rate, in gallons per minute, of the low-flow faucet aerator "as-used"
- = 0.94,895 or custom based on metering studies,896 or if measured during DI:
- = Rated full throttle flow * 0.95 throttling factor 897

L base

- = Average baseline daily length faucet use per capita for faucet of interest in minutes
- = if available custom based on metering studies, if not use:

Faucet Type	L_base (min/person/day)
Kitchen	4.5 ⁸⁹⁸
Bathroom	1.6 ⁸⁹⁹
If faucet location unknown (total for household): Single-Family except mobile homes	9.0900
If location unknown (total for household): Multifamily and mobile homes	6.9 ⁹⁰¹
If faucet location and building type unknown (total for household)	8.3 ⁹⁰²

⁸⁹³ 2008, Schultdt, Marc, and Debra Tachibana. Energy related Water Fixture Measurements: Securing the Baseline for Northwest Single Family Homes. 2008 ACEEE Summer Study on Energy Efficiency in Buildings. Page 1-265. www.seattle.gov/light/Conserve/Reports/paper_10.pdf

⁸⁹⁴ Based on flow meter bag testing conducted from June 2013 to January 2014 by Franklin Energy. Over 300 residential sites in the Chicago area were tested.

⁸⁹⁵ Average retrofit flow rate for kitchen and bathroom faucet aerators from sources 2, 4, 5, and 7(see source table at end of characterization). This accounts for all throttling and differences from rated flow rates. Assumes all kitchen aerators at 2.2 gpm or less and all bathroom aerators at 1.5 gpm or less. The most comprehensive available studies did not disaggregate kitchen use from bathroom use, but instead looked at total flow and length of use for all faucets. This makes it difficult to reliably separate kitchen water use from bathroom water use. It is possible that programs installing low flow aerators lower than the 2.2 gpm for kitchens and 1.5 gpm for bathrooms will see a lower overall average retrofit flow rate.

⁸⁹⁶ Measurement should be based on actual average flow consumed over a period of time rather than a onetime spot measurement for maximum flow. Studies have shown maximum flow rates do not correspond well to average flow rate due to occupant behavior which does not always use maximum flow.

⁸⁹⁷ 2008, Schultdt, Marc, and Debra Tachibana. Energy related Water Fixture Measurements: Securing the Baseline for Northwest Single Family Homes. 2008 ACEEE Summer Study on Energy Efficiency in Buildings. Page 1-265.

⁸⁹⁸ Cadmus and Opinion Dynamics Showerhead and Faucet Aerator Meter Study Memorandum dated June 2013, directed to Michigan Evaluation Working Group. This study of 135 single and Multifamily homes in Michigan metered energy parameters for efficient showerhead and faucet aerators.

⁸⁹⁹ Ibid.

⁹⁰⁰ One kitchen faucet plus 2.83 bathroom faucets. Based on findings from a 2009 ComEd residential survey of 140 sites, provided by Cadmus.

⁹⁰¹ One kitchen faucet plus 1.5 bathroom faucets. Based on findings from a 2009 ComEd residential survey of 140 sites, provided by Cadmus.

⁹⁰² Unknown is based on statewide weighted average of 69% single family and 31% multifamily, based on IL data from 2009 RECS Table HC2.9 Structural and Geographic Characteristics of Homes in Midwest Region, Divisions and States, 2009.

L low

- = Average retrofit daily length faucet use per capita for faucet of interest in minutes
- = if available custom based on metering studies, if not use:

Faucet Type	L_low (min/person/day)	
Kitchen	4.5 ⁹⁰³	
Bathroom	1.6 ⁹⁰⁴	
If faucet location unknown (total for household):	9.0905	
Single-Family except mobile homes	9.0	
If faucet location unknown (total for household):	6.9 ⁹⁰⁶	
Multifamily	0.5	
If faucet location and building type unknown	8.3 ⁹⁰⁷	
(total for household)	0.5	

Household = Average number of people per household

	Household ⁹⁰⁸			
Household Unit Type	IQ Participants	Non-IQ Participants	All Participants	
Single-Family - Deemed	2.76	2.62	2.67	
Multifamily - Deemed	2.3	2.09	2.18	
Household type unknown			2.52 ⁹⁰⁹	
Custom	Actual Occupancy or Number of Bedrooms ⁹¹⁰			

Use Multifamily if: Building meets utility's definition for multifamily

365.25 = Days in a year, on average.

DF = Drain Factor

Faucet Type	Drain Factor ⁹¹¹
Kitchen	75%
Bath	90%
Unknown	79.5%

⁹⁰³ Cadmus and Opinion Dynamics Showerhead and Faucet Aerator Meter Study Memorandum dated June 2013, directed to Michigan Evaluation Working Group.

⁹⁰⁵ One kitchen faucet plus 2.83 bathroom faucets. Based on findings from a 2009 ComEd residential survey of 140 sites, provided by Cadmus.

⁹⁰⁴ Ibid.

⁹⁰⁶ One kitchen faucet plus 1.5 bathroom faucets. Based on findings from a 2009 ComEd residential survey of 140 sites, provided by Cadmus.

⁹⁰⁷ Unknown is based on statewide weighted average of 69% single family and 31% multifamily, based on IL data from 2009 RECS Table HC2.9 Structural and Geographic Characteristics of Homes in Midwest Region, Divisions and States, 2009.

⁹⁰⁸ Assumptions are taken from the draft unadjusted 2024 Baseline Study evaluation data provided in 07/2024 by GDS Associates. ⁹⁰⁹ Unknown is based on statewide weighted average of 69% single family and 31% multifamily, based on IL data from 2009 RECS Table HC2.9 Structural and Geographic Characteristics of Homes in Midwest Region, Divisions and States, 2009.

⁹¹⁰ Bedrooms are suitable proxies for household occupancy, and may be preferable to actual occupancy due to turnover rates in residency and non-adult population impacts.

⁹¹¹Because faucet usages are at times dictated by volume, only usage of the sort that would go straight down the drain will provide savings. VEIC is unaware of any metering study that has determined this specific factor and so through consensus with the Illinois Technical Advisory Group have deemed these values to be 75% for the kitchen and 90% for the bathroom. If the aerator location is unknown an average of 79.5% should be used which is based on the assumption that 70% of household water runs through the kitchen faucet and 30% through the bathroom (0.7*0.75)+(0.3*0.9)=0.795.

FPH = Faucets Per Household

EPG_electric

Faucet Type	FPH
Kitchen Faucets Per Home (KFPH)	1
Bathroom Faucets Per Home (BFPH): Single-	2.83 ⁹¹²
Family except mobile homes	2.03**-
Bathroom Faucets Per Home (BFPH): Multifamily	1 5 ⁹¹³
and mobile homes	1.5
If faucet location unknown (total for household):	3.83
Single-Family except mobile homes	5.05
If faucet location unknown (total for household):	2.5
Multifamily and mobile homes	2.5
If faucet location and building type unknown	3.42 ⁹¹⁴
(total for household)	5.42***

	· · · · · · · · · · · · · · · · · · ·
	= (8.33 * 1.0 * (86 – 50.7)) / (0.98 * 3,412)
	= 0.0879 kWh/gal (Bath), 0.1054 kWh/gal (Kitchen), 0.1004 kWh/gal (Unknown)
8.33	= Specific weight of water (lbs/gallon)
1.0	= Heat Capacity of water (btu/lb-°F)
WaterTemp	= Assumed temperature of mixed water
	= 86°F for Bath, 93°F for Kitchen 91°F for Unknown ⁹¹⁵

= (8.33 * 1.0 * (WaterTemp - SupplyTemp)) / (RE electric * 3,412)

= Energy per gallon of water used by faucet supplied by electric water heater

SupplyTemp = Assumed temperature of water entering house

= 50.7°F 916

RE_electric = Recovery efficiency of electric water heater

= 98% ⁹¹⁷

3412 = Converts Btu to kWh (btu/kWh)

ISR = In service rate of faucet aerators dependant on install method as listed in table below

⁹¹⁴ Unknown is based on statewide weighted average of 69% single family and 31% multifamily, based on IL data from 2009 RECS Table HC2.9 Structural and Geographic Characteristics of Homes in Midwest Region, Divisions and States, 2009.

⁹¹²Based on findings from a 2009 ComEd residential survey of 140 sites, provided by Cadmus.

⁹¹³ Ibid

⁹¹⁵ Cadmus and Opinion Dynamics Showerhead and Faucet Aerator Meter Study Memorandum dated June 2013, directed to Michigan Evaluation Working Group. If the aerator location is unknown an average of 91% should be used which is based on the assumption that 70% of household water runs through the kitchen faucet and 30% through the bathroom (0.7*93)+(0.3*86)=91F.

⁹¹⁶ Table 4 in Chen, et. al., "Calculating Average Hot Water Mixes of Residential Plumbing Fixtures", June 2020, reports a value of 50.7°F for inlet water temperature for U.S. Census Division 3.

⁹¹⁷ Electric water heaters have recovery efficiency of 98%.

Selection	ISR
Direct Install	0.955 ⁹¹⁸
Virtual Assessment followed by Unverified Self-Install	0.77 ^{919,920}
Requested Efficiency Kit	0.60 ⁹²¹
Distributed Efficiency Kit (Income Eligible)	0.46 ⁹²²
Community Distributed Kit	0.45 ⁹²³
Distributed School Efficiency Kit	0.505 ⁹²⁴

For example, a direct installed kitchen low flow faucet aerator in an individual electric DHW IQ SF home:

$$\Delta$$
kWh = 1.0 * (((1.63 * 4.5 – 0.94 * 4.5) * 2.76 * 365.25 *0.75) / 1) * 0.1054 * 0.93 = 230.1 kWh

For example, a direct installed bath low flow faucet aerator in a shared electric DHW non-IQ home:

$$\Delta$$
kWh = 1.0 * (((1.53 * 1.6 – 0.94 * 1.6) * 2.09 * 365.25 * 0.90) /1.5) * 0.0879 * 0.93
= 35.3 kWh

For example, a direct installed low flow faucet aerator in unknown faucet in an individual electric DHW IQ SF home:

$$\Delta$$
kWh = 1.0 * (((1.58 * 9.0 – 0.94 * 9.0) * 2.76 * 365.25 * 0.795) /3.83) * 0.1004 * 0.93
= 112.5 kWh

Secondary kWh Savings for Water Supply and Wastewater Treatment

The following savings should be included in the total savings for this measure but should not be included in TRC tests to avoid double counting the economic benefit of water savings.

 $\Delta kWh_{water} = \Delta Water (gallons) / 1,000,000 * E_{water total}$

Where

⁹¹⁸ ComEd Energy Efficiency/ Demand Response Plan: Plan Year 2 (6/1/2009-5/31/2010) Evaluation Report: All Electric Single Family Home Energy Performance Tune-Up Program Table 3-8. Navigant, ComEd-Nicor Gas EPY4/GPY1 Multifamily Home Energy Savings Program Evaluation Report DRAFT 2013-01-28. Average from a 2023 survey of multifamily tenants who participated in a 2023 Direct Install program through Ameren Illinois. The ISR for kitchen and bathroom aerators was found to be 97.7% and 98.3%, respectively. Opinion Dynamics, "2023 AIC Multifamily Initiatives Tenant Survey Findings Memo", Ameren Illinois, Multifamily Initiatives, April 24, 2024. These sources have been averaged to arrive at an ISR of 0.955.

⁹¹⁹ An equal weighted average of Direct Install and Efficiency Kit ISRs. Guidehouse, *In-Service Rates for CY2020 Single Family Virtual Assessment Measures*, August 20, 2020. Interest and applicability of measures confirmed through virtual assessment. Please note, these ISRs do not apply to retail purchases by end user.

⁹²⁰ An equal weighted average of Direct Install and Efficiency Kit ISRs. Interest and applicability of measures confirmed through virtual assessment. Please note, these ISRs do not apply to retail purchases by end user.

⁹²¹ A weighted ISR was found by weighting Nicor and Ameren efficiency kit program uptake and their previously found ISRs. This analysis can be found in Faucet Aerators and Showerheads Weighted Average ISR IL TRM.xlsx.

Average of Guidehouse survey research for Peoples Gas, June 16, 2020 and Research from 2021 Ameren Illinois Income Qualified participant survey, available on IL SAG website: https://ilsag.s3.amazonaws.com/AIC-Income-Qualified-Initiative-Participant-Survey-Results-Memo-FINAL-2022-02-01.pdf

⁹²³ Research from 2018 Ameren Illinois Income Qualified participant survey.

⁹²⁴ Results from Home Energy Worksheets completed by student/families in 2020, 2021, and 2022 were nearly the same as values from: Opinion Dynamics and Cadmus. 2018 AIC Residential Program Annual Impact Evaluation Report. April 30, 2019. Results from implementer-administered participant survey. Home Energy Worksheets also establish the fraction of participants who indicate they "will install later" for specific measures. Follow-up research completed by Guidehouse for Nicor Gas in 2022 found that, on average, 51.3% of respondents who initially reported that they hadn't installed specific kit measures, but "planned to" subsequently had installed the measures. Combining these findings allows for an ISR that accounts for initial and one round of subsequent intallations. To maintain a conservative estimate of ISR, the remaining 48.7% are presumed uninstalled. See: EESchoolKitSubsequentInstall_HEW.xlsx for data and calculations.

Ewater total = IL Total Water Energy Factor (kWh/Million Gallons)

 $=5,010^{925}$

For example, a direct installed kitchen low flow aerator in a single family IQ home

 Δ Water (gallons) = (((1.63 * 4.5 – 0.94 * 4.5) * 2.76 * 365.25 *0.75) / 1) * 0.93

= 2,183 gallons

 ΔkWh_{water} = 2,183/1,000,000 * 5,010

=10.9 kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh / Hours * CF$

Where:

ΔkWh = calculated value above. Note do not include the secondary savings in this calculation.

Hours = Annual electric DHW recovery hours for faucet use per faucet

= ((GPM_base * L_base) * Household/FPH * 365.25 * DF) * 0.567⁹²⁶ / GPH

Building Type	Faucet location	Calculation	Hours per faucet
Cinalo Family	Kitchen	((1.63 * 4.5) * 2.76/1 * 365.25 * 0.75) * 0.567 / 26.1	120
Single Family	Bathroom	((1.53 * 1.6) * 2.76/2.83 * 365.25 * 0.9) * 0.567 / 26.1	17
IQ	Unknown	((1.58* 9.0) * 2.76/3.83 * 365.25 * 0.795) * 0.567 / 26.1	65
Single Family	Kitchen	((1.63 * 4.5) * 2.62/1 * 365.25 * 0.75) * 0.567 / 26.1	114
Single Family	Bathroom	((1.53 * 1.6) * 2.62/2.83 * 365.25 * 0.9) * 0.567 / 26.1	16
Non-IQ	Unknown	((1.58* 9.0) * 2.62/3.83 * 365.25 * 0.795) * 0.567 / 26.1	61
NA. Itifa mily	Kitchen	((1.63 * 4.5) * 2.3/1 * 365.25 * 0.75) * 0.567 / 26.1	100
Multifamily	Bathroom	((1.53* 1.6) * 2.3/1.5 * 365.25 * 0.9) * 0.567 / 26.1	27
IQ	Unknown	((1.58 * 6.9) * 2.3/2.5 * 365.25 * 0.795) * 0.567 / 26.1	63
NA. Itifa asilu	Kitchen	((1.63 * 4.5) * 2.09/1 * 365.25 * 0.75) * 0.567 / 26.1	91
Multifamily	Bathroom	((1.53* 1.6) * 2.09/1.5 * 365.25 * 0.9) * 0.567 / 26.1	24
Non-IQ	Unknown	((1.58 * 6.9) * 2.09/2.5 * 365.25 * 0.795) * 0.567 / 26.1	57

GPH = Gallons per hour recovery of electric water heater calculated for 69.3°F temp rise (120-50.7), 98% recovery efficiency, and typical 4.5kW electric resistance storage tank.

= 26.1

CF = Coincidence Factor for electric load reduction

 $=0.022^{927}$

⁹²⁵ This factor includes 2571 kWh/MG for water supply based on Illinois energy intensity data from a 2012 ISAWWA study and 2439 kWh/MG for wastewater treatment based on national energy intensity use estimates. For more information please review Elevate Energy's 'IL TRM: Energy per Gallon Factor, May 2018 paper'.

 $^{^{926}}$ 56.7% is the proportion of hot 120F water mixed with 50.7F supply water to give 90F mixed faucet water.

⁹²⁷ Calculated as follows: Assume 18% aerator use takes place during peak hours (based on: Oreo et al, "The end uses of hot water in single family homes from flow trace analysis", 2001.) There are 65 days in the summer peak period, so the percentage of total annual aerator use in peak period is 0.18*65/365 = 3.21%. The number of hours of recovery during peak periods is

For example, a direct installed kitchen low flow faucet aerator in a single family electric DHW IQ home:

ΔkW =230.1/120 * 0.022

= 0.042 kW

FOSSIL FUEL SAVINGS

ΔTherms = %FossilDHW * ((GPM base * L base - GPM low * L low) * Household * 365.25 *DF /

FPH) * EPG gas * ISR

Where:

%FossilDHW = Percentage of DHW savings assumed to be fossil fuel

= 100 % for Fossil Fuel

= 0 % for Electric

= If unknown⁹²⁸, use the following table:

	Location				
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown
Ameren ⁹²⁹	76%	75%	60%	57%	72%
ComEd ⁹³⁰	92%		89%		91%
People's Gas ⁹³¹	97.9%	98.0%	98.3%	97.6%	97.8%
Northshore Gas ⁹³²	98.5%	98.2%	90.0%	97.6%	97.6%
Nicor Gas ⁹³³	98.5%	98.2%	90.0%	97.6%	97.6%
All DUs ⁹³⁴					75%

<u>Note</u>: If a measure is supported by a gas and electric utility through a joint program, and it is unknown whether the participant has a gas supply, the electric utility values in the table above should be used. If it is known that the participant has a gas supply, the values from the gas utility above should be applied.

EPG_gas = Energy per gallon of Hot water supplied by gas

= (8.33 * 1.0 * (WaterTemp - SupplyTemp)) / (RE_gas * 100,000)

= 0.0038 Therm/gal for SF homes (Bath), 0.0045 Therm/gal for SF homes (Kitchen), 0.0043 Therm/gal for SF homes (Unknown)

therefore assumed to be 3.21% *180 = 5.8 hours of recovery during peak period where 180 equals the average annual electric DHW recovery hours for faucet use including SF and MF homes. There are 260 hours in the peak period so the probability you will see savings during the peak period is 5.8/260 = 0.022

2025 IL TRM v13.0 Vol. 3 September 20, 2024 FINAL

⁹²⁸ Based on the average % electricity used for water heating in Unknown residential structure types across all utilities covered by the IL program. Residence types include: SF, SF LI, MF & MF LI. Utilities included: Ameren, ComEd, People's Gas, Northshore Gas & Nicor. Please see subsequent table and citations for specific sources.

⁹²⁹ Provided by AEG from the 2020 Market Potential Study completed for AIC, as well as AIC Income Qualified Initiative: 2021 Participant Survey Results Memo (February 1, 2022) p. 17.

⁹³⁰ Commonwealth Edison Residential Baseline Study (2020). p.4.4 & 4.19; Section 4-7 Water Heating. Prepared by Itron.

⁹³¹ Residential Appliance Saturation Survey of natural gas for space heating and water heating (2021). Note, Multifamily customers have a residential billing rate code and responded on the survey that they live in an apartment or condominium in a building that has either 2-4 or 5+ units.

⁹³² Ibid

⁹³³ Comparable service area & customers to NSG, therefore using their survey data.

⁹³⁴ For the weighted average calculations, please see the Analysis file. PGL, NSG, Nicor & gas customers were assumed to follow the provided split. ComEd total customers, minus overlap with PGL,NSG & Nicor, therefore gas only homes. Ameren is total customers minus Nicor.

= 0.0044 Therm/gal for MF homes (Bath), 0.0053 Therm/gal for MF homes (Kitchen), 0.0050 Therm/gal for MF homes (Unknown)

RE_gas = Recovery efficiency of gas water heater

= 78% For individual water heater⁹³⁵

= 67% For shared water heater⁹³⁶

If unknown, use individual water heater value for single family, use shared water heater value for multifamily. Use multifamily if building meets utility's definition for multifamily.

100,000 = Converts Btus to Therms (btu/Therm)

Other variables as defined above.

For example, a direct-installed kitchen low flow faucet aerator in a fuel DHW single family IQ home:

 Δ Therms = 1.0 * (((1.63 * 4.5 - 0.94 * 4.5) * 2.76 * 365.25 * 0.75) / 1) * 0.0045 * 0.93

= 9.82 Therms

For example, a direct installed bath low flow faucet aerator in a fuel DHW multifamily non-IQ home:

 Δ Therms = 1.0 * (((1.53 * 1.6 - 0.94 * 1.6) * 2.09 * 365.25 * 0.90) /1.5) * 0.0044 * 0.93

= 1.77 Therms

For example, a direct installed low flow faucet aerator in unknown faucet in a fuel DHW single family IQ home:

 Δ Therms = 1.0 * (((1.58 * 9.0 - 0.94 * 9.0) * 2.76 * 365.25 * 0.795) /3.83) * 0.0043 * 0.93

= 4.82 Therms

WATER IMPACT DESCRIPTIONS AND CALCULATION

ΔWater (gallons) = ((GPM_base * L_base - GPM_low * L_low) * Household * 365.25 *DF / FPH) * ISR Variables as defined above

For example, a direct installed kitchen low flow aerator in a single family IQ home

 Δ Water (gallons) = (((1.63 * 4.5 - 0.94 * 4.5) * 2.76 * 365.25 *0.75) / 1) * 0.93 = 2,183 gallons

For example, a direct installed bath low flow faucet aerator in a multifamily non-IQ home:

 Δ Water (gallons) = (((1.53 * 1.6 - 0.94 * 1.6) * 2.09 * 365.25 * 0.90) /1.5) * 0.93

= 4,02 gallons

For example, a direct installed low flow faucet aerator in unknown faucet in a single family IQ home:

 Δ Water (gallons) = (((1.58 * 9.0 – 0.94 * 9.0) * 2.76 * 365.25 * 0.795) /3.83) * 0.93 = 1,121 gallons

⁹³⁵ DOE Final Rule discusses Recovery Efficiency with an average around 0.76 for Gas Fired Storage Water heaters and 0.78 for standard efficiency gas fired tankless water heaters up to 0.95 for the highest efficiency gas fired condensing tankless water heaters. These numbers represent the range of new units however, not the range of existing units in stock. Review of AHRI Directory suggests range of recovery efficiency ratings for new Gas DHW units of 70-87%. Average of existing units is estimated at 78%.

⁹³⁶ Water heating in Multifamily buildings is often provided by a larger central boiler. This suggests that the average recovery efficiency is somewhere between a typical central boiler efficiency of 0.59 and the 0.75 for single family homes. An average efficiency of 0.67 is used for this analysis as a default for Multifamily buildings.

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

SOURCES

Source ID	Reference
1	2011, DeOreo, William. California Single Family Water Use Efficiency Study. April 20, 2011.
2	2000, Mayer, Peter, William DeOreo, and David Lewis. Seattle Home Water Conservation Study. December 2000.
3	1999, Mayer, Peter, William DeOreo. Residential End Uses of Water. Published by AWWA Research Foundation and American Water Works Association. 1999.
4	2003, Mayer, Peter, William DeOreo. Residential Indoor Water Conservation Study. Aquacraft, Inc. Water Engineering and Management. Prepared for East Bay Municipal Utility District and the US EPA. July 2003.
5	2011, DeOreo, William. Analysis of Water Use in New Single Family Homes. By Aquacraft. For Salt Lake City Corporation and US EPA. July 20, 2011.
6	2011, Aquacraft. Albuquerque Single Family Water Use Efficiency and Retrofit Study. For Albuquerque Bernalillo County Water Utility Authority. December 1, 2011.
7	2008, Schultdt, Marc, and Debra Tachibana. Energy related Water Fixture Measurements: Securing the Baseline for Northwest Single Family Homes. 2008 ACEEE Summer Study on Energy Efficiency in Buildings.

MEASURE CODE: RS-HWE-LFFA-V15-250101

REVIEW DEADLINE: 1/1/2030

5.4.5 Low Flow Showerheads

DESCRIPTION

This measure relates to the installation of a low flow showerhead in a single or multi-family household.

This measure may be used for units provided through Efficiency Kits; however, the in-service rate for such measures should be derived through evaluation results specifically for this implementation methodology.

This measure was developed to be applicable to the following program types: TOS, RF, NC, DI, KITS.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the installed equipment must be a low flow showerhead rated at least 0.5 gallons per minute (GPM) less than the existing showerhead. Savings are calculated on a per showerhead fixture basis.

DEFINITION OF BASELINE EQUIPMENT

For Direct install programs, the baseline condition is assumed to be a standard showerhead rated at 2.0 GPM or greater.

For retrofit and time-of-sale programs, the baseline condition is assumed to be a representative average of existing showerhead flow rates of participating customers including a range of low flow showerheads, standard-flow showerheads, and high-flow showerheads.

Average measured flow rates are used in the algorithm and are lower, reflecting the penetration of previously installed low flow fixtures (and therefore the freerider rate for this measure should be 0), use of the shower at less than full flow, debris buildup, and lower water system pressure than fixtures are rated at.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 10 years. 937

DEEMED MEASURE COST

For time of sale or new construction the incremental cost for this measure is \$7 or program actual. 938

For low flow showerheads provided through Direct Install or within Efficiency Kits, the actual program delivery costs (including labor if applicable) should be utilized. If unknown assume \$12 for Direct Install⁹³⁹ and \$7 for Efficiency Kits.

LOADSHAPE

Loadshape RO3 - Residential Electric DHW

COINCIDENCE FACTOR

The coincidence factor for this measure is assumed to be 2.78%. 940

⁹³⁷ Table C-6, Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007. Evaluations indicate that consumer dissatisfaction may lead to reductions in persistence, particularly in Multifamily.
⁹³⁸ Market research average of \$7.

⁹³⁹ Includes assess and install labor time of \$5 (20min @ \$15/hr)

 $^{^{940}}$ Calculated as follows: Assume 11% showers take place during peak hours (based on: Oreo et al, "The end uses of hot water in single family homes from flow trace analysis", 2001.). There are 65 days in the summer peak period, so the percentage of total annual aerator use in peak period is 0.11*65/365 = 1.96%. The number of hours of recovery during peak periods is therefore assumed to be 1.96%*369 = 7.23 hours of recovery during peak period, where 369 equals the average annual electric DHW recovery hours for showerhead use including SF and MF homes with Direct Install and Retrofit/TOS measures. There are 260 hours in the peak period so the probability you will see savings during the peak period is 7.23/260 = 0.0278

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Note these savings are per showerhead fixture.

ΔkWh = %ElectricDHW * ((GPM_base * L_base - GPM_low * L_low) * Household * SPCD * 365.25 / SPH)

* EPG_electric * ISR

Where:

%ElectricDHW = Percentage of DHW savings assumed to be electric

= 100 % for Electric

= 0 % for Fossil Fuel

= If unknown⁹⁴¹, use the following table:

	Location				
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown
Ameren ⁹⁴²	24%	25%	40%	43%	28%
ComEd ⁹⁴³	8%		11%		9%
People's Gas ⁹⁴⁴	2.0%	2.0%	1.7%	2.1%	2.0%
Northshore Gas ⁹⁴⁵	1.3%	1.8%	10.0%	2.4%	2.3%
Nicor Gas ⁹⁴⁶	1.3%	1.8%	10.0%	2.4%	2.3%
All DUs ⁹⁴⁷					25%

<u>Note</u>: If a measure is supported by a gas and electric utility through a joint program, and it is unknown whether the participant has a gas supply, the electric utility values in the table above should be used. If it is known that the participant has a gas supply, the values from the gas utility above should be applied.

GPM base

= Average flow rate, in gallons per minute, of the baseline faucet "as-used."

Note, if GPM_base is based upon the deemed assumptions below, since these include participants that had existing low flow fixtures, the freerider rate for this measure should be 0.

Program	GPM_base
Direct Install	2.24 ⁹⁴⁸

⁹⁴¹ Based on the average % electricity used for water heating in Unknown residential structure types across all utilities covered by the IL program. Residence types include: SF, SF LI, MF & MF LI. Utilities included: Ameren, ComEd, People's Gas, Northshore Gas & Nicor. Please see subsequent table and citations for specific sources.

⁹⁴⁶ Comparable service area & customers to NSG, therefore using their survey data.

⁹⁴² Provided by AEG from the 2020 Market Potential Study completed for AIC, as well as AIC Income Qualified Initiative: 2021 Participant Survey Results Memo (February 1, 2022) p. 17.

⁹⁴³ Commonwealth Edison Residential Baseline Study (2020). p.4.4 & 4.19; Section 4-7 Water Heating. Prepared by Itron.

 $^{^{\}rm 944}$ Implementation Contractors data from Peoples Gas and North Shore Gas for PY2022-2023.

⁹⁴⁵ Ihid

⁹⁴⁷ For the weighted average calculations, please see the Analysis file. PGL, NSG, Nicor & gas customers were assumed to follow the provided split. ComEd total customers, minus overlap with PGL,NSG & Nicor, therefore electric only homes. Ameren is total customers minus Nicor.

⁹⁴⁸ Based on measurements conducted from June 2013 to January 2014 by Franklin Energy. Over 300 residential sites in the Chicago area were tested.

Program	GPM_base
Retrofit, Efficiency Kits, NC or TOS	2.35 ⁹⁴⁹

GPM low = As-used flow rate of the low-flow showerhead, which may, as a result of measurements

of program evaulations deviate from rated flows 950

L_base = Shower length in minutes with baseline showerhead

 $= 7.8 \text{ min}^{951}$

L_low = Shower length in minutes with low-flow showerhead

 $= 7.8 \text{ min}^{952}$

Household = Average number of people per household

	Household ⁹⁵³			
Household Unit Type	IQ Participants	Non-IQ Participants	All Participants	
Single-Family - Deemed	2.76	2.62	2.67	
Multifamily - Deemed	2.3	2.09	2.18	
Household type unknown			2.52 ⁹⁵⁴	
Custom	Actual Occupancy or Number of Bedrooms ⁹⁵⁵			

Use Multifamily if: Building meets utility's definition for multifamily

SPCD = Showers Per Capita Per Day

 $= 0.6^{956}$

365.25 = Days per year, on average.

SPH = Showerheads Per Household so that per-showerhead savings fractions can be

determined

Household Type	SPH
Single-Family except mobile homes	1.79 ⁹⁵⁷

⁹⁴⁹ Representative value from sources 1, 2, 4, 5, 6 and 7 (See Source Table at end of measure section) adjusted slightly upward to account for program participation which is expected to target customers with existing higher flow devices rather than those with existing low flow devices.

⁹⁵⁰ Note that actual values may be either a) program-specific minimum flow rate, or b) program-specific evaluation-based value of actual effective flow-rate due to increased duration or temperatures. The latter increases in likelihood as the rated flow drops and may become significant at or below rated flows of 1.5 GPM. The impact can be viewed as the inverse of the throttling described in the footnote for baseline flowrate.

⁹⁵¹ Cadmus and Opinion Dynamics Showerhead and Faucet Aerator Meter Study Memorandum dated June 2013, directed to Michigan Evaluation Working Group. This study of 135 single and Multifamily homes in Michigan metered energy parameters for efficient showerhead and faucet aerators.

⁹⁵² Ihid

⁹⁵³ Assumptions are taken from the draft unadjusted 2024 Baseline Study evaluation data provided in 07/2024 by GDS Associates.

⁹⁵⁴ Unknown is based on statewide weighted average of 69% single family and 31% multifamily, based on IL data from 2009 RECS Table HC2.9 Structural and Geographic Characteristics of Homes in Midwest Region, Divisions and States, 2009.

⁹⁵⁵ Bedrooms are suitable proxies for household occupancy, and may be preferable to actual occupancy due to turnover rates in residency and non-adult population impacts.

⁹⁵⁶ Cadmus and Opinion Dynamics Showerhead and Faucet Aerator Meter Study Memorandum dated June 2013, directed to Michigan Evaluation Working Group.

⁹⁵⁷ Based on findings from a 2009 ComEd residential survey of 140 sites, provided by Cadmus.

Household Type	SPH
Multifamily and mobile homes	1.3 ⁹⁵⁸
Household type unknown	1.64 ⁹⁵⁹
Custom	Actual

Use Multifamily if: Building meets utility's definition for multifamily

EPG_electric = Energy per gallon of hot water supplied by electric

= (8.33 * 1.0 * (ShowerTemp - SupplyTemp)) / (RE_electric * 3,412)

= (8.33 * 1.0 * (101 - 50.7)) / (0.98 * 3,412)

= 0.125 kWh/gal

8.33 = Specific weight of water (lbs/gallon)

1.0 = Heat Capacity of water (btu/lb-°)

ShowerTemp = Assumed temperature of water

 $= 101^{\circ}F^{960}$

SupplyTemp = Assumed temperature of water entering house

= 50.7°F 961

RE_electric = Recovery efficiency of electric water heater

= 98%⁹⁶²

3412 = Converts Btu to kWh (btu/kWh)

ISR = In service rate of showerhead dependant on install method as listed in table below

⁹⁵⁸ Ibid.

⁹⁵⁹ Unknown is based on statewide weighted average of 69% single family and 31% multifamily, based on IL data from 2009 RECS Table HC2.9 Structural and Geographic Characteristics of Homes in Midwest Region, Divisions and States, 2009.

 $^{^{960}}$ Cadmus and Opinion Dynamics Showerhead and Faucet Aerator Meter Study Memorandum dated June 2013, directed to Michigan Evaluation Working Group.

⁹⁶¹ Table 4 in Chen, et. al., "Calculating Average Hot Water Mixes of Residential Plumbing Fixtures", June 2020, reports a value of 50.7°F for inlet water temperature for U.S. Census Division 3.

⁹⁶² Electric water heaters have recovery efficiency of 98%.

Selection	ISR
Direct Install	0.965 ⁹⁶³
Virtual Assessment followed by Unverified Self-Install	0.803 ⁹⁶⁴
Requested Efficiency Kits	0.65 ⁹⁶⁵
Distributed Efficiency Kits (Income Eligible)	0.48 ⁹⁶⁶
Distributed School Efficiency Kit showerhead	0.574 ⁹⁶⁷

For example, a direct installed 1.5 GPM low flow showerhead in a single family IQ home with electric DHW where the number of showers is not known:

$$\Delta$$
kWh = 1.0 * ((2.24 * 7.8 – 1.5 * 7.8) * 2.76 * 0.6 * 365.25 / 1.79) * 0.125 * 0.96
= 234 kWh

Secondary kWh Savings for Water Supply and Wastewater Treatment

The following savings should be included in the total savings for this measure, but should not be included in TRC tests to avoid double counting the economic benefit of water savings.

$$\Delta kWh_{water} = \Delta Water (gallons) / 1,000,000 * E_{water total}$$

Where

Ewater total = IL Total Water Energy Factor (kWh/Million Gallons) = 5.010⁹⁶⁸

⁹⁶³ Weighted average of 98% found in ComEd Energy Efficiency/ Demand Response Plan: Plan Year 2 (6/1/2009-5/31/2010) Evaluation Report: All Electric Single Family Home Energy Performance Tune-Up Program Table 3-8 (quantity surveyed = 163), and 87% from ComEd Single Family Retrofits CY2018 Field Work Memo 2019-07-19, Table 1 (quantity surveyed = 15). Alternative ISRs may be developed for program delivery methods based on evaluation results. Navigant, ComEd-Nicor Gas EPY4/GPY1 Multifamily Home Energy Savings Program Evaluation Report FINAL 2013-06-05. Opinion dynamics conducted primary research with tenants of participating multifamily buildings in 2023 to study the removal behavior of tenants post Program Ally direct install of low flow showerheads. Opinion Dynamics, "2023 AIC Multifamily Initiatives Tenant Survey Findings Memo", Ameren Illinois, Multifamily Initiatives, April 24, 2024. These sources have been averaged to arrive at an ISR of 0.965.

⁹⁶⁴ An equal weighted average of Direct Install and Efficiency Kit ISRs. Interest and applicability of measures confirmed through virtual assessment. Average of homes using 1 Showerhead & 2 Showerhead.

⁹⁶⁵ A weighted ISR was found by weighting Nicor and Ameren efficiency kit program uptake and their previously found ISRs. This analysis can be found in Faucet Aerators and Showerheads Weighted Average ISR IL TRM.xlsx.

⁹⁶⁶ Average of Guidehouse survey research for Peoples Gas, June 16, 2020 and Research from 2021 Ameren Illinois Income Qualified participant survey, available on IL SAG website: https://ilsag.s3.amazonaws.com/AIC-Income-Qualified-Initiative-Participant-Survey-Results-Memo-FINAL-2022-02-01.pdf

⁹⁶⁷ Results from Home Energy Worksheets completed by student/families in 2020, 2021, and 2022 were nearly the same as values from: Opinion Dynamics and Cadmus. 2018 AIC Residential Program Annual Impact Evaluation Report. April 30, 2019. Results from implementer-administered participant survey. Home Energy Worksheets also establish the fraction of participants who indicate they "will install later" for specific measures. Follow-up research completed by Guidehouse for Nicor Gas in 2022 found that, on average, 51.3% of respondents who initially reported that they hadn't installed specific kit measures, but "planned to" subsequently had installed the measures. Combining these findings allows for an ISR that accounts for initial and one round of subsequent intallations. To maintain a conservative estimate of ISR, the remaining 48.7% are presumed uninstalled. See: EESchoolKitSubsequentInstall_HEW.xlsx for data and calculations.

⁹⁶⁸ This factor includes 2571 kWh/MG for water supply based on Illinois energy intensity data from a 2012 ISAWWA study and 2439 kWh/MG for wastewater treatment based on national energy intensity use estimates. For more information please review Elevate Energy's 'IL TRM: Energy per Gallon Factor, May 2018 paper'.

For example, a direct installed 1.5 GPM low flow showerhead in a single family IQ home where the number of showers is not known:

ΔWater (gallons) = ((2.24 * 7.8 – 1.5 * 7.8) * 2.76 * 0.6 * 365.25 / 1.79) * 0.96

= 1,872 gallons

 ΔkWh_{water} = 1,872/1,000,000 * 5,010

= 9.4 kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh/Hours * CF$

Where:

ΔkWh = calculated value above. Note do not include the secondary savings in this calculation.

Hours = Annual electric DHW recovery hours for showerhead use

= ((GPM_base * L_base) * Household * SPCD * 365.25) * 0.726⁹⁶⁹ / GPH

= 273 for SF Direct Install; 224 for MF Direct Install

= 286 for SF Retrofit, Efficiency Kits, NC and TOS; 236 for MF Retrofit, Efficiency Kits, NC and TOS

Use Multifamily if: Building meets utility's definition for multifamily

GPH = Gallons per hour recovery of electric water heater calculated for 69.3F temp rise (120-50.7), 98%

recovery efficiency, and typical 4.5kW electric resistance storage tank.

= 26.1

CF = Coincidence Factor for electric load reduction

 $= 0.0278^{970}$

For example, a direct installed 1.5 GPM low flow showerhead in a single family IQ home with electric DHW where the number of showers is not known:

 Δ kW = 234/273 * 0.0278

= 0.024 kW

FOSSIL FUEL SAVINGS

ΔTherms = %FossilDHW * ((GPM_base * L_base - GPM_low * L_low) * Household * SPCD

* 365.25 / SPH) * EPG gas * ISR

Where:

%FossilDHW = Percentage of DHW savings assumed to be fossil fuel

= 100 % for Fossil Fuel

= 0 % for Electric

⁹⁶⁹ 72.6% is the proportion of hot 120F water mixed with 50.7F supply water to give 101F shower water.

⁹⁷⁰ Calculated as follows: Assume 11% showers take place during peak hours (based on: Oreo et al, "The end uses of hot water in single family homes from flow trace analysis", 2001.). There are 65 days in the summer peak period, so the percentage of total annual aerator use in peak period is 0.11*65/365 = 1.96%. The number of hours of recovery during peak periods is therefore assumed to be 1.96% * 369 = 7.23 hours of recovery during peak period where 369 equals the average annual electric DHW recovery hours for showerhead use including SF and MF homes with Direct Install and Retrofit/TOS measures. There are 260 hours in the peak period so the probability you will see savings during the peak period is 7.23/260 = 0.0278

= If unknown ⁹⁷¹ , use the following table:	= If unknown ⁹⁷¹	. use the	following table:
--	-----------------------------	-----------	------------------

	Location				
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown
Ameren ⁹⁷²	76%	75%	60%	57%	72%
ComEd ⁹⁷³	92%		89%		91%
People's Gas ⁹⁷⁴	97.9%	98.0%	98.3%	97.6%	97.8%
Northshore Gas ⁹⁷⁵	98.5%	98.2%	90.0%	97.6%	97.6%
Nicor Gas ⁹⁷⁶	98.5%	98.2%	90.0%	97.6%	97.6%
All DUs ⁹⁷⁷					75%

<u>Note</u>: If a measure is supported by a gas and electric utility through a joint program, and it is unknown whether the participant has a gas supply, the electric utility values in the table above should be used. If it is known that the participant has a gas supply, the values from the gas utility above should be applied.

EPG_gas = Energy per gallon of Hot water supplied by gas

= (8.33 * 1.0 * (ShowerTemp - SupplyTemp)) / (RE gas * 100,000)

= 0.0054 Therm/gal for SF homes

= 0.0063 Therm/gal for MF homes

RE_gas = Recovery efficiency of gas water heater

= 78% For individual water heater⁹⁷⁸

= 67% For shared water heater⁹⁷⁹

If unknown, use individual water heater value for single family, use shared water heater value for multifamily. Use multifamily if building meets utility's definition for multifamily.

100,000 = Converts Btus to Therms (btu/Therm)

Other variables as defined above.

_

⁹⁷¹ Based on the average % electricity used for water heating in Unknown residential structure types across all utilities covered by the IL program. Residence types include: SF, SF LI, MF & MF LI. Utilities included: Ameren, ComEd, People's Gas, Northshore Gas & Nicor. Please see subsequent table and citations for specific sources.

⁹⁷² Provided by AEG from the 2020 Market Potential Study completed for AIC, as well as AIC Income Qualified Initiative: 2021 Participant Survey Results Memo (February 1, 2022) p. 17.

⁹⁷³ Commonwealth Edison Residential Baseline Study (2020). p.4.4 & 4.19; Section 4-7 Water Heating. Prepared by Itron.

⁹⁷⁴ Residential Appliance Saturation Survey of natural gas for space heating and water heating (2021). Note, Multifamily customers have a residential billing rate code and responded on the survey that they live in an apartment or condominium in a building that has either 2-4 or 5+ units.

⁹⁷⁵ Ibid.

⁹⁷⁶ Comparable service area & customers to NSG, therefore using their survey data.

⁹⁷⁷ For the weighted average calculations, please see the Analysis file. PGL, NSG, Nicor & gas customers were assumed to follow the provided split. ComEd total customers, minus overlap with PGL,NSG & Nicor, therefore gas only homes. Ameren is total customers minus Nicor.

⁹⁷⁸ DOE Final Rule discusses Recovery Efficiency with an average around 0.76 for Gas Fired Storage Water heaters and 0.78 for standard efficiency gas fired tankless water heaters up to 0.95 for the highest efficiency gas fired condensing tankless water heaters. These numbers represent the range of new units however, not the range of existing units in stock. Review of AHRI Directory suggests range of recovery efficiency ratings for new Gas DHW units of 70-87%. Average of existing units is estimated at 78%.

⁹⁷⁹ Water heating in Multifamily buildings is often provided by a larger central boiler. This suggests that the average recovery efficiency is somewhere between a typical central boiler efficiency of 0.59 and the 0.75 for single family homes. An average efficiency of 0.67 is used for this analysis as a default for Multifamily buildings.

For example, a direct installed 1.5 GPM low flow showerhead in a gas fired DHW single family home where the number of showers is not known:

 Δ Therms = 1.0 * ((2.24 * 7.8 – 1.5 * 7.8) * 2.76 * 0.6 * 365.25 / 1.79) * 0.0054 * 0.96

= 10.1 therms

WATER IMPACT DESCRIPTIONS AND CALCULATION

ΔWater (gallons) = ((GPM_base * L_base - GPM_low * L_low) * Household * SPCD * 365.25 / SPH)

Variables as defined above

For example, a direct installed 1.5 GPM low flow showerhead in a single family home where the number of showers is not known:

$$\Delta$$
Water (gallons) = ((2.24 * 7.8 – 1.5 * 7.8) * 2.76 * 0.6 * 365.25 / 1.79) * 0.96
= 1,872 gallons

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

SOURCES

Source ID	Reference
1	2011, DeOreo, William. California Single Family Water Use Efficiency Study. April 20, 2011.
2	2000, Mayer, Peter, William DeOreo, and David Lewis. Seattle Home Water Conservation Study.
2	December 2000.
3	1999, Mayer, Peter, William DeOreo. Residential End Uses of Water. Published by AWWA Research
5	Foundation and American Water Works Association. 1999.
	2003, Mayer, Peter, William DeOreo. Residential Indoor Water Conservation Study. Aquacraft, Inc.
4	Water Engineering and Management. Prepared for East Bay Municipal Utility District and the US EPA.
	July 2003.
5	2011, DeOreo, William. Analysis of Water Use in New Single Family Homes. By Aquacraft. For Salt Lake
	City Corporation and US EPA. July 20, 2011.
6	2011, Aquacraft. Albuquerque Single Family Water Use Efficiency and Retrofit Study. For Albuquerque
U	Bernalillo County Water Utility Authority. December 1, 2011.
	2008, Schultdt, Marc, and Debra Tachibana. Energy related Water Fixture Measurements: Securing the
7	Baseline for Northwest Single Family Homes. 2008 ACEEE Summer Study on Energy Efficiency in
	Buildings.

MEASURE CODE: RS-HWE-LFSH-V14-250101

5.4.6 Water Heater Temperature Setback

DESCRIPTION

This measure was developed to be applicable to the following program types: NC, RF, DI, KITS.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

High efficiency is a hot water tank with the thermostat reduced to no lower than 120 degrees.

DEFINITION OF BASELINE EQUIPMENT

The baseline condition is a hot water tank with a thermostat setting that is higher than 120 degrees, typically systems with settings of 130 degrees or higher. Note if there are more than one DHW tanks in the home at or higher than 130 degrees and they are all turned down, then the savings per tank can be multiplied by the number of tanks.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The assumed lifetime of the measure is 2 years.

DEEMED MEASURE COST

The incremental cost of a setback is assumed to be \$5 for contractor time, or where the measure is installed as part of a kit program, the cost of the informational insert or other product should be used.

LOADSHAPE

Loadshape R03 - Residential Electric DHW

COINCIDENCE FACTOR

The summer peak coincidence factor for this measure is assumed to be 1.

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

For homes with electric DHW tanks:

 Δ kWh⁹⁸⁰ = (U * A * (Tpre – Tpost) * Hours * ISR) / (3412 * RE_electric)

Where:

U = Overall heat transfer coefficient of tank (Btu/Hr-°F-ft²).

= Actual if known. If unknown assume R-12, U = 0.083

A = Surface area of storage tank (square feet)

= Actual if known. If unknown use table below based on capacity of tank. If capacity

unknown assume 50 gal tank; A = 24.99ft²

⁹⁸⁰ Note this algorithm provides savings only from reduction in standby losses. The TAC considered avoided energy from not heating the water to the higher temperature but determined that dishwashers are likely to boost the temperature within the unit (roughly canceling out any savings), faucet and shower use is likely to be at the same temperature so there would need to be more lower temperature hot water being used (cancelling any savings) and clothes washers will only see savings if the water from the tank is taken without any temperature control. It was felt the potential impact was too small to be characterized.

Capacity (gal)	A (ft²) ⁹⁸¹
30	19.16
40	23.18
50	24.99
80	31.84

Tpre = Actual hot water setpoint prior to adjustment

Tpost = Actual new hot water setpoint, which may not be lower than 120 degrees

Default Hot Water Temperature Inputs					
Delivery Method	System Type	Tpre	Tpost		
Distributed school efficient kit	Electric	143.0	139.1		
instructions, Instructions provided in all other kit programs ^{982, 983}	Gas	142.3	136.9		
	Other	140.8	137.7		
	Electric	143.0	139.1		
All other ⁹⁸⁴	Gas	142.3	136.9		
	Other	140.8	137.7		

Hours = Number of hours in a year (since savings are assumed to be constant over year).

= 8766

ISR = In service rate of measure

= Dependent on program delivery method as listed in table below

Delivery Method	ISR
Distributed school efficient kit instructions	20% ⁹⁸⁵
Instructions provided in all other kit programs	10% ⁹⁸⁶
All other	100%

3412 = Conversion from Btu to kWh

RE_electric = Recovery efficiency of electric hot water heater

 $= 0.98^{987}$

Deemed savings assumptions forkit programs and non-kit programs are provided in the table below:

Deemed kWh Savings					
Delivery Method	System Type	ΔkWh			
	Electric	4.24			

⁹⁸¹ Assumptions from PA TRM. Area values were calculated from average dimensions of several commercially available units, with radius values measured to the center of the insulation.

_

⁹⁸² DHW Temperature Setpoint EEE Survey Data.pdf, Table 7

⁹⁸³ DHW Temperature Setpoint EEE Survey Data.pdf, Table 8

⁹⁸⁴ DHW Temperature Setpoint EEE Survey Data.pdf, Table 7

 $^{^{985}}$ DHW Temperature Setpoint EEE Survey Data.pdf, Table 6 986 Ibid.

⁹⁸⁷ Electric water heaters have recovery efficiency of 98%.

Deemed kWh Savings				
Delivery Method	System Type	ΔkWh		
Distributed school	Gas	5.87		
efficient kit				
instructions	Other	3.37		
All sals su lita	Electric	2.12		
All other kit programs	Gas	2.94		
Programs	Other	1.69		
Non-kit program	All	120.72		

SUMMER COINCIDENT PEAK DEMAND SAVINGS

= ΔkWh / Hours * CF ΔkW

Where:

Hours = 8766

CF = Summer Peak Coincidence Factor for measure

= 1

Deemed savings assumptions for kit programs and non-kit programs are provided in the table below:

Deemed kW Savings				
Delivery Method	System Type	ΔkW		
Distributed school	Electric	0.0005		
efficient kit instructions	Gas	0.0007		
	Other	0.0004		
	Electric	0.0002		
All other kit programs	Gas	0.0003		
	Other	0.0002		
Non-kit program	All	0.0138		

FOSSIL FUEL SAVINGS

For homes with gas water heaters:

= (U * A * (Tpre – Tpost) * Hours * ISR) / (100,000 * RE_gas) ΔTherms

Where

100,000 = Converts Btus to Therms (btu/Therm) RE_gas

= Recovery efficiency of gas water heater

= 78% For SF homes ⁹⁸⁸

⁹⁸⁸ DOE Final Rule discusses Recovery Efficiency with an average around 0.76 for Gas Fired Storage Water heaters and 0.78 for standard efficiency gas fired tankless water heaters up to 0.95 for the highest efficiency gas fired condensing tankless water heaters. These numbers represent the range of new units however, not the range of existing units in stock. Review of AHRI

= 67% For MF homes 989

Use Multifamily if: Building has shared DHW

Deemed savings for kit programs and non-kit programs, for both single-family and multi-family settings, are provided in the table below:

Deemed Fossil Fuel Savings						
Delivery Method	System Type	ΔTherms SF	ΔTherms MF			
Distributed	Electric	0.18	0.21			
school efficient kit instructions	Gas	0.25	0.29			
	Other	0.14	0.17			
AH .1 15	Electric	0.09	0.11			
All other kit programs	Gas	0.13	0.15			
	Other	0.07	0.08			
Non-kit program	All	5.17	6.02			

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-HWE-TMPS-V09-240101

Directory suggests range of recovery efficiency ratings for new Gas DHW units of 70-87%. Average of existing units is estimated at 78%.

⁹⁸⁹ Water heating in Multifamily buildings is often provided by a larger central boiler. This suggests that the average recovery efficiency is somewhere between a typical central boiler efficiency of 0.59 and the 0.75 for single family homes. An average efficiency of 0.67 is used for this analysis as a default for Multifamily buildings.

5.4.7 Water Heater Wrap

DESCRIPTION

This measure relates to a Tank Wrap or insulation "blanket" that is wrapped around the outside of a hot water tank to reduce stand-by losses. This measure applies only for homes that have an electric water heater that is not already well insulated. Generally this can be determined based upon the appearance of the tank. 990

This measure was developed to be applicable to the following program types: RF, DI.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The measure is a properly installed, R-8 or greater insulating tank wrap to reduce standby energy losses from the tank to the surrounding ambient area.

DEFINITION OF BASELINE EQUIPMENT

The baseline is a standard electric domestic hot water tank without an additional tank wrap. Gas storage water heaters are excluded due to the limitations of retrofit wrapping and the associated impacts on reduced savings and safety.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The measure life is assumed to be 5 years. 991

DEEMED MEASURE COST

The incremental cost for this measure will be the actual material cost of procuring and labor cost of installing the tank wrap.

LOADSHAPE

Loadshape R03 - Residential Electric DHW

COINCIDENCE FACTOR

This measure assumes a flat loadshape and as such the coincidence factor is 1.

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

For electric DHW systems:

 $\Delta kWh = ((1/Rbase - 1/R_{insul}) * A_{base} * \Delta T * Hours) / (3412 * \eta DHW)$

Where:

R_{base} = Overall thermal resistance coefficient prior to adding tank wrap (Hr-°F-ft²/BTU).

Rinsul = Overall thermal resistance coefficient after addition of tank wrap (Hr-°F-ft²/BTU).

⁹⁹⁰ Visually determine whether it is insulated by foam (newer, rigid, and more effective) or fiberglass (older, gives to gently pressure, and not as effective)

⁹⁹¹ This estimate assumes the tank wrap is installed on an existing unit with 5 years remaining life.

Abase = Surface area of storage tank prior to adding tank wrap (square feet)⁹⁹²

ΔT = Average temperature difference between tank water and outside air temperature (°F)

= 60°F 993

Hours = Number of hours in a year (since savings are assumed to be constant over year).

= 8766

3412 = Conversion from Btu to kWh

ηDHW = Recovery efficiency of electric hot water heater

 $= 0.98^{994}$

The following table has default savings for various tank capacity and pre and post R-VALUES.

Capacity (gal)	Rbase	Rinsul	Abase (ft2) ⁹⁹⁵	ΔkWh	ΔkW
30	8	16	19.16	188	0.0215
30	10	18	19.16	134	0.0153
30	12	20	19.16	100	0.0115
30	8	18	19.16	209	0.0239
30	10	20	19.16	151	0.0172
30	12	22	19.16	114	0.0130
40	8	16	23.18	228	0.0260
40	10	18	23.18	162	0.0185
40	12	20	23.18	122	0.0139
40	8	18	23.18	253	0.0289
40	10	20	23.18	182	0.0208
40	12	22	23.18	138	0.0158
50	8	16	24.99	246	0.0280
50	10	18	24.99	175	0.0199
50	12	20	24.99	131	0.0149
50	8	18	24.99	273	0.0311
50	10	20	24.99	197	0.0224
50	12	22	24.99	149	0.0170
80	8	16	31.84	313	0.0357
80	10	18	31.84	223	0.0254
80	12	20	31.84	167	0.0190
80	8	18	31.84	348	0.0397
80	10	20	31.84	250	0.0286
80	12	22	31.84	190	0.0216

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh / 8766 * CF$

Where:

 Δ kWh = kWh savings from tank wrap installation

⁹⁹² Area includes tank sides and top to account for typical wrap coverage.

⁹⁹³ Assumes 125°F water leaving the hot water tank and average temperature of basement of 65°F.

 $^{^{\}rm 994}$ Electric water heaters have recovery efficiency of 98%.

⁹⁹⁵ Assumptions from PA TRM. Area values were calculated from average dimensions of several commercially available units, with radius values measured to the center of the insulation. Area includes tank sides and top to account for typical wrap coverage.

= Number of hours in a year (since savings are assumed to be constant over year).

CF = Summer Coincidence Factor for this measure

= 1.0

The table above has default kW savings for various tank capacity and pre and post R-values.

FOSSIL FUEL SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-HWE-WRAP-V03-220101

5.4.8 Thermostatic Restrictor Shower Valve

DESCRIPTION

The measure is the installation of a thermostatic restrictor shower valve in a single or multi-family household. This is a valve attached to a residential showerhead which restricts hot water flow through the showerhead once the water reaches a set point (generally 95F or lower).

This measure was developed to be applicable to the following program types: RF, NC, DI. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the installed equipment must be a thermostatic restrictor shower valve installed on a residential showerhead.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is the residential showerhead without the restrictor valve installed.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 10 years. 996

DEEMED MEASURE COST

The incremental cost of the measure should be the actual program cost (including labor if applicable), or $$35^{997}$ plus \$20 labor \$98 if not available.

LOADSHAPE

Loadshape R03 - Residential Electric DHW

COINCIDENCE FACTOR

The coincidence factor for this measure is assumed to be 0.22%. 999

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

ΔkWh = %ElectricDHW * ((GPM_base_S * L_showerdevice) * Household * SPCD * 365.25 / SPH) * EPG_electric * ISR

Where:

⁹⁹⁶ Assumptions based on NY TRM, Pacific Gas and Electric Company Work Paper PGECODHW113, and measure life of low-flow showerhead.

⁹⁹⁷ Based on actual cost of the showerstart tsv3 adapter from Evolve showerheads.

⁹⁹⁸ Estimate for contractor installation time.

⁹⁹⁹ Calculated as follows: Assume 11% showers take place during peak hours (based on: Oreo et al, "The end uses of hot water in single family homes from flow trace analysis", 2001.). There are 65 days in the summer peak period, so the percentage of total annual use in peak period is 0.11*65/365 = 1.96%. The number of hours of recovery during peak periods is therefore assumed to be 1.96% * 29.5 = 0.577 hours of recovery during peak period, where 29.5 equals the average annual electric DHW recovery hours for showerhead use prevented by the device including SF and MF homes with Direct Install and Retrofit/TOS measures. There are 260 hours in the peak period so the probability you will see savings during the peak period is 0.577/260 = 0.0022

%ElectricDHW = Percentage of DHW savings assumed to be electric

= 100 % for Electric

= 0 % for Fossil Fuel

= If unknown¹⁰⁰⁰, use the following table:

		Location				
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown	
Ameren ¹⁰⁰¹	24%	25%	40%	43%	28%	
ComEd ¹⁰⁰²	8%		11%		9%	
People's Gas ¹⁰⁰³	2.0%	2.0%	1.7%	2.1%	2.0%	
Northshore Gas ¹⁰⁰⁴	1.3%	1.8%	10.0%	2.4%	2.3%	
Nicor Gas ¹⁰⁰⁵	1.3%	1.8%	10.0%	2.4%	2.3%	
All DUs ¹⁰⁰⁶					25%	

<u>Note</u>: If a measure is supported by a gas and electric utility through a joint program, and it is unknown whether the participant has a gas supply, the electric utility values in the table above should be used. If it is known that the participant has a gas supply, the values from the gas utility above should be applied.

GPM_base_S = Flow rate of the basecase showerhead, or actual if available

Program	GPM
Direct-install, device only	2.24 ¹⁰⁰⁷
New Construction or direct	Rated or actual flow
install of device and low	of program-installed
flow showerhead	showerhead
Retrofit or TOS	2.35 ¹⁰⁰⁸

L_showerdevice = Hot water waste time avoided due to thermostatic restrictor valve

= 0.89 minutes¹⁰⁰⁹

Household = Average number of people per household

¹⁰⁰⁵ Comparable service area & customers to NSG, therefore using their survey data.

¹⁰⁰⁰ Based on the average % electricity used for water heating in Unknown residential structure types across all utilities covered by the IL program. Residence types include: SF, SF LI, MF & MF LI. Utilities included: Ameren, ComEd, People's Gas, Northshore Gas & Nicor. Please see subsequent table and citations for specific sources.

¹⁰⁰¹ Provided by AEG from the 2020 Market Potential Study completed for AIC, as well as AIC Income Qualified Initiative: 2021 Participant Survey Results Memo (February 1, 2022) p. 17.

¹⁰⁰² Commonwealth Edison Residential Baseline Study (2020). p.4.4 & 4.19; Section 4-7 Water Heating. Prepared by Itron.

¹⁰⁰³ Implementation Contractors data from Peoples Gas and North Shore Gas for PY2022-2023.

¹⁰⁰⁴ Ibid

¹⁰⁰⁶ For the weighted average calculations, please see the Analysis file. PGL, NSG, Nicor & gas customers were assumed to follow the provided split. ComEd total customers, minus overlap with PGL,NSG & Nicor, therefore electric only homes. Ameren is total customers minus Nicor.

¹⁰⁰⁷ Based on measurements conducted from June 2013 to January 2014 by Franklin Energy. Over 300 residential sites in the Chicago area were tested.

¹⁰⁰⁸ Representative value from sources 1, 2, 4, 5, 6 and 7 (See Source Table at end of measure section) adjusted slightly upward to account for program participation which is expected to target customers with existing higher flow devices rather than those with existing low flow devices.

¹⁰⁰⁹ Average of the following sources: ShowerStart LLC survey; "Identifying, Quantifying and Reducing Behavioral Waste in the Shower: Exploring the Savings Potential of ShowerStart", City of San Diego Water Department survey; "Water Conservation Program: ShowerStart Pilot Project White Paper", and PG&E Work Paper PGECODHW113.

		Household ¹⁰¹⁰	
Household Unit Type	IQ Participants	Non-IQ Participants	All Participants
Single-Family - Deemed	2.76	2.62	2.67
Multifamily - Deemed	2.3	2.09	2.18
Household type unknown			2.52 ¹⁰¹¹
Custom	Actual Occupancy or Number of Bedrooms ¹⁰¹²		

Use Multifamily if: Building meets utility's definition for multifamily

SPCD = Showers Per Capita Per Day

 $= 0.6^{1013}$

365.25 = Days per year, on average.

SPH = Showerheads Per Household so that per-showerhead savings fractions can be determined

Household Type	SPH
Single-Family	1.79 ¹⁰¹⁴
Multifamily	1.3 ¹⁰¹⁵
Household type unknown	1.64 ¹⁰¹⁶
Custom	Actual

Use Multifamily if: Building meets utility's definition for multifamily

EPG_electric = Energy per gallon of hot water supplied by electric

= (8.33 * 1.0 * (ShowerTemp - SupplyTemp)) / (RE_electric * 3412)

= (8.33 * 1.0 * (101 - 50.7)) / (0.98 * 3412)

= 0.125 kWh/gal

8.33 = Specific weight of water (lbs/gallon)

1.0 = Heat Capacity of water (btu/lb-°)

ShowerTemp = Assumed temperature of water

 $= 101F^{1017}$

SupplyTemp = Assumed temperature of water entering house

_

 ¹⁰¹⁰ Assumptions are taken from the draft unadjusted 2024 Baseline Study evaluation data provided in 07/2024 by GDS Associates.
 1011 Unknown is based on statewide weighted average of 69% single family and 31% multifamily, based on IL data from 2009 RECS

Table HC2.9 Structural and Geographic Characteristics of Homes in Midwest Region, Divisions and States, 2009.

1012 Bedrooms are suitable proxies for household occupancy, and may be preferable to actual occupancy due to turnover rates in residency and non-adult population impacts.

¹⁰¹³ Cadmus and Opinion Dynamics Showerhead and Faucet Aerator Meter Study Memorandum dated June 2013, directed to Michigan Evaluation Working Group.

¹⁰¹⁴ Based on findings from a 2009 ComEd residential survey of 140 sites, provided by Cadmus.

¹⁰¹⁶ Unknown is based on statewide weighted average of 69% single family and 31% multifamily, based on IL data from 2009 RECS Table HC2.9 Structural and Geographic Characteristics of Homes in Midwest Region, Divisions and States, 2009.

¹⁰¹⁷ Cadmus and Opinion Dynamics Showerhead and Faucet Aerator Meter Study Memorandum dated June 2013, directed to Michigan Evaluation Working Group.

= 50.7°F 1018

RE_electric = Recovery efficiency of electric water heater

= 98% 1019

3412 = Converts Btu to kWh (btu/kWh)

ISR = In service rate of showerhead

= Dependent on program delivery method as listed in table below

Selection	ISR
Direct Install - Single Family	0.98 ¹⁰²⁰
Direct Install – Multi Family	0.95 ¹⁰²¹
Efficiency Kits	To be determined through evaluation

Use Multifamily if: Building meets utility's definition for multifamily

For example, a direct installed valve in a single-family IQ home with electric DHW:

Secondary kWh Savings for Water Supply and Wastewater Treatment

The following savings should be included in the total savings for this measure, but should not be included in TRC tests to avoid double counting the economic benefit of water savings.

$$\Delta kWh_{water} = \Delta Water (gallons) / 1,000,000 * E_{water total}$$

Where

For example, a direct installed thermostatic restrictor device in a single family IQ home where the number of showers is not known:

= 660 gallons

$$\Delta kWh_{water} = 660/1,000,000 * 5,010$$

= 3.3 kWh

¹⁰¹⁸ Table 4 in Chen, et. al., "Calculating Average Hot Water Mixes of Residential Plumbing Fixtures", June 2020, reports a value of 50.7°F for inlet water temperature for U.S. Census Division 3.

¹⁰¹⁹ Electric water heaters have recovery efficiency of 98%.

¹⁰²⁰ Deemed values are from ComEd Energy Efficiency/ Demand Response Plan: Plan Year 2 (6/1/2009-5/31/2010) Evaluation Report: All Electric Single Family Home Energy Performance Tune-Up Program Table 3-8. Alternative ISRs may be developed for program delivery methods based on evaluation results.

¹⁰²¹ Navigant, ComEd-Nicor Gas EPY4/GPY1 Multifamily Home Energy Savings Program Evaluation Report FINAL 2013-06-05 ¹⁰²² This factor include 2571 kWh/MG for water supply based on Illinois energy intensity data from a 2012 ISAWWA study and 2439 kWh/MG for wastewater treatment based on national energy intensity use estimates. For more information please review Elevate Energy's 'IL TRM: Energy per Gallon Factor, May 2018 paper'.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh/Hours * CF$

Where:

ΔkWh = calculated value above. Note do not include the secondary savings in this calculation.

Hours = Annual electric DHW recovery hours for wasted showerhead use prevented by device

= ((GPM_base_S * L_showerdevice) * Household * SPCD * 365.25) * 0.726¹⁰²³ / GPH

GPH = Gallons per hour recovery of electric water heater calculated for 69.3F temp rise (120-50.7), 98% recovery efficiency, and typical 4.5kW electric resistance storage tank.

= 26.1

= 31.1 for SF Direct Install; 25.5 for MF Direct Install

= 32.6 for SF Retrofit and TOS; 26.7 for MF Retrofit and TOS

Use Multifamily if: Building meets utility's definition for multifamily

CF = Coincidence Factor for electric load reduction

 $= 0.0022^{1024}$

For example, a direct installed thermostatic restrictor device in a single family IQ home with electric DHW where the number of showers is not known.

 Δ kW = 82.5/31.1 * 0.0022 = 0.0058 kW

FOSSIL FUEL SAVINGS

ΔTherms = %FossilDHW * ((GPM_base_S * L_showerdevice)* Household * SPCD * 365.25 / SPH) * EPG_gas * ISR

Where:

%FossilDHW = Percentage of DHW savings assumed to be fossil fuel

= 100 % for Fossil Fuel

= 0 % for Electric

= If unknown¹⁰²⁵, use the following table:

 $^{^{1023}}$ 72.6% is the proportion of hot 120F water mixed with 50.7F supply water to give 101F shower water.

 $^{^{1024}}$ Calculated as follows: Assume 11% showers take place during peak hours (based on: Oreo et al, "The end uses of hot water in single family homes from flow trace analysis", 2001.). There are 65 days in the summer peak period, so the percentage of total annual use in peak period is 0.11*65/365 = 1.96%. The number of hours of recovery during peak periods is therefore assumed to be 1.96%*29.5 = 0.577 hours of recovery during peak period, where 29.5 equals the average annual electric DHW recovery hours for showerhead use prevented by the device including SF and MF homes with Direct Install and Retrofit/TOS measures. There are 260 hours in the peak period so the probability you will see savings during the peak period is 0.577/260 = 0.0022

¹⁰²⁵ Based on the average % electricity used for water heating in Unknown residential structure types across all utilities covered by the IL program. Residence types include: SF, SF LI, MF & MF LI. Utilities included: Ameren, ComEd, People's Gas, Northshore Gas & Nicor. Please see subsequent table and citations for specific sources.

			Location		
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown
Ameren ¹⁰²⁶	76%	75%	60%	57%	72%
ComEd ¹⁰²⁷	9	2%	8	9%	91%
People's Gas ¹⁰²⁸	97.9%	98.0%	98.3%	97.6%	97.8%
Northshore Gas ¹⁰²⁹	98.5%	98.2%	90.0%	97.6%	97.6%
Nicor Gas ¹⁰³⁰	98.5%	98.2%	90.0%	97.6%	97.6%
All DUs ¹⁰³¹					75%

<u>Note</u>: If a measure is supported by a gas and electric utility through a joint program, and it is unknown whether the participant has a gas supply, the electric utility values in the table above should be used. If it is known that the participant has a gas supply, the values from the gas utility above should be applied.

EPG_gas = Energy per gallon of Hot water supplied by gas

= (8.33 * 1.0 * (ShowerTemp - SupplyTemp)) / (RE_gas * 100,000)

= 0.0054 Therm/gal for SF homes

= 0.0063 Therm/gal for MF homes

RE_gas = Recovery efficiency of gas water heater

= 78% For SF homes 1032

= 67% For MF homes 1033

Use Multifamily if: Building has shared DHW.

100,000 = Converts Btus to Therms (btu/Therm)

Other variables as defined above.

10

¹⁰²⁶ Provided by AEG from the 2020 Market Potential Study completed for AIC, as well as AIC Income Qualified Initiative: 2021 Participant Survey Results Memo (February 1, 2022) p. 17.

¹⁰²⁷ Commonwealth Edison Residential Baseline Study (2020). p.4.4 & 4.19; Section 4-7 Water Heating. Prepared by Itron.

¹⁰²⁸ Residential Appliance Saturation Survey of natural gas for space heating and water heating (2021). Note, Multifamily customers have a residential billing rate code and responded on the survey that they live in an apartment or condominium in a building that has either 2-4 or 5+ units.

¹⁰²⁹ Ibid.

¹⁰³⁰ Comparable service area & customers to NSG, therefore using their survey data.

¹⁰³¹ For the weighted average calculations, please see the Analysis file. PGL, NSG, Nicor & gas customers were assumed to follow the provided split. ComEd total customers, minus overlap with PGL,NSG & Nicor, therefore gas only homes. Ameren is total customers minus Nicor.

¹⁰³² DOE Final Rule discusses Recovery Efficiency with an average around 0.76 for Gas Fired Storage Water heaters and 0.78 for standard efficiency gas fired tankless water heaters up to 0.95 for the highest efficiency gas fired condensing tankless water heaters. These numbers represent the range of new units however, not the range of existing units in stock. Review of AHRI Directory suggests range of recovery efficiency ratings for new Gas DHW units of 70-87%. Average of existing units is estimated at 78%.

¹⁰³³ Water heating in Multifamily buildings is often provided by a larger central boiler. This suggests that the average recovery efficiency is somewhere between a typical central boiler efficiency of 0.59 and the 0.75 for single family homes. An average efficiency of 0.67 is used for this analysis as a default for Multifamily buildings.

For example, a direct installed thermostatic restrictor device in a gas fired DHW single family IQ home where the number of showers is not known:

 Δ Therms = 1.0 * ((2.24 * 0.89) * 2.76 * 0.6 * 365.25 / 1.79) * 0.0054 * 0.98

= 3.6 therms

WATER IMPACT DESCRIPTIONS AND CALCULATION

ΔWater (gallons) = ((GPM_base_S * L_showerdevice) * Household * SPCD * 365.25 / SPH) * ISR

Variables as defined above

For example, a direct installed thermostatic restrictor device in a single family IQ home where the number of showers is not known:

 Δ Water (gallons) = ((2.24 * 0.89) * 2.76 * 0.6 * 365.25 / 1.79) * 0.98 = 660 gallons

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

SOURCES

Source ID	Reference
1	2011, DeOreo, William. California Single Family Water Use Efficiency Study. April 20, 2011.
2	2000, Mayer, Peter, William DeOreo, and David Lewis. Seattle Home Water Conservation Study. December 2000.
3	1999, Mayer, Peter, William DeOreo. Residential End Uses of Water. Published by AWWA Research Foundation and American Water Works Association. 1999.
4	2003, Mayer, Peter, William DeOreo. Residential Indoor Water Conservation Study. Aquacraft, Inc. Water Engineering and Management. Prepared for East Bay Municipal Utility District and the US EPA. July 2003.
5	2011, DeOreo, William. Analysis of Water Use in New Single Family Homes. By Aquacraft. For Salt Lake City Corporation and US EPA. July 20, 2011.
6	2011, Aquacraft. Albuquerque Single Family Water Use Efficiency and Retrofit Study. For Albuquerque Bernalillo County Water Utility Authority. December 1, 2011.
7	2008, Schultdt, Marc, and Debra Tachibana. Energy related Water Fixture Measurements: Securing the Baseline for Northwest Single Family Homes. 2008 ACEEE Summer Study on Energy Efficiency in Buildings.
8	2011, Lutz, Jim. "Water and Energy Wasted During Residential Shower Events: Findings from a Pilot Field Study of Hot Water Distribution Systems", Energy Analysis Department Lawrence Berkeley National Laboratory, September 2011.
9	2008, Water Conservation Program: ShowerStart Pilot Project White Paper, City of San Diego, CA.
10	2012, Pacific Gas and Electric Company, Work Paper PGECODHW113, Low Flow Showerhead and Thermostatic Shower Restriction Valve, Revision # 4, August 2012.
11	2008, "Simply & Cost Effectively Reducing Shower Based Warm-Up Waste: Increasing Convenience & Conservation by Attaching ShowerStart to Existing Showerheads", ShowerStart LLC.
12	2014, New York State Record of Revision to the TRM, Case 07-M-0548, June 19, 2014.

MEASURE CODE: RS-HWE-TRVA-V09-250101

5.4.9 Shower Timer

DESCRIPTION

Shower Timers are designed to make it easy for people to consistently take short showers, resulting in water and energy savings.

The shower timer provides a reminder to participants on length of their shower visually or auditorily.

This measure was developed to be applicable to the following program type: KITS, DI.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The shower timer should provide a reminder to participants to keep showers to a length of 5 minutes or less.

DEFINITION OF BASELINE EQUIPMENT

The baseline is no shower timer.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The deemed lifetime is 2 years. 1034

DEEMED MEASURE COST

For shower timers provided in Efficiency Kits, the actual program delivery costs should be utilized.

LOADSHAPE

Loadshape R03 - Residential Electric DHW

COINCIDENCE FACTOR

The coincidence factor for this measure is assumed to be 2.78%. 1035

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

ΔkWh = %Electric DHW * GPM * (L_base – L_timer) * Household * Days/yr * SPCD * UsageFactor * EPG_Electric

Where:

%Electric DHW = Percentage of DHW savings assumed to be electric

= 100 % for Electric = 0 % for Fossil Fuel

¹⁰³⁴ Estimate of persistence of behavior change instigated by the shower timer.

 $^{^{1035}}$ Calculated as follows: Assume 11% showers take place during peak hours (based on: Oreo et al, "The end uses of hot water in single family homes from flow trace analysis", 2001.). There are 65 days in the summer peak period, so the percentage of total annual aerator use in peak period is 0.11*65/365 = 1.96%. The number of hours of recovery during peak periods is therefore assumed to be 1.96% * 369 = 7.23 hours of recovery during peak period, where 369 equals the average annual electric DHW recovery hours for showerhead use including SF and MF homes with Direct Install and Retrofit/TOS measures. There are 260 hours in the peak period so the probability you will see savings during the peak period is 7.23/260 = 0.0278

= If unknown ¹⁰³⁶ , i	use the	following	table:
----------------------------------	---------	-----------	--------

			Location		
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown
Ameren ¹⁰³⁷	24%	25%	40%	43%	28%
ComEd ¹⁰³⁸	8	3%	1	.1%	9%
People's Gas ¹⁰³⁹	2.0%	2.0%	1.7%	2.1%	2.0%
Northshore Gas ¹⁰⁴⁰	1.3%	1.8%	10.0%	2.4%	2.3%
Nicor Gas ¹⁰⁴¹	1.3%	1.8%	10.0%	2.4%	2.3%
All DUs ¹⁰⁴²					25%

Note: If a measure is supported by a gas and electric utility through a joint program, and it is unknown whether the participant has a gas supply, the electric utility values in the table above should be used. If it is known that the participant has a gas supply, the values from the gas utility above should be applied.

GPM = Flow rate of showerhead as used

= Custom, to be determined through evaluation. If data is not available use 1.93¹⁰⁴³

L base = Number of minutes in shower without a shower timer

=7.8 minutes¹⁰⁴⁴

= Number of minutes in shower after shower timer L timer

= Custom, to be determined through evaluation. If data is not available use 5.79. 1045

Household = Number in household using timer

	Household ¹⁰⁴⁶			
Household Unit Type	IQ Participants	Non-IQ Participants	All Participants	
Single-Family - Deemed	2.76	2.62	2.67	
Multifamily - Deemed	2.3	2.09	2.18	
Household type unknown			2.52 ¹⁰⁴⁷	

¹⁰³⁶ Based on the average % electricity used for water heating in Unknown residential structure types across all utilities covered by the IL program. Residence types include: SF, SF LI, MF & MF LI. Utilities included: Ameren, ComEd, People's Gas, Northshore Gas & Nicor. Please see subsequent table and citations for specific sources.

¹⁰³⁷ Provided by AEG from the 2020 Market Potential Study completed for AIC, as well as AIC Income Qualified Initiative: 2021 Participant Survey Results Memo (February 1, 2022) p. 17.

¹⁰³⁸ Commonwealth Edison Residential Baseline Study (2020). p.4.4 & 4.19; Section 4-7 Water Heating. Prepared by Itron.

¹⁰³⁹ Implementation Contractors data from Peoples Gas and North Shore Gas for PY2022-2023.

¹⁰⁴¹ Comparable service area & customers to NSG, therefore using their survey data.

¹⁰⁴² For the weighted average calculations, please see the Analysis file. PGL, NSG, Nicor & gas customers were assumed to follow the provided split. ComEd total customers, minus overlap with PGL,NSG & Nicor, therefore electric only homes. Ameren is total customers minus Nicor.

¹⁰⁴³ Navigant Elementary Education GPY4 Evaluation Report, dated May 12, 2016. Average of all utilities.

¹⁰⁴⁴ Cadmus and Opinion Dynamics Showerhead and Faucet Aerator Meter Study Memorandum dated June 2013, directed to Michigan Evaluation Working Group. This study of 135 single and Multifamily homes in Michigan metered energy parameters for efficient showerhead and faucet aerators.

¹⁰⁴⁵ Navigant Elementary Education GPY4 Evaluation Report, dated May 12, 2016. Average of all utilities.

¹⁰⁴⁶ Assumptions are taken from the draft unadjusted 2024 Baseline Study evaluation data provided in 07/2024 by GDS Associates. 1047 Unknown is based on statewide weighted average of 69% single family and 31% multifamily, based on IL data from 2009 RECS Table HC2.9 Structural and Geographic Characteristics of Homes in Midwest Region, Divisions and States, 2009.

	Household ¹⁰⁴⁶		
Household Unit Type	IQ Participants	Non-IQ Participants	All Participants
Custom	Actual Occupancy or Number of Bedrooms ¹⁰⁴⁸		
)2vc/vr = 265.25			

Days/yr = 365.25

SPCD = Showers Per Capita Per Day

 $= 0.6^{1049}$

UsageFactor = How often each participant is using shower timer

=Custom, to be determined through evaluation. If data is not available use 0.34¹⁰⁵⁰

EPG_Electric = Energy per gallon of hot water supplied by electric

= (8.33 * 1.0 * (ShowerTemp - SupplyTemp)) / (RE electric * 3412)

= (8.33 * 1.0 * (101 - 50.7)) / (0.98 * 3412)

=0.125 kWh/gal

Where:

ShowerTemp = Assumed temperature of water

 $= 101^{\circ}F^{1051}$

SupplyTemp = Assumed temperature of water entering house

= 50.7°F 1052

Based on default assumptions provided above, the savings for a single family IQ home would be:

Secondary kWh Savings for Water Supply and Wastewater Treatment

The following savings should be included in the total savings for this measure, but should not be included in TRC tests to avoid double counting the economic benefit of water savings.

 Δ kWh_{water} = Δ Water (gallons) / 1,000,000 * E_{water total}

Where

E_{water total} = IL Total Water Energy Factor (kWh/Million Gallons) =5,010¹⁰⁵³

¹⁰⁴⁸ Bedrooms are suitable proxies for household occupancy, and may be preferable to actual occupancy due to turnover rates in residency and non-adult population impacts.

¹⁰⁴⁹ Cadmus and Opinion Dynamics Showerhead and Faucet Aerator Meter Study Memorandum dated June 2013, directed to Michigan Evaluation Working Group.

¹⁰⁵⁰ Navigant Elementary Education GPY4 Evaluation Report, dated May 12, 2016. Average of all utilities.

¹⁰⁵¹ Cadmus and Opinion Dynamics Showerhead and Faucet Aerator Meter Study Memorandum dated June 2013, directed to Michigan Evaluation Working Group.

¹⁰⁵² Table 4 in Chen, et. al., "Calculating Average Hot Water Mixes of Residential Plumbing Fixtures", June 2020, reports a value of 50.7°F for inlet water temperature for U.S. Census Division 3.

¹⁰⁵³ This factor include 2571 kWh/MG for water supply based on Illinois energy intensity data from a 2012 ISAWWA study and

Based on default assumptions provided above, the savings for a single family IQ home would be:

$$\Delta$$
Water (gallons) = GPM * (L_base - L_timer) * Household * Days/yr * SPCD * UsageFactor = 1.93 * (7.8 - 5.79) * 2.76 * 365.25 * 0.6 * 0.34 = 797.8 gallons
$$\Delta$$
kWh_{water} = 797.8/1,000,000 * 5010 = 4.0 kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh/Hours * CF$

Where:

ΔkWh = calculated value above. Note do not include the secondary savings in this calculation.

Hours = Annual electric DHW recovery hours for showerhead use

= (GPM_base * L_base * Household * SPCD * UsageFactor * 365.25) * 0.726 1054 / GPH

GPH = Gallons per hour recovery of electric water heater calculated for 69.3F temp rise (120-50.7), 98% recovery efficiency, and typical 4.5kW electric resistance storage tank.

= 26.1

CF = Coincidence Factor for electric load reduction

 $= 0.0278^{1055}$

Based on default assumptions provided above, the savings for a single family IQ home would be:

FOSSIL FUEL SAVINGS

ΔTherms = %FossilDHW * GPM * (L_base – L_timer) * Household * Days/yr * SPCD * UsageFactor

* EPG_Gas

%FossilDHW = Percentage of DHW savings assumed to be fossil fuel

= 100 % for Fossil Fuel

²⁴³⁹ kWh/MG for wastewater treatment based on national energy intensity use estimates. For more information please review Elevate Energy's 'IL TRM: Energy per Gallon Factor, May 2018 paper'.

^{1054 72.6%} is the proportion of hot 120F water mixed with 50.7F supply water to give 101F shower water.

¹⁰⁵⁵ Calculated as follows: Assume 11% showers take place during peak hours (based on: Oreo et al, "The end uses of hot water in single family homes from flow trace analysis", 2001.). There are 65 days in the summer peak period, so the percentage of total annual aerator use in peak period is 0.11*65/365 = 1.96%. The number of hours of recovery during peak periods is therefore assumed to be 1.96% * 369 = 7.23 hours of recovery during peak period where 369 equals the average annual electric DHW recovery hours for showerhead use including SF and MF homes with Direct Install and Retrofit/TOS measures. There are 260 hours in the peak period so the probability you will see savings during the peak period is 7.23/260 = 0.0278

- = 0 % for Electric
- = If unknown¹⁰⁵⁶, use the following table:

			Location		
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown
Ameren ¹⁰⁵⁷	76%	75%	60%	57%	72%
ComEd ¹⁰⁵⁸	9:	2%	8	9%	91%
People's Gas ¹⁰⁵⁹	97.9%	98.0%	98.3%	97.6%	97.8%
Northshore Gas ¹⁰⁶⁰	98.5%	98.2%	90.0%	97.6%	97.6%
Nicor Gas ¹⁰⁶¹	98.5%	98.2%	90.0%	97.6%	97.6%
All DUs ¹⁰⁶²					75%

<u>Note</u>: If a measure is supported by a gas and electric utility through a joint program, and it is unknown whether the participant has a gas supply, the electric utility values in the table above should be used. If it is known that the participant has a gas supply, the values from the gas utility above should be applied.

EPG_gas = Energy per gallon of Hot water supplied by gas

= (8.33 * 1.0 * (ShowerTemp - SupplyTemp)) / (RE_gas * 100,000)

= 0.00537 Therm/gal for SF homes

= 0.00625 Therm/gal for MF homes

RE_gas = Recovery efficiency of gas water heater

= 78% For SF homes 1063

= 67% For MF homes 1064

Use Multifamily if: Building has shared DHW.

100,000 = Converts Btus to Therms (btu/Therm)

_

¹⁰⁵⁶ Based on the average % electricity used for water heating in Unknown residential structure types across all utilities covered by the IL program. Residence types include: SF, SF LI, MF & MF LI. Utilities included: Ameren, ComEd, People's Gas, Northshore Gas & Nicor. Please see subsequent table and citations for specific sources.

¹⁰⁵⁷ Provided by AEG from the 2020 Market Potential Study completed for AIC, as well as AIC Income Qualified Initiative: 2021 Participant Survey Results Memo (February 1, 2022) p. 17.

¹⁰⁵⁸ Commonwealth Edison Residential Baseline Study (2020). p.4.4 & 4.19; Section 4-7 Water Heating. Prepared by Itron.

¹⁰⁵⁹ Residential Appliance Saturation Survey of natural gas for space heating and water heating (2021). Note, Multifamily customers have a residential billing rate code and responded on the survey that they live in an apartment or condominium in a building that has either 2-4 or 5+ units.

¹⁰⁶⁰ Ibid.

¹⁰⁶¹ Comparable service area & customers to NSG, therefore using their survey data.

¹⁰⁶² For the weighted average calculations, please see the Analysis file. PGL, NSG, Nicor & gas customers were assumed to follow the provided split. ComEd total customers, minus overlap with PGL,NSG & Nicor, therefore gas only homes. Ameren is total customers minus Nicor.

¹⁰⁶³ DOE Final Rule discusses Recovery Efficiency with an average around 0.76 for Gas Fired Storage Water heaters and 0.78 for standard efficiency gas fired tankless water heaters up to 0.95 for the highest efficiency gas fired condensing tankless water heaters. These numbers represent the range of new units however, not the range of existing units in stock. Review of AHRI Directory suggests range of recovery efficiency ratings for new Gas DHW units of 70-87%. Average of existing units is estimated at 78%.

¹⁰⁶⁴ Water heating in Multifamily buildings is often provided by a larger central boiler. This suggests that the average recovery efficiency is somewhere between a typical central boiler efficiency of 0.59 and the 0.75 for single family homes. An average efficiency of 0.67 is used for this analysis as a default for Multifamily buildings.

Other variables as defined above.

Based on default assumptions provided above, the savings for a single family IQ home would be:

WATER DESCRIPTIONS AND CALCULATION

$$\Delta$$
Water (gallons) = GPM * (L_base - L_timer) * Household * Days/yr * SPCD * UsageFactor Variables as defined above

Based on default assumptions provided above, the savings for a single family home would be:

$$\Delta$$
Water (gallons) = GPM * (L_base – L_timer) * Household * Days/yr * SPCD * UsageFactor
= 1.93 * (7.8 – 5.79) * 2.76 * 365.25 * 0.6 * 0.34
= 797.8 gallons

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-DHW-SHTM-V07-250101

5.4.10 Pool Covers

DESCRIPTION

This measure refers to the installation of covers on residential use pools that are heated with gas-fired equipment located either indoors or outdoors. By installing pool covers, the heating load on the pool boiler will be reduced by reducing the heat loss from the water to the environment and the amount of actual water lost due to evaporation (which then requires additional heated water to make up for it). An additional benefit to pool covers are the electricity savings from the reduced fresh water required to replace the evaporated water.

The main source of energy loss in pools is through evaporation. This is particularly true of outdoor pools where wind plays a larger role. The point of installing pool covers is threefold. First, it will reduce convective losses due to the wind by shielding the water surface. Second, it will insulate the water from the colder surrounding air. And third, it will reduce radiative losses to the night sky. In doing so, evaporative losses will also be minimized, and the boiler will not need to work as hard in replenishing the pool with hot water to keep the desired temperature.

This measure can be used for pools that (1) currently do not have pool covers, (2) have pool covers that are past the useful life of the existing cover, or (3) have pool covers that are past their warranty period and have failed.

This measure was developed to be applicable to the following program type: RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

For indoor pools, the efficient case is the installation of an indoor pool cover with a 5 year warranty on an indoor pool that is used all year.

For outdoor pools, the efficient case is the installation of an outdoor pool cover with a 5 year warranty on an outdoor pool that is used through the summer season.

DEFINITION OF BASELINE EQUIPMENT

For indoor pools, the base case is an uncovered indoor pool that operates all year.

For outdoor pools, the base case is an outdoor pool that is uncovered and is open through the summer season.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The useful life of this measure is assumed to be 6 years. 1065

DEEMED MEASURE COST

The table below shows the costs for the various options and cover sizes. Since this measure covers a mix of various sizes, the average cost of these options is taken to be the incremental measure cost. ¹⁰⁶⁶ Costs are per square foot.

Cover Size	Edge Style		
Cover Size	Hemmed (indoor)	Weighted (outdoor)	
1-299 sq. ft.	\$3.86	\$3.12	
300-999 sq. ft.	\$3.50	\$2.16	
Average	\$3.68	\$2.64	

LOADSHAPE

Loadshape R15 - Residential Pool Pumps

¹⁰⁶⁵ The effective useful life of a pool cover is typically one year longer than its warranty period. SolaPool Covers. Pool Covers Website, FAQ- "How long will my SolaPool cover blanket last?". Pool covers are typically offered with 3 and 5 year warranties with at least one company offering a 6 year warranty. Conversation with Trade Ally. Knorr Systems

¹⁰⁶⁶ Pool Cover Costs derived from three leading online realtors, see Pool Covers Costs.xlsx .

COINCIDENCE FACTOR

N/A

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

Secondary kWh Savings for Water Supply and Wastewater Treatment

The following savings should be included in the total savings for this measure, but should not be included in TRC tests to avoid double counting the economic benefit of water savings.

 $\Delta kWh_{water} = \Delta Water (gallons) / 1,000,000 * E_{water supply}$

Where

Ewater supply = Water Supply Energy Factor (kWh/Million Gallons) = 2,571¹⁰⁶⁷

For example:

For a 392 ft2 Indoor Swimming Pool:

ΔWater = WaterSavingFactor x Size of Pool

= 15.28 gal./ft2/year x 392 ft2

= 5,990 gal./year

 Δ kWhwater = Δ Water / 1,000,000 * Ewater total

= 5,990 gal./year / 1,000,000 * 2,571 kWh/million gallons

= 15.4 kWh/year

For a 392 ft2 Outdoor Swimming Pool:

 Δ Water = WaterSavingFactor x Size of Pool

= 8.94 gal./ft2/year x 392 ft2

= 3,504 gal./year

 Δ kWhwater = Δ Water / 1,000,000 * E_{water supply}

= 3,504 gal./year / 1,000,000 * 2,571 kWh/million gallons

= 9.0 kWh/year

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

FOSSIL FUEL SAVINGS

The calculations are based on modeling runs using RSPEC! Energy Smart Pools Software that was created by the U.S. Department of Energy. ¹⁰⁶⁸

¹⁰⁶⁷ This factor include 2571 kWh/MG for water supply based on Illinois energy intensity data from a 2012 ISAWWA study. For more information please review Elevate Energy's 'IL TRM: Energy per Gallon Factor, May 2018 paper'. Note since the water loss associated with this measure is due to evaporation and does not discharge into the wastewater system, only the water supply factor is used here.

¹⁰⁶⁸ Full method and supporting information found in reference document: IL TRM – Residential Pool Covers WorkPaper.docx. Note that the savings estimates are based upon Chicago weather data.

ΔTherms = SavingFactor x Size of Pool

Where

Savings factor = dependant on pool location and listed in table below: 1069

Location	Therm / sq-ft
Indoor	2.61
Outdoor	1.01

Size of Pool = Actual. If unknown assume 392 ft² 1070

WATER IMPACT DESCRIPTIONS AND CALCULATION

ΔWater (gallons) = WaterSavingFactor x Size of Pool

Where

WaterSavingFactor = Water savings for this measure dependant on pool location and listed in table below: 1071

Location	Annual Savings Gal / sq-ft	
Indoor	15.28	
Outdoor	8.94	

Size of Pool = 392 ft^2

DEEMED O&M COST ADJUSTMENT CALCULATION

There are no O&M cost adjustments for this measure.

MEASURE CODE: RS-HWE-PLCV-V02-240101

 $^{^{\}rm 1069}$ Calculations can be found in Residential Pool Covers.xlsx

¹⁰⁷⁰ The average size of an installed in-ground swimming poll is 14 ft x 28 ft, giving a surface area of 392 ft². https://www.homeadvisor.com/cost/swimming-pools-hot-tubs-and-saunas/inground-pool/> ¹⁰⁷¹ Ibid.

5.4.11 Drain Water Heat Recovery

DESCRIPTION

Drain Water Heat Recovery (DWHR) is a technology that captures waste heat in the drain line during a shower event, using the reclaimed heat to preheat cold water that is then delivered either to the shower or the water heater. The device can be installed in either an equal flow configuration (with preheated water being routed to both the water heater and the shower) or an unequal flow configuration (preheated water directed to either the water heater or shower). The energy harvested from a DWHR device is maximized in an equal flow configuration. It uses a non-regenerative heat exchanger to pre-heat the incoming cold fresh water with the outgoing warm drain water. It has been proven that DWHR devices only recover energy during simultaneous draws, ¹⁰⁷² i.e., showers, and that for energy savings purposes all other water draws can be ignored. Savings are calculated per drain water heat recovery unit. Other benefits include increased first-hour rating of water tank, improved comfort due to slower temperature degradation at run-out and reduction of coincident peak demand. ¹⁰⁷³

This measure was developed to be applicable to the following program types: RF, NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

Efficient equipment is a DWHR unit retrofitted to the main drain which includes outlets from showers, sinks and other fixtures too. Note, that the DWHR unit can either be installed in a vertical configuration or a horizontal configuration. Although, this measure covers both horizontal and vertical DWHR, 1074 the energy savings calculations focuses on vertical. Due to the lack of any moving parts, no maintenance is required for either types of DWHR units. Vertical units are said to comprise 95% of the market currently. 1075

The device can be installed in either an equal flow configuration or an unequal flow configuration. An equal flow installation is ideal with all the incoming cold water passing through the DWHR heat exchanger apparatus, after which it splits into cold water and inlet to water heater. Units should be installed in single-family homes and multifamily homes.

DEFINITION OF BASELINE EQUIPMENT

The baseline condition is a storage type water heater without DWHR devices in a residential application.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The measure life is assumed to be 30 years. 1076

DEEMED MEASURE COST

The incremental cost for this measure is \$744 per unit. 1077

LOADSHAPE

Load Shape R03 – Residential Electric DHW

¹⁰⁷² Charles Zaloum, John Gusdorf, and Anil Parekh; "Performance Evaluation of Drain Water Heat Recovery Technology at the Canadian Centre for Housing Technology", January 2007, accessed April 2020.

¹⁰⁷³ G.Proskiw, "Technology Profile: Residential Greywater Heat Recovery Systems", June 1998, accessed April 2020.

¹⁰⁷⁴ 2019 Title 24, Part 6 CASE Report. "Drain Water Heat Recovery – Final Report."

¹⁰⁷⁵ Ibid

¹⁰⁷⁶ Ibid

^{1077 2019} Title 24, Part 6 CASE Report. "Drain Water Heat Recovery – Final Report.", average of 4 ft and 5 ft units. Page 21.

COINCIDENCE FACTOR

The coincidence factor for this measure is assumed to be 2.78%. 1078

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

For electric water heating, annual energy savings per unit are calculated through the following formula:

$$\Delta kWh = \frac{(ShowerTemp - SupplyTemp) \times 8.33\frac{BTU}{gal\cdot^{\circ}F} \times GPM \times T_{shower-length} \times Household \times N_{units} \times SPCD \times 365.25\frac{days}{yr} \times SF}{3412\frac{BTU}{kWh} \times RE}$$

Where:

ShowerTemp = assumed water temperature during shower

 $= 101^{\circ}F^{1079}$

SupplyTemp = assumed temperature of cold water entering house

 $= 50.7^{\circ}F^{1080}$

8.33 = Energy required (BTU) to heat one gallon of water by one degree Fahrenheit

GPM = gallon per minute, flow rate of showerhead

= 2.35 Gallon/minute¹⁰⁸¹

 $T_{\text{shower-length}}$ = shower length in minutes

 $= 7.8 \text{ minutes}^{1082}$

Household = average number of people per household

	Household ¹⁰⁸³		
Household Unit Type	IQ Participants	Non-IQ Participants	All Participants
Single-Family - Deemed	2.76	2.62	2.67
Multifamily - Deemed	2.3	2.09	2.18
Household type unknown			2.52 ¹⁰⁸⁴

Page **315** of **533**

¹⁰⁷⁸ Assume coincidence factor for DWHR units is the same with that of low flow showerheads (see Illinois Statewide Technical Reference Manual for Energy Efficiency, section 5.4.5, low flow showerheads)

¹⁰⁷⁹ Cadmus and Opinion Dynamics Showerhead and Faucet Aerator Meter Study Memorandum dated June 2013, directed to Michigan Evaluation Working Group.

¹⁰⁸⁰ US DOE Building America Program, Building America Analysis Spreadsheet (for Chicago, IL), Office of Energy Efficiency & Renewable Energy.

¹⁰⁸¹ Current Illinois Statewide Technical Reference Manual for Energy Efficiency, section 5.4.5, low flow showerheads, for Retrofit and New Construction

¹⁰⁸² Cadmus and Opinion Dynamics Showerhead and Faucet Aerator Meter Study Memorandum dated June 2013, directed to Michigan Evaluation Working Group. This study of 135 single and Multifamily homes in Michigan metered energy parameters for efficient showerhead and faucet aerators.

¹⁰⁸³ Assumptions are taken from the draft unadjusted 2024 Baseline Study evaluation data provided in 07/2024 by GDS Associates. ¹⁰⁸⁴ Unknown is based on statewide weighted average of 69% single family and 31% multifamily, based on IL data from 2009 RECS Table HC2.9 Structural and Geographic Characteristics of Homes in Midwest Region, Divisions and States, 2009.

	Household ¹⁰⁸³		
Household Unit Type	IQ Participants	Non-IQ Participants	All Participants
Custom	Actual Occupancy or Number of Bedrooms 1085		

Nunits = Number of units in a multifamily building with drains connected to the DWHR unit

Household Unit	Nunits
Single-Family	1
Multi-Family	1 or Actual

SPCD = Showers Per Capita Per Day

 $= 0.6^{1086}$

365.25 = Days per year, on average.

SF = Water heating energy savings factor

 $= 0.466^{1087}$

3,412 = Conversion factor, 1 kWh equals 3,412 BTU

RE = Recovery efficiency of electric water heater:

= Actual or:

= 0.98¹⁰⁸⁸ for Electric Resistance

= 3.51¹⁰⁸⁹ for Electric HPWH

For example, for electric water heating, DHWR energy savings for a single family IQ home can be calculated as follows:

$$\Delta$$
kWh = ((101 – 50.7) * 8.33 * 2.35 * 7.8 * 2.76 * 1 * 0.6 * 365.25 * 0.466) / (3412 * 0.98)
= 647.4kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh/Hours * CF$

Where:

 Δ kWh = calculated value from above.

Hours = Annual electric DHW recovery hours for showerhead use

= ((GPM * T_{shower-length}) * N_{persons} * SPCD * 365.25) * 0.726 ¹⁰⁹⁰/ GPH

¹⁰⁸⁵ Bedrooms are suitable proxies for household occupancy, and may be preferable to actual occupancy due to turnover rates in residency and non-adult population impacts.

¹⁰⁸⁶ Cadmus and Opinion Dynamics Showerhead and Faucet Aerator Meter Study Memorandum dated June 2013, directed to Michigan Evaluation Working Group.

¹⁰⁸⁷ Codes and Standards Enhancement (CASE) Initiative, 2019 California Building Energy Efficiency Standards, Title 24, Part 6 Report. "Drain Water Heat Recovery - Final Report." July 2017, pg 17.

¹⁰⁸⁸ Review of AHRI database shows that electric water heaters have a recovery efficiency of 98%.

¹⁰⁸⁹ Review of AHRI database shows that Electric Heat Pump Water Heaters support this recovery efficiency. For the raw data, and calculations, please see AHRI_RES Water Heaters 2022.xlsx.

¹⁰⁹⁰ 72.6% is the proportion of hot 120F water mixed with 50.7F supply water to give 101F shower water.

= 286 for SF

= 234 for MF

Use Multifamily if: Building meets utility's definition for multifamily

GPH = Gallons per hour recovery of electric water heater calculated for 69.3°F temp rise (120-

50.7), 98% recovery efficiency, and typical 4.5kW electric resistance storage tank.

= 26.1

CF = Coincidence Factor for electric load reduction

= 0.0278

For example, When a DHWR unit is installed in a Single Family home, summer coincident peak demand savings can be calculated as follows:

 $\Delta kW = (647.4 / 286) * 0.0278$

= 0.0629 kW

FOSSIL FUEL SAVINGS

For gas water heating, annual energy savings per unit are calculated through the following formula:

$$\Delta therms \ = \ \frac{(ShowerTemp-SupplyTemp) \times 8.33 \frac{BTU}{gal.^oF} \times GPM \times T_{shower-length} \times N_{persons} \times N_{units} \times SPCD \times 365.25 \frac{days}{yr} \times SF}{100,000 \frac{BTU}{therm} \times RE}$$

Where:

100,000 = Conversion factor, 1 therm equals 100,000 BTU

RE = efficiency of gas water heater: 79% for single family¹⁰⁹¹ and 67% for multi family¹⁰⁹²

For example, for gas water heating, DHWR energy savings for single family IQ home can be calculated as follows:

$$\Delta$$
Therms= ((101 – 50.7) * 8.33 * 2.35 * 7.8 * 2.76 * 1 * 0.6 * 365.25 * 0.466) / (100000 * 0.79) = 27.4 therms

WATER AND OTHER NON-ENERGY IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-DHW-DWHR-V05-250101

¹⁰⁹¹ DOE Final Rule discusses Recovery Efficiency with an average around 0.76 for Gas Fired Storage Water heaters and 0.78 for standard efficiency gas fired tankless water heaters up to 0.95 for the highest efficiency gas fired condensing tankless water heaters. These numbers represent the range of new units however, not the range of existing units in stock. Review of AHRI Directory suggests range of recovery efficiency ratings for new Gas DHW units of 70-87%. Average of existing units is estimated at 79%.

¹⁰⁹² Water heating in Multifamily buildings is often provided by a larger central boiler. This suggests that the average recovery efficiency is somewhere between a typical central boiler efficiency of 0.59 and the 0.75 for single family homes. An average efficiency of 0.67 is used for this analysis as a default for Multifamily buildings.

5.4.12 Recirculating Pump Controls

DESCRIPTION

Demand control recirculation pumps seek to reduce inefficiency by combining control via temperature and demand inputs, whereby the controller will not activate the recirculation pump unless both (a) the recirculation loop return water has dropped below a prescribed temperature (e.g., 100°F) and (b) a Central Domestic Hot Water (CDHW) demand is sensed as water flow through the CDHW system.

This measure was developed to be applicable to the following program types: TOS, RF, NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

Re-circulating pump shall cycle on based on (a) the recirculation loop return water dropping below a prescribed temperature (e.g. 100°F) and (b) a CDHW demand is sensed as water flow through the CDHW system.

There are three alternative technologies that are considered in this characterization:

- Timer-based. This technology allows the user to program a schedule to perform recirculation during specific windows throughout the day.
- Aquastat-controlled. This type of control calls for recirculation when the water temperature at one point in the system falls below a certain pre-programmed setpoint.
- On-Demand. This technology senses the demand as water flow through the CDHW system. These types of system are most adequate on small central water heating systems.

DEFINITION OF BASELINE EQUIPMENT

The base case for this measure category is existing, uncontrolled recirculation pumps on either electric or gas-fired Central Domestic Hot Water systems (CDHW).

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The effective useful life is 15 years. 1093

DEEMED MEASURE COST

The average cost of the demand controller circulation kit is \$150 with an installation cost of \$72 for a total measure cost of \$222.1094

LOADSHAPE

Loadshape R03 - Residential Electric DHW

COINCIDENCE FACTOR

N/A

¹⁰⁹³ Benningfield Group. (2009). *PY 2009 Monitoring Report: Demand Control for Multifamily Central Domestic Hot Water.* Folsom, CA: Prepared for Southern California Gas Company, October 30, 2009.

¹⁰⁹⁴ The incremental cost is sourced as a weighted average of control types, as sourced from the Northwest Power and Conservation Council, Regional Technical Forum, Unit Energy Savings Measures, Circulator Pump, December 5, 2023 ('ComResCirculatorPumps_v4_0.xlsm')

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

$$\Delta kWh = \Delta kWh_{heater} * + \Delta kWh_{pump}$$

$$\Delta kWh_{heater} = \frac{(T_{out} - T_{in}) * GPD * HouseHold * 365.25 * \gamma Water * 1 * \left(\frac{1}{UEF_{heater}}\right)}{3412} * SF$$

Where:

T_{OUT} = Tank temperature

= 125°F

T_{IN} = Incoming water temperature from well or municiple system

= 50.7°F 1095

GPD = Gallons hot water per day per person

= 17.6 gallons per day¹⁰⁹⁶

Household = Average number of people per household

	Household ¹⁰⁹⁷			
Household Unit Type	IQ Participants	Non-IQ Participants	All Participants	
Single-Family - Deemed	2.76	2.62	2.67	
Multifamily - Deemed	2.3	2.09	2.18	
Household type unknown			2.52 ¹⁰⁹⁸	
Custom	Actual Occupancy or Number of Bedrooms ¹⁰⁹⁹			

yWater = Specific weight capacity of water (lb/gal)

= 8.33 lbs/gal

1 = Specific heat of water (Btu/lb.°F)

UEF_{heater} = Rated efficiency of water heater expressed as Uniform Energy Factor (UEF);

Note, the same draw pattern (very small, low, medium and high draw) should be used for

both baseline and efficient units.

¹⁰⁹⁵ Table 4 in Chen, et. al., "Calculating Average Hot Water Mixes of Residential Plumbing Fixtures", June 2020, reports a value of 50.7°F for inlet water temperature for U.S. Census Division 3.

¹⁰⁹⁶ Deoreo, B., and P. Mayer. Residential End Uses of Water Study Update. Forthcoming. ©2015 Water Research Foundation. Reprinted With Permission.

¹⁰⁹⁷ Assumptions are taken from the draft unadjusted 2024 Baseline Study evaluation data provided in 07/2024 by GDS Associates. ¹⁰⁹⁸ Unknown is based on statewide weighted average of 69% single family and 31% multifamily, based on IL data from 2009 RECS Table HC2.9 Structural and Geographic Characteristics of Homes in Midwest Region, Divisions and States, 2009.

¹⁰⁹⁹ Bedrooms are suitable proxies for household occupancy, and may be preferable to actual occupancy due to turnover rates in residency and non-adult population impacts.

Equipment Type	Sub Category	Draw Pattern	Federal Standard – Uniform Energy Factor ¹¹⁰⁰
	≤55 gallon tanks	Very small	UEF = 0.8808 – (0.0008 * Rated Storage Volume in Gallons)
		Low	UEF = 0.9254 – (0.0003 * Rated Storage Volume in Gallons)
Decidential Floatric Storage		Medium	UEF = 0.9307 – (0.0002 * Rated Storage Volume in Gallons)
Residential Electric Storage Water Heaters		High	UEF = 0.9349 – (0.0001 * Rated Storage Volume in Gallons)
valer heaters ≤ 75,000 Btu/h		Very small	UEF = 1.9236 – (0.0011 * Rated Storage Volume in Gallons)
≤ 75,000 Btu/11	>55 gallon and ≤120 gallon tanks ¹¹⁰¹	Low	UEF = 2.0440 – (0.0011 * Rated Storage Volume in Gallons)
		Medium	UEF = 2.1171 – (0.0011 * Rated Storage Volume in Gallons)
		High	UEF = 2.2418 – (0.0011 * Rated Storage Volume in Gallons)
Residential Electric Instantaneous	≤12kW and ≤2 gal	All other	UEF = 0.91
Water Heaters	SIZKW dilu SZ gai	High	UEF = 0.92
Residential-duty Commercial	> 12kW and ≤58.6 kW		
Electric Instantaneous Water Heaters	and ≤2 gal	All	UEF = 0.80

Draw patterns are based on first hour rating (gallons) for storage tanks and maximum flow (GPM) for instantaneous as shown below:¹¹⁰²

Storage Water Heater Draw Pattern		
Draw Pattern First Hour Rating (gallons)		
Very Small	≥ 0 and < 18	
Low	≥ 18 and < 51	
Medium	≥ 51 and < 75	
High	≥ 75	

Instantaneous Water Heater Draw Pattern		
Draw Pattern	Max GPM	
Very Small	≥ 0 and < 1.7	
Low	≥ 1.7 and < 2.8	
Medium	≥ 2.8 and < 4	
High	≥ 4	

3412 = Converts Btu to kWh

SF = Savings factor based on Building type

Building Type	Savings Factor ¹¹⁰³
Single-Family -	9%
Deemed	9%
Multifamily -	00/
Deemed	9%

¹¹⁰⁰ All Residential sized Federal Standards are from DOE Standard 10 CFR 430, Residential-Duty and Commercial Federal Standard are from DOE Standard 10 CFR 431.

 $^{^{1101}}$ It is assumed that tanks <75,000Btu/h and >55 gallons will not be eligible measures due to the high baseline.

¹¹⁰² Definitions provided in 10 CFR 430, Subpart B, Appendix E, Section 5.4.1.

¹¹⁰³ The savings factor from ACEEE Hot Water Forum. Control Methods, Code Requirements and Energy Savings. 9% is assumed to be the savings factor for multifamily and Single-Family buildings.

$$\Delta kWh_{pump} = \frac{HP_{recirculating}*0.75*(8760 - Pump_{hrs\ controlled})}{Motor_{eff}}$$

Where:

HP_{recirculating} = the size of the recirculating pump in HP

= Actual. If unknown, default to 1/12 hp¹¹⁰⁴

0.75 = Conversion factor kW/HP

8760 = Hours of operation of uncontrolled recirculating pump

Pump_{hrs controlled} = The table below corresponds to the control types for residences

Hours of operation ¹¹⁰⁵		
Timer	7,300	
Aquastat-Controlled	1,095	
On Demand	61	

Motor_{eff} = The efficiency of the pump motor

= Actual, if unknown, default to 70%¹¹⁰⁶

FOSSIL FUEL SAVINGS

Natural gas energy savings are calculated for natural gas storage water heaters per the equations given below.

$$\Delta Therms = \frac{(T_{out} - T_{in}) * HotWaterUse_{Gallon} * \gamma Water * 1 * \left(\frac{1}{EF_{Gas}}\right)}{100,000} * SF$$

Where:

100,000 = Converts Btu to Therms

EF_{gas} = Rated efficiency of baseline water heater (expressed as Uniform Energy Factor (UEF) or

Thermal Efficiency as provided below).

Use actual or the minimum efficiency from the Federal Standard

Equipment Type	Sub Category	Draw Pattern	Federal Standard – Uniform Energy Factor ¹¹⁰⁷
		Very small	UEF = 0.3456 – (0.0020 * Rated Storage Volume in Gallons)
		Low	UEF = 0.5982 – (0.0019 * Rated Storage Volume in Gallons)
Residential	≤55 gallon tanks	Medium	UEF = 0.6483 – (0.0017 * Rated Storage Volume in Gallons)
	Gas Storage Water Heaters ≤75,000 Btu/h >55 gallon and ≤100 gallon tanks	High	UEF = 0.6920 – (0.0013 * Rated Storage Volume in Gallons)
		Very small	UEF = 0.6470 – (0.0006 * Rated Storage Volume in Gallons)
≤/3,000 Btu/II		Low	UEF = 0.7689 – (0.0005 * Rated Storage Volume in Gallons)
		Medium	UEF = 0.7897 – (0.0004 * Rated Storage Volume in Gallons)
		High	UEF = 0.8072 – (0.0003 * Rated Storage Volume in Gallons)

¹¹⁰⁴ DOE, Circulator Pump Technical Support Document, 2022 (2016-BT-STD-0004-0121). Circulator Pump Breakdowns by Nominal Horsepower and Sector for each Application. It was determined that 95 percent of hot water recirculation pumps are 1/12 hp or less.

¹¹⁰⁵ DOE, Circulator Pump Technical Support Document, 2022 (2016-BT-STD-0004-0121)DOE

¹¹⁰⁶ Fractional horsepower motors that are 1/12 hp or greater and less than 1 hp are not covered under NEMA design standards must have a minimum motor efficiency of 70 percent when rated in accordance with DOE 10 CFR 431.

¹¹⁰⁷ All Residential sized Federal Standards are from DOE Standard 10 CFR 430, Residential-Duty and Commercial Federal Standard are from DOE Standard 10 CFR 431.

Equipment Type	Sub Category	Draw Pattern	Federal Standard – Uniform Energy Factor ¹¹⁰⁷
Residential-duty Commercial	≤120 gallon tanks	Very small	UEF = 0.2674 – (0.0009 * Rated Storage Volume in Gallons)
High Capacity Storage Gas-Fired		Low	UEF = 0.5362 – (0.0012 * Rated Storage Volume in Gallons)
Storage Water Heaters > 75,000		Medium	UEF = 0.6002 – (0.0011 * Rated Storage Volume in Gallons)
Btu/h		High	UEF = 0.6597 – (0.0009 * Rated Storage Volume in Gallons)
Commercial Gas Storage Water Heaters >75,000 Btu/h and ≤155,000 Btu/h Commercial Gas Storage Water Heaters >155,000 Btu/h	>120 gallon tanks	All	80% E _{thermal} , Standby Losses = (Q/800 + 110VRated Storage Volume in Gallons)
Residential Gas Instantaneous	≤2 gal	Very low	UEF = 0.80
Water Heaters ≤ 200,000 Btu/h		All other	UEF = 0.81
Commercial Gas Instantaneous	<10 gal	All	80% Ethermal
Water Heaters > 200,000 Btu/h	≥10 gal	All	78% E _{thermal}

Draw patterns are based on first hour rating (gallons) for storage tanks and maximum flow (GPM) for instantaneous as shown below: 1108

Storage Water Heater Draw Pattern			
Draw Pattern	First Hour Rating (gallons)		
Very Small	≥ 0 and < 18		
Low	≥ 18 and < 51		
Medium	≥ 51 and < 75		
High	≥ 75		

Instantaneous Water Heater Draw Pattern		
Draw Pattern	Max GPM	
Very Small	≥ 0 and < 1.7	
Low	≥ 1.7 and < 2.8	
Medium	≥ 2.8 and < 4	

SF = Savings factor based on Building type

Building Type	Savings Factor ¹¹⁰⁹
Single-Family - Deemed	9%
Multifamily - Deemed	9%

 $^{^{1108}}$ Definitions provided in 10 CFR 430, Subpart B, Appendix E, Section 5.4.1.

¹¹⁰⁹ The savings factor from ACEEE Hot Water Forum. Control Methods, Code Requirements and Energy Savings. 9% is assumed to be the savings factor for multifamily and Single-Family buildings.

WATER AND OTHER NON-ENERGY IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-HWE-CDHW-V02-250101

5.4.13 Auto-Diverting Tub Spout System

DESCRIPTION

This measure consists of replacing existing tub spouts and showerheads with an automatically diverting tub spout and showerhead system with a thermostatic restrictor shower valve between the existing shower arm and showerhead. When the water temperature reaches a set point (generally 95°F), the thermostatic restrictor valve will engage the anti-leak diverter. The water will divert to a showerhead with a normally closed valve that will prevent the hot water from going down the drain prior to the user entering the shower, thereby eliminating behavioral waste and tub spout leakage waste.

This measure was developed to be applicable to the following program types: RF, NC, DI, KITS. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be anti-leak, automatically diverting tub spout system with thermostatic restrictor technology installed on a residential shower arm and showerhead with a standard or low-flow showerhead.

DEFINITION OF BASELINE EQUIPMENT

The baseline condition is a residential tub spout with standard diverter, no thermostatic restrictor valve, and a standard showerhead rated at 2.0 GPM or greater.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 10 years. 1110

DEEMED MEASURE COST

For the full tub spout with TSV and showerhead, the incremental cost of the measure should be the actual program cost (including labor if applicable), or \$117.66¹¹¹¹ plus \$40¹¹¹² labor if applicable.

If just the tub spout is installed (i.e., reuse existing showerhead), the incremental cost of the measure is 66.90 plus 20^{1113} labor.

LOADSHAPE

Loadshape R03 - Residential Electric DHW

COINCIDENCE FACTOR

The coincidence factor for this measure is assumed to be 1.69% 1114

¹¹¹⁰ Measure life is assumed to be consistent with 5.4.5 Low Flow Showerheads.

¹¹¹¹ Average cost from online research at Lowes.com, HomeDepot.com, and Menards.com on 5/2/2024.

¹¹¹² Estimate for contractor installation time. Based on 2X cost for thermostatic restrictor shower valve installation in TRM 5.4.8 (1X for showerhead / TSV install, 1X for tub spout).

¹¹¹³ Estimate for contractor installation time. Based on cost for thermostatic restrictor shower valve installation in TRM 5.4.8.

 $^{^{1114}}$ Calculated as follows: Assume 11% showers take place during peak hours (based on: Oreo et al, "The end uses of hot water in single family homes from flow trace analysis", 2001.). There are 65 days in the summer peak period, so the percentage of total annual use in peak period is 0.11*65/365 = 1.96%. The number of hours of recovery during peak periods is therefore assumed to be 1.96% * 223.7 = 4.38 hours of recovery during peak period, where 223.7 equals the average annual electric DHW recovery hours for showerhead use. There are 260 hours in the peak period so the probability you will see savings during the peak period is 4.38/260 = 0.0169

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

ΔWater (gallons) = Showerhead Behavioral Waste + Tub Spout Behavioral Waste

+ Diverter Waste + Low Flow Showerhead Savings

Showerhead Behavioral Waste = %WUE_{SH} * GPM_base * L_showerdevice * SPCD * 365.25 *

Household / SPH

Tub Spout Behavioral Waste = %WUE_{TS} * GPM_spout * L_showerdevice * SPCD * 365.25 *

Household / SPH

Diverter Waste = DLR * L base * SPCD * 365.25 * Household / SPH

Low Flow Showerhead Savings = (GPM_base * L_base - GPM_low * L_low) * SPCD * 365.25 *

Household / SPH

ΔkWh = %ElectricDHW * ΔWater (gallons) * EPG electric * ISR

Where:

%WUE_{SH} = % of warm up events for showerhead

 $=60\%^{1115}$

%WUE_{TS} = % of warm up events for tub spout

= 40%1116

GPM_spout = Flow rate of the tub spout

 $= 5.0 \text{ GPM}^{1117}$

GPM base = Flow rate of the basecase showerhead, or actual if available

Program	GPM	
Direct-install, device only	2.24 ¹¹¹⁸	
New Construction or direct	Rated or actual flow	
install of device and low	of program-installed	
flow showerhead	showerhead	
Retrofit or TOS	2.35 ¹¹¹⁹	

GPM_low

= As-used flow rate of the low-flow showerhead, which may, as a result of measurements of program evaulations deviate from rated flows, see table below¹¹²⁰:

¹¹¹⁵ Arkansas Technical Reference Manual, Version 9.1, pg. 162. https://apsc.arkansas.gov/programs-initiatives-activities/energy-efficiency/

¹¹¹⁶ Ibid.

¹¹¹⁷ Ibid.

¹¹¹⁸ Based on measurements conducted from June 2013 to January 2014 by Franklin Energy. Over 300 residential sites in the Chicago area were tested.

¹¹¹⁹ Representative value from sources 1, 2, 4, 5, 6 and 7 (See Source Table at end of measure section) adjusted slightly upward to account for program participation which is expected to target customers with existing higher flow devices rather than those with existing low flow devices.

¹¹²⁰ Note that actual values may be either a) program-specific minimum flow rate, or b) program-specific evaluation-based

L showerdevice = Hot water waste time avoided due to thermostatic restrictor valve

 $= 0.89 \text{ minutes}^{1121}$

SPCD = Showers Per Capita Per Day

 $= 0.6^{1122}$

365.25 = Days per year, on average

Household = Average number of people per household

	11				
	Household ¹¹²³				
Household Unit Type	IO Doubicinous	Non-IQ	All Participants		
	IQ Participants	Participants			
Single-Family - Deemed	2.76	2.62	2.67		
Multifamily - Deemed	2.3	2.09	2.18		
Household type unknown			2.52 ¹¹²⁴		
Custom	Actual Occupancy or Number of Bedrooms ¹¹²⁵				

Use Multifamily if: Building meets utility's definition for multifamily

SPH = Showerheads Per Household so that per-showerhead savings fractions can be Determined

Household Type	SPH
Single-Family	1.79 ¹¹²⁶
Multifamily	1.3 ¹¹²⁷
Household type unknown	1.64 ¹¹²⁸
Custom	Actual

Use Multifamily if: Building meets utility's definition for multifamily

DLR = Diverter leakage rate, gallons per minute

 $= 0.8 \text{ GPM}^{1129}$

L base = Shower length in minutes with baseline showerhead

value of actual effective flow-rate due to increased duration or temperatures. The latter increases in likelihood as the rated flow drops and may become significant at or below rated flows of 1.5 GPM. The impact can be viewed as the inverse of the throttling described in the footnote for baseline flowrate.

¹¹²¹ Average of the following sources: ShowerStart LLC survey; "Identifying, Quantifying and Reducing Behavioral Waste in the Shower: Exploring the Savings Potential of ShowerStart", City of San Diego Water Department survey; "Water Conservation Program: ShowerStart Pilot Project White Paper", and PG&E Work Paper PGECODHW113.

¹¹²² Cadmus and Opinion Dynamics Showerhead and Faucet Aerator Meter Study Memorandum dated June 2013, directed to Michigan Evaluation Working Group.

¹¹²³ Assumptions are taken from the draft unadjusted 2024 Baseline Study evaluation data provided in 07/2024 by GDS Associates.

¹¹²⁴ Unknown is based on statewide weighted average of 69% single family and 31% multifamily, based on IL data from 2009 RECS Table HC2.9 Structural and Geographic Characteristics of Homes in Midwest Region, Divisions and States, 2009.

¹¹²⁵ Bedrooms are suitable proxies for household occupancy, and may be preferable to actual occupancy due to turnover rates in residency and non-adult population impacts.

 $^{^{1126}}$ Based on findings from a 2009 ComEd residential survey of 140 sites, provided by Cadmus.

¹¹²⁸ Unknown is based on statewide weighted average of 69% single family and 31% multifamily, based on IL data from 2009 RECS Table HC2.9 Structural and Geographic Characteristics of Homes in Midwest Region, Divisions and States, 2009.

¹¹²⁹ Arkansas Technical Reference Manual, Version 9.1, pg. 162. https://apsc.arkansas.gov/programs-initiatives-activities/energy-efficiency/

 $= 7.8 \text{ minutes}^{1130}$

L_low = Shower length in minutes with low-flow showerhead

= 7.8 minutes 1131

%ElectricDHW = Percentage of DHW savings assumed to be electric

= 100% for Electric

= 0% for Fossil Fuel

= If unknown¹¹³², use the following table:

	Location				
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown
Ameren ¹¹³³	24%	25%	40%	43%	28%
ComEd ¹¹³⁴	8%		11%		9%
People's Gas ¹¹³⁵	2.0%	2.0%	1.7%	2.1%	2.0%
Northshore Gas ¹¹³⁶	1.3%	1.8%	10.0%	2.4%	2.3%
Nicor Gas ¹¹³⁷	1.3%	1.8%	10.0%	2.4%	2.3%
All DUs ¹¹³⁸					25%

<u>Note</u>: If a measure is supported by a gas and electric utility through a joint program, and it is unknown whether the participant has a gas supply, the electric utility values in the table above should be used. If it is known that the participant has a gas supply, the values from the gas utility above should be applied.

EPG_electric = Energy per gallon of hot water supplied by electric

= (8.33 * 1.0 * (ShowerTemp - SupplyTemp)) / (RE_electric * 3,412)

= (8.33 * 1.0 * (101 - 50.7)) / (0.98 * 3,412)

= 0.125 kWh/gal

8.33 = Specific weight of water (lbs/gallon)

1.0 = Heat Capacity of water (btu/lb-°)

ShowerTemp = Assumed temperature of water

¹¹³² Based on the average % electricity used for water heating in Unknown residential structure types across all utilities covered by the IL program. Residence types include: SF, SF LI, MF & MF LI. Utilities included: Ameren, ComEd, People's Gas, Northshore Gas & Nicor. Please see subsequent table and citations for specific sources.

¹¹³⁷ Comparable service area & customers to NSG, therefore using their survey data.

¹¹³⁰ Cadmus and Opinion Dynamics Showerhead and Faucet Aerator Meter Study Memorandum dated June 2013, directed to Michigan Evaluation Working Group. This study of 135 single and Multifamily homes in Michigan metered energy parameters for efficient showerhead and faucet aerators.

¹¹³¹ Ibid.

¹¹³³ Provided by AEG from the 2020 Market Potential Study completed for AIC, as well as AIC Income Qualified Initiative: 2021 Participant Survey Results Memo (February 1, 2022) p. 17.

¹¹³⁴ Commonwealth Edison Residential Baseline Study (2020). p.4.4 & 4.19; Section 4-7 Water Heating. Prepared by Itron.

 $^{^{1135}}$ Implementation Contractors data from Peoples Gas and North Shore Gas for PY2022-2023.

¹¹³⁶ Ibid.

¹¹³⁸ For the weighted average calculations, please see the Analysis file. PGL, NSG, Nicor & gas customers were assumed to follow the provided split. ComEd total customers, minus overlap with PGL,NSG & Nicor, therefore electric only homes. Ameren is total customers minus Nicor.

= 101°F 1139

SupplyTemp = Assumed temperature of water entering house

= 50.7°F 1140

RE_electric = Recovery efficiency of electric water heater

= 98% 1141

3412 = Converts Btu to kWh (btu/kWh)

ISR = In service rate

Selection	ISR
Direct Install - Single Family	0.98 ¹¹⁴²
Direct Install – Multi Family	0.95 ¹¹⁴³
Efficiency Kits	To be determined through evaluation

Use Multifamily if: Building meets utility's definition for multifamily

Secondary kWh Savings for Water Supply and Wastewater Treatment

The following savings should be included in the total savings for this measure, but should not be included in TRC tests to avoid double counting the economic benefit of water savings.

 $\Delta kWh_{water} = \Delta Water (gallons) / 1,000,000 * E_{water total}$

Where

E_{water total} = IL Total Water Energy Factor (kWh/Million Gallons)

 $= 5.010^{1144}$

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh/Hours * CF$

Where:

ΔkWh = calculated value above. Note do not include the secondary savings in this calculation.

Hours = Annual electric DHW recovery hours for showerhead use

= ((GPM_base * L_base) * Household * SPCD * 365.25) * 0.726¹¹⁴⁵ / GPH

GPH = Gallons per hour recovery of electric water heater calculated for 69.3°F temp rise (120-50.7),

¹¹³⁹ Cadmus and Opinion Dynamics Showerhead and Faucet Aerator Meter Study Memorandum dated June 2013, directed to Michigan Evaluation Working Group.

¹¹⁴⁰ Table 4 in Chen, et. al., "Calculating Average Hot Water Mixes of Residential Plumbing Fixtures", June 2020, reports a value of 50.7°F for inlet water temperature for U.S. Census Division 3.

¹¹⁴¹ Electric water heaters have recovery efficiency of 98%.

¹¹⁴² Deemed values are from ComEd Energy Efficiency/ Demand Response Plan: Plan Year 2 (6/1/2009-5/31/2010) Evaluation Report: All Electric Single Family Home Energy Performance Tune-Up Program Table 3-8. Alternative ISRs may be developed for program delivery methods based on evaluation results.

¹¹⁴³ Navigant, ComEd-Nicor Gas EPY4/GPY1 Multifamily Home Energy Savings Program Evaluation Report FINAL 2013-06-05 ¹¹⁴⁴ This factor includes 2571 kWh/MG for water supply based on Illinois energy intensity data from a 2012 ISAWWA study and 2439 kWh/MG for wastewater treatment based on national energy intensity use estimates. For more information please review Elevate Energy's 'IL TRM: Energy per Gallon Factor, May 2018 paper'.

¹¹⁴⁵ 72.6% is the proportion of hot 120F water mixed with 50.7F supply water to give 101F shower water.

98% recovery efficiency, and typical 4.5kW electric resistance storage tank.

= 26.1

CF = Coincidence Factor for electric load reduction

 $= 1.69\%^{1146}$

FOSSIL FUEL SAVINGS

ΔTherms = %FossilDHW * Gallons Saved * EPG gas * ISR

Where:

%FossilDHW = Percentage of DHW savings assumed to be fossil fuel

= 100% for Fossil Fuel

= 0% for Electric

= If unknown¹¹⁴⁷, use the following table:

	Location				
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown
Ameren ¹¹⁴⁸	76%	75%	60%	57%	72%
ComEd ¹¹⁴⁹	92%		89%		91%
People's Gas ¹¹⁵⁰	97.9%	98.0%	98.3%	97.6%	97.8%
Northshore Gas ¹¹⁵¹	98.5%	98.2%	90.0%	97.6%	97.6%
Nicor Gas ¹¹⁵²	98.5%	98.2%	90.0%	97.6%	97.6%
All DUs ¹¹⁵³					75%

<u>Note</u>: If a measure is supported by a gas and electric utility through a joint program, and it is unknown whether the participant has a gas supply, the electric utility values in the table above should be used. If it is known that the participant has a gas supply, the values from the gas utility above should be applied.

EPG_gas = Energy per gallon of Hot water supplied by gas

 $^{^{1146}}$ Calculated as follows: Assume 11% showers take place during peak hours (based on: Oreo et al, "The end uses of hot water in single family homes from flow trace analysis", 2001.). There are 65 days in the summer peak period, so the percentage of total annual use in peak period is 0.11*65/365 = 1.96%. The number of hours of recovery during peak periods is therefore assumed to be 1.96%*223.7 = 4.38 hours of recovery during peak period, where 223.7 equals the average annual electric DHW recovery hours for showerhead use. There are 260 hours in the peak period so the probability you will see savings during the peak period is 4.38/260 = 0.0169

¹¹⁴⁷ Based on the average % electricity used for water heating in Unknown residential structure types across all utilities covered by the IL program. Residence types include: SF, SF LI, MF & MF LI. Utilities included: Ameren, ComEd, People's Gas, Northshore Gas & Nicor. Please see subsequent table and citations for specific sources.

¹¹⁴⁸ Provided by AEG from the 2020 Market Potential Study completed for AIC, as well as AIC Income Qualified Initiative: 2021 Participant Survey Results Memo (February 1, 2022) p. 17.

¹¹⁴⁹ Commonwealth Edison Residential Baseline Study (2020). p.4.4 & 4.19; Section 4-7 Water Heating. Prepared by Itron.

¹¹⁵⁰ Residential Appliance Saturation Survey of natural gas for space heating and water heating (2021). Note, Multifamily customers have a residential billing rate code and responded on the survey that they live in an apartment or condominium in a building that has either 2-4 or 5+ units.

⁻1151 Ihid

¹¹⁵² Comparable service area & customers to NSG, therefore using their survey data.

¹¹⁵³ For the weighted average calculations, please see the Analysis file. PGL, NSG, Nicor & gas customers were assumed to follow the provided split. ComEd total customers, minus overlap with PGL,NSG & Nicor, therefore gas only homes. Ameren is total customers minus Nicor.

= (8.33 * 1.0 * (ShowerTemp - SupplyTemp)) / (RE_gas * 100,000)

= 0.0054 Therm/gal for SF homes

= 0.0063 Therm/gal for MF homes

RE_gas = Recovery efficiency of gas water heater

= 78% For individual water heater¹¹⁵⁴

= 67% For shared water heater 1155

If unknown, use individual water heater value for single family, use shared water heater value for multifamily. Use multifamily if building meets utility's definition for multifamily.

100,000 = Converts Btus to Therms (btu/Therm)

Other variables as defined above.

WATER AND OTHER NON-ENERGY IMPACT DESCRIPTIONS AND CALCULATION

Calculation provided together with Electric Energy Savings above.

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

SOURCES

Source ID	Reference
1	2011, DeOreo, William. California Single Family Water Use Efficiency Study. April 20, 2011.
2	2000, Mayer, Peter, William DeOreo, and David Lewis. Seattle Home Water Conservation Study. December 2000.
3	1999, Mayer, Peter, William DeOreo. Residential End Uses of Water. Published by AWWA Research Foundation and American Water Works Association. 1999.
4	2003, Mayer, Peter, William DeOreo. Residential Indoor Water Conservation Study. Aquacraft, Inc. Water Engineering and Management. Prepared for East Bay Municipal Utility District and the US EPA. July 2003.
5	2011, DeOreo, William. Analysis of Water Use in New Single Family Homes. By Aquacraft. For Salt Lake City Corporation and US EPA. July 20, 2011.
6	2011, Aquacraft. Albuquerque Single Family Water Use Efficiency and Retrofit Study. For Albuquerque Bernalillo County Water Utility Authority. December 1, 2011.
7	2008, Schultdt, Marc, and Debra Tachibana. Energy related Water Fixture Measurements: Securing the Baseline for Northwest Single Family Homes. 2008 ACEEE Summer Study on Energy Efficiency in Buildings.

¹¹⁵⁴ DOE Final Rule discusses Recovery Efficiency with an average around 0.76 for Gas Fired Storage Water heaters and 0.78 for standard efficiency gas fired tankless water heaters up to 0.95 for the highest efficiency gas fired condensing tankless water heaters. These numbers represent the range of new units however, not the range of existing units in stock. Review of AHRI Directory suggests range of recovery efficiency ratings for new Gas DHW units of 70-87%. Average of existing units is estimated at 78%.

¹¹⁵⁵ Water heating in Multifamily buildings is often provided by a larger central boiler. This suggests that the average recovery efficiency is somewhere between a typical central boiler efficiency of 0.59 and the 0.75 for single family homes. An average efficiency of 0.67 is used for this analysis as a default for Multifamily buildings.

MEASURE CODE: RS-HWE-ADTS-V01-250101

REVIEW DEADLINE: 1/1/2029

5.5 Lighting End Use

- 5.5.1 Compact Fluorescent Lamp (CFL)—Retired 12/31/2018, Removed in v8
- 5.5.2 ENERGY STAR Specialty Compact Fluorescent Lamp (CFL)—Retired 12/31/2018, Removed in v8
- 5.5.3 ENERGY STAR Torchiere—Retired 12/31/2018, Removed in v8
- 5.5.4 Exterior Hardwired Compact Fluorescent Lamp (CFL) Fixture—Retired 12/31/2018, Removed in v8
- 5.5.5 Interior Hardwired Compact Fluorescent Lamp (CFL) Fixture—Retired 12/31/2018, Removed in v8

5.5.6 LED Specialty Lamps

DESCRIPTION

Please note that this measure characterization contains specific assumptions that were negotiated as a compromise between the utilities and stakeholders and also reflects input from community-based organizations. The compromise is designed to allow for a gradual change in Income Qualified programming and to address the unique challenges that an abrupt change makes within the context of the Illinois CPAS savings goal structure. Such compromise shall not be taken as precedent for future non-consensus discussions.

This measure describes savings from a variety of specialty LED lamp types (including globe, decorative and downlights). This characterization assumes that the LED lamp is installed in a residential location. For stores easily accessed by income qualified communities, 100% of sales are assumed to be Income Qualified (IQ) residential.

This measure was developed to be applicable to the following program types: TOS, NC, EREP, KITS.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the installed equipment must be an ENERGY STAR LED lamp or fixture or equivalent to the most recent version of ENERGY STAR specifications. Note a new ENERGY STAR specification v2.1 becomes effective on 1/2/2017.

DEFINITION OF BASELINE EQUIPMENT

Specialty and Directional lamps were not included in the original definition of General Service Lamps in the Energy Independence and Security Act of 2007 (EISA). Therefore, the initial baseline is an incandescent / halogen lamp described in the table below.

A DOE Final Rule released on 1/19/2017 updated the EISA regulations to remove the exemption for these lamp types such that they become subject to the backstop provision defined within the original legislation. In September 2019 this decision was revoked in a new DOE Final Rule. However, in May 2022 DOE reversed this decision by issuing a Final rule for both the broadened General Service Lamp definition as well as the implementation of the 45 lumen per watt backstop. DOE stated that it will use its enforcement discretion to minimize impacts on the supply chain and effectively allow companies to continue the manufacture and import of noncompliant bulbs through the remainder of 2022, and allow retailers to continue selling them with limited enforcement until July 2023.

As of 6/30/2023, no savings are claimed for non-income qualified programs unless via direct install programs. Direct Install programs where it can be shown that the LED is replacing working inefficient lighting should continue to use the existing inefficient lighting as baseline and also assume a measure life of 2 years.

Income Qualified Programs

Through 2025, Retail programs in stores 'easily accessed by income qualified communities' (as defined below), and Kit, School and Foodbank programs, will continue to assume a halogen baseline and apply a measure life of 8 years.

A store is considered easily accessed by income qualified communities 1156:

a. For Ameren:

- i. if it is a retail store that is closest to a community with a zip code that has 65% of family households with an income less than or equal to 299% of the Federal poverty level for their household size (Applies to big box (e.g., Walmart), club (e.g., Costco), DIY (e.g., Home Depot), hardware and grocery stores); or
- ii. If it is a "dollar store" in the AIC service area; or

¹¹⁵⁶ Utilities to provide list of all stores that are easily accessed by income qualified communities, as defined above, by December 31, 2022, with one of the utility's quarterly reports and to the utility's independent evaluator. The Utilities will update the list of stores annually, by December 31 of each year of the current portfolio cycle in a similar fashion.

- iii. If it is a "thrift store" in the AIC service area.
- b. For ComEd:
 - i. if it is a retail store is within a zip code where at least 60% or more of the households are at or below 80% Area Median Income (AMI); or
 - ii. If it is a "dollar store" in the ComEd service area; or
 - iii. If it is a "thrift store" in the ComEd service area.

100% of sales from such stores as defined above will count as IQ lighting.

Direct Install programs where it can be shown that the LED is replacing working inefficient lighting should continue to use the existing inefficient lighting as baseline and also assume a measure life of 8 years.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The average rated life for Decorative lamps on the ENERGY STAR Qualified Products list (accessed 6/16/2020) is approximately 17,000 hours, and for Directional Lamps is approximately 25,000 hours.

However, for all purchases through 2025 the measure life is assumed to be two years for Direct Install in non-income eligible populations and eight years for income eligible populations.

DEEMED MEASURE COST

The price of LED lamps is falling quickly. Where possible, the actual cost should be used and compared to the baseline cost provided below. If the incremental cost is unknown, assume the following: 1157

Bulb Type	Year	Incandescent	LED	Incremental Cost
Directional	2019 and on	\$3.53	\$5.18	\$1.65
Decorative and Globe	2019 and on	\$1.74	\$3.40	\$1.66

LOADSHAPE

Loadshape R06 - Residential Indoor Lighting

Loadshape R07 - Residential Outdoor Lighting

COINCIDENCE FACTOR

The summer peak coincidence factor is assumed to be 0.109 for residential and in-unit multifamily bulbs, 1158, 0.273 for exterior bulbs 1159 and 0.117 for unknown 1160. Use Multifamily if the building meets the utility's definition for multifamily.

Algorithm

¹¹⁵⁷ Baseline and LED lamp costs for both directional and decorative and globe are based on field data collected by CLEAResult and provided by ComEd. See ComEd Pricing Projections 06302016.xlsx for analysis.

¹¹⁵⁸ Based on the IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs.

¹¹⁵⁹ Based on lighting logger study conducted as part of the PY5/6 ComEd Residential Lighting Program evaluation. the IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs was unable to provide coincidence factors for specialty LEDs in exterior applications.

¹¹⁶⁰ Based on a weighted average of coincidence factors in interior and exterior applications, assuming 5% exterior lighting. The distribution of LEDs is based on the on-site lighting inventory conducted as part of the IL Statewide LED Lighting Logger study.

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

ΔkWh = ((WattsBase - WattsEE) / 1000) * ISR * (1-Leakage) * Hours * WHFe

Where:

Wattsbase = Input wattage of the existing or baseline system. Reference the table below for default

values.¹¹⁶¹

Wattsee = Actual wattage of LED purchased / installed. If unknown, use default provided below.

¹¹⁶¹ See file "LED Lamp Updates 2021-06-09" for details on Guidehouse lamp wattage calculations based on equivalent baseline wattage and LED wattage of available ENERGY STAR product.

Decorative Lamps – ENERGY STAR Minimum Luminous Efficacy = 65Lm/W for all lamps

Bulb Type	Minimum Lumens	Maximum Lumens	LED Wattage (Watts _{EE})	Baseline (Watts _{Base})	Delta Watts (WattsEE)
Omni-Directional	1,100	1,999	14.7	100	85.3
3-Way	2,000	2,700	22.6	150	127.4
Globe	310	349	3.0	25	22
(medium and	350	499	4.7	40	35.3
intermediate bases	500	574	5.7	60	54.3
less than 750	575	649	6.5	75	68.5
lumens)	650	1,000	8.2	100	91.8
Globe	310	349	3.5	25	21.5
(candelabra bases	350	499	4.4	40	35.6
less than 1050 lumens)	500	574	5.5	60	54.5
Decorative	310	499	4.3	40	35.7
(Shapes B, BA, C, CA, DC, F, G, medium and intermediate bases less than 750 lumens)	500	800	5.8	60	54.2
Decorative	310	499	4.2	40	35.8
(Shapes B, BA, C, CA, DC, F, G, candelabra bases less than 1050 lumens)	500	650	5.5	60	54.5
Decembine	310	499	6.5	40	33.5
Decorative (Shape ST)	500	999	8.8	60	51.2
(Sliape 31)	1000	1500	10.0	100	90.0
Decorative (Shape S)	310	340	2.25	25	22.8

Directional Lamps - ENERGY STAR Minimum Luminous Efficacy = 70Lm/W for <90 CRI lamps and 61 Lm/W for >=90CRI lamps.

For Directional R, BR, and ER lamp types: 1162

 $^{^{1162}}$ From pg. 13 of the ENERGY STAR Specification for lamps v2.1 $\,$

Bulb Type	Minimum Lumens	Maximum Lumens	LED Wattage (Wattsee)	Baseline (Watts _{Base})	Delta Watts (WattsEE)
Reflector lamp	400	649	7.0	50	43
types with medium	650	899	10.7	75	64.3
screw bases (PAR20,	900	1,049	13.9	90	76.1
PAR30(S,L), PAR38,	1,050	1,199	13.8	100	86.2
R40, etc.) w/	1,200	1,499	15.9	120	104.1
diameter >2.25"	1,500	1,999	18.9	150	131.1
(*see exceptions below)	2,000	3,299	27.3	250	222.7
Reflector lamp	310	374	4.6	35	30.4
types with medium screw bases (PAR16, R14, R16, etc.) w/ diameter <2.25" (*see exceptions below)	375	600	6.4	50	43.6
	650	949	9.3	65	55.7
*DD20 DD40	950	1,099	12.7	75	62.3
*BR30, BR40, or FR40	1,100	1,399	14.4	85	70.6
EK4U	1,400	1,600	16.6	100	83.4
	1,601	1,800	22.2	120	97.8
*R20	450	524	6.0	40	34.0
· KZU	525	750	7.1	45	37.9
	310	324	3.8	20.0	16.2
*MR16	325	369	4.8	25.0	20.2
	370	400	4.9	25.0	20.1

For PAR, MR, and MRX Lamps Types:

For these highly focused directional lamp types, it is necessary to have Center Beam Candle Power (CBCP) and beam angle measurements to accurately estimate the equivalent baseline wattage. The formula below is based on the ENERGY STAR Center Beam Candle Power tool. 1163 If CBCP and beam angle information are not available or if the equation below returns a negative value (or undefined), use the manufacturer's recommended baseline wattage equivalent. 1164

Wattsbase =

 $375.1 - 4.355(D) - \sqrt{227,800 - 937.9(D) - 0.9903(D^2) - 1479(BA) - 12.02(D*BA) + 14.69(BA^2) - 16,720*\ln(CBCP)}$

Where:

D = Bulb diameter (e.g. for PAR20 D = 20)

BA = Beam angle

CBCP = Center beam candle power

¹¹⁶³ See 'ESLampCenterBeamTool.xls'.

¹¹⁶⁴ The ENERGY STAR Center Beam Candle Power tool does not accurately model baseline wattages for lamps with certain bulb characteristic combinations – specifically for lamps with very high CBCP.

The result of the equation above should be rounded DOWN to the nearest wattage established by ENERGY STAR:

Diameter	Permitted Wattages		
16	20, 35, 40, 45, 50, 60, 75		
20	50		
30S	40, 45, 50, 60, 75		
30L	50, 75		
38	40, 45, 50, 55, 60, 65, 75, 85, 90, 100, 120, 150, 250		

Additional EISA non-exempt bulb types:

Bulb Type	Minimum Lumens	Maximum Lumens	LED Wattage (Wattsee)	Baseline (Watts _{Base})	Delta Watts (WattsEE)
Dimmable Twist,	310	399	4.0	25	21.0
Globe (less than 5" in	400	749	6.6	29	22.4
diameter and > 749	750	899	9.6	43	33.4
lumens), candle	900	1,399	13.1	53	39.9
(shapes B, BA, CA > 749 lumens), Candelabra Base Lamps (>1049 lumens), Intermediate Base Lamps (>749 lumens)	1,400	1,999	16.0	72	56.0

= In Service Rate or the percentage of lamps rebated that get installed

Program	In Service Rate (ISR) ¹¹⁶⁵
Retail (Time of Sale)	97.9% ¹¹⁶⁶
Direct Install	94.5% ¹¹⁶⁷

ISR

¹¹⁶⁵ In Service Rates now represent the lifetime In Service Rates with the second and third year installations discounted by the Real Discount Rate of 0.46%. Lifetime ISR assumptions for efficiency kits are based upon comparing with CFL Distribution First year ISR and multiplying by the CFL Distribution Final ISR value, capped at 95%, and second and third year estimates based on same proportion of future installs. For all other programs the 98% Lifetime ISR assumption is based upon the standard CFL measure in the absence of any better reference. This value is based upon review of two evaluations:

^{&#}x27;Nexus Market Research, RLW Analytics and GDS Associates study; "New England Residential Lighting Markdown Impact Evaluation, January 20, 2009' and 'KEMA Inc, Feb 2010, Final Evaluation Report:, Upstream Lighting Program, Volume 1.' This implies that only 2% of bulbs purchased are never installed. The second and third year installations are based upon Ameren analysis of the Californian KEMA study showing that 54% of future installs occur in year 2 and 46% in year 3.

¹¹⁶⁶ 1st year in service rate is based upon analysis of ComEd PY8, PY9 and CY2018 intercept data (see 'Res Lighting ISR_2019.xlsx' for more information).

¹¹⁶⁷ Consistent with assumption for standard LEDs (in the absence of evidence that it should be different for this bulb type). Based upon average of Navigant low income single family direct install field work LED ISR and review of the PY2 and PY3 ComEd Direct Install program surveys. This value includes bulb failures in the 1st year to be consistent with the Commission approval of annualization of savings for first year savings claims. ComEd PY2 All Electric Single Family Home Energy Performance Tune-Up Program Evaluation, Navigant Consulting, December 21, 2010.

Program		In Service Rate (ISR) ¹¹⁶⁵
	Assessment followed by Unverified Self-Install	
	LED Distribution ¹¹⁷⁰	82.8%
	School Kits ¹¹⁷¹	83.8%
	Direct Mail Kits ¹¹⁷²	91.8%
Efficiency Kits ¹¹⁶⁹	Direct Mail Kits,	
	Income Qualified ¹¹⁷³	64.8%
	Community Distributed Kits ¹¹⁷⁴	95.0%

Leakage

= Adjustment to account for the percentage of program bulbs that move out (and in if deemed appropriate)¹¹⁷⁵ of the Utility Jurisdiction.

KITS programs = Determined through evaluation

Upstream (TOS) Lighting programs = Use deemed assumptions below: 1176

ComEd: 1.1%

Ameren: 13.1%

All other programs = 0

Hours = Average hours of use per year

Installation Location	Annual hours of use (HOU)
Residential and In-Unit Multi Family	763 ¹¹⁷⁷

¹¹⁶⁸ An equal weighted average of Direct Install and Direct Mail Kit ISRs. Interest and applicability of measures confirmed through virtual assessment.

of education provided through Efficiency Kits programs, the evaluators should apply the ISR estimated through evaluations (either past evaluations or the current program year evaluation) of the specific Efficiency Kits program. In cases where program-specific evaluation results for an ISR are unavailable, the default ISR values for Efficiency Kits provide may be used.

1170 Free bulbs provided without request, with little or no education. Consistent with Standard CFL assumptions.

¹¹⁷¹ 1st year ISR for school kits based on ComEd PY9 data for the Elementary Energy Education program. Final ISR assumptions are based upon comparing with CFL Distribution First year ISR and multiplying by the CFL Distribution Final ISR value, and second and third year estimates based on same proportion of future installs.

¹¹⁷² Opt-in program to receive kits via mail, with little or no education. Consistent with Standard CFL assumptions.

¹¹⁷³ Research from 2021 Ameren Illinois Income Qualified participant survey (customer self-report), available on IL SAG website: https://ilsag.s3.amazonaws.com/AIC-Income-Qualified-Initiative-Participant-Survey-Results-Memo-FINAL-2022-02-01.pdf ¹¹⁷⁴ Kits distributed in a community setting, targeted to income qualified communities. Research from 2018 Ameren Illinois Income Qualified participant survey.

¹¹⁷⁵ Leakage in is only appropriate to credit to IL utility program savings if it is reasonably expected that the IL utility program marketing efforts played an important role in influencing customer to purchase the light bulbs. Furthermore, consideration that such customers might be free riders should be addressed. If leakage in is assessed, efforts should be made to ensure no double counting of savings occurs if the evaluation is estimating both leakage in and spillover savings of light bulbs.

¹¹⁷⁶ Leakage rate is based upon review of PY8-CY2018 evaluations from ComEd and PY5,6 and 8 for Ameren.

¹¹⁷⁷ Based on the IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs.

Installation Location	Annual hours of use (HOU)
Exterior	2,475 ¹¹⁷⁸
Unknown	1,020 ¹¹⁷⁹

WHFe

= Waste heat factor for energy to account for cooling savings from efficient lighting

Bulb Location	WHFe
Interior single family	1.06 1180
Multifamily in unit	1.04 1181
Exterior or uncooled location	1.0
Unknown location	1.046 ¹¹⁸²

Use Multifamily if: Building meets utility's definition for multifamily

For example, a 13W PAR20 LED is purchased through a ComEd upstream program and installed in place of a 750 lumen PAR20 incandescent screw-in lamp with medium screw base, diameter >2.5" in a single family interior location:

HEATING PENALTY

If electric heated home (if heating fuel is unknown assume gas, see Fossil Fuel section):

Where:

HF

= Heating Factor or percentage of light savings that must be heated

¹¹⁷⁸ Based on lighting logger study conducted as part of the PY5/6 ComEd Residential Lighting Program evaluation. The IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs was unable to provide hours of use for specialty LEDs in exterior applications.

¹¹⁷⁹ Based on a weighted average of interior and exterior hours of use from the IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs, assuming 15% exterior specialty lighting. The distribution of LEDs is based on the on-site lighting inventory conducted as part of the IL Statewide LED Lighting Logger study.

 $^{^{1180}}$ The value is estimated at 1.06 (calculated as 1 + (0.66*(0.27 / 2.8)). Based on cooling loads decreasing by 27% of the lighting savings (average result from REMRate modeling of several different configurations and IL locations of homes), assuming typical cooling system operating efficiency of 2.8 COP (starting from standard assumption of SEER 10.5 central AC unit, converted to 9.5 EER using algorithm (-0.02 * SEER2) + (1.12 * SEER) (from Wassmer, M. (2003). A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations. Masters Thesis, University of Colorado at Boulder), converted to COP = EER/3.412 = 2.8COP) and 66% of homes in Illinois having central cooling ("Table HC7.9 Air Conditioning in Homes in Midwest Region, Divisions, and States, 2009 from Energy Information Administration", 2009 Residential Energy Consumption

¹¹⁸¹ As above but using estimate of 45% of multifamily buildings in Illinois having central cooling (based on data from "Table HC7.1 Air Conditioning in U.S. Homes, By Housing Unit Type, 2009" which is for the whole of the US, scaled to IL air conditioning prevalence compared to US average)

¹¹⁸² Unknown is weighted average of interior v exterior (assuming 15% exterior specialty lighting based on distribution of LEDs from on-site lighting inventory conducted as part of the IL Statewide LED Lighting Logger study) and SF v MF interior based on statewide weighted average of 69% single family and 31% multifamily, based on IL data from 2009 RECS Table HC2.9 Structural and Geographic Characteristics of Homes in Midwest Region, Divisions and States, 2009.

¹¹⁸³ Negative value because this is an increase in heating consumption due to the efficient lighting.

= 49% for interior location ¹¹⁸⁴

= 0% for exterior location

= 42% for unknown location 1185

ηHeat

= Efficiency in COP of Heating equipment

= Actual. If not available use: 1186

System Type	Age of Equipment	HSPF2 Estimate	COP _{HEAT} (COP Estimate) = (HSPF2/3.413)*0.85
Heat Pump	Before 2006	5.8	1.44
(if age unknown	After 2006 - 2014	6.5	1.62
assume 2006-2014)	2015 on	7.0	1.74
Resistance	N/A	N/A	1.00
Unknown ¹¹⁸⁷	N/A	N/A	1.28

For example, a 13W PAR20 LED is purchased through a ComEd upstream program and installed in place of a 750 lumen PAR20 incandescent screw-in lamp with medium screw base, diameter >2.5" in a single family interior location with a 2016 heat pump:

$$\Delta kWh = -(((75 - 13) / 1000) * 0.840 * (1 - 0.011) * 763 * 0.49) / 2.04$$

= - 9.4 kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

ΔkW = ((WattsBase - WattsEE) / 1000) * ISR * (1-Leakage) * WHFd * CF

Where:

WHFd = Waste heat factor for demand to account for cooling savings from efficient lighting.

Bulb Location	WHFd
Interior single family	1.11 ¹¹⁸⁸
Multifamily in unit	1.07 ¹¹⁸⁹

¹¹⁸⁴ This means that heating loads increase by 49% of the lighting savings. This is based on the average result from REMRate modeling of several different configurations and IL locations of homes.

¹¹⁸⁵ Based on a weighted average of interior and exterior hours of use from the IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs, assuming 15% exterior specialty lighting. The distribution of LEDs is based on the on-site lighting inventory conducted as part of the IL Statewide LED Lighting Logger study.

¹¹⁸⁶ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate. Note efficiency should include duct losses. Defaults provided assume 15% duct loss for heat pumps.

¹¹⁸⁷ Calculation assumes 35% Heat Pump and 65% Resistance, which is based upon data from Energy Information Administration, 2009 Residential Energy Consumption Survey, see "HC6.9 Space Heating in Midwest Region.xls", using average for East North Central Region. Average efficiency of heat pump is based on assumption that 50% are units from before 2006 and 50% from 2006-2014. Program or evaluation data should be used to improve this assumption if available.

¹¹⁸⁸ The value is estimated at 1.11 (calculated as 1 + (0.66 * 0.466 / 2.8)). See footnote relating to WHFe for details. Note the 46.6% factor represents the average Residential cooling coincidence factor calculated by dividing average load during the peak hours divided by the maximum cooling load.

¹¹⁸⁹ As above but using estimate of 45% of multifamily buildings in Illinois having central cooling (based on data from "Table

Bulb Location	WHFd
Exterior or uncooled location	1.0
Unknown location	1.083 ¹¹⁹⁰

Use Multifamily if: Building meets utility's definition for multifamily

CF = Summer Peak Coincidence Factor for measure

= 0.109 for residential and in-unit multifamily bulbs¹¹⁹¹, 0.273 for exterior bulbs,¹¹⁹² and 0.117 for unknown.¹¹⁹³

Use Multifamily if: Building meets utility's definition for multifamily

Other factors as defined above

For example, a 13W PAR20 LED is purchased through a ComEd upstream program and installed in place of a 750 lumen PAR20 incandescent screw-in lamp with medium screw base, diameter >2.5" in a single family interior location:

 Δ kW = (((75 - 13) / 1000) * 0.840 * (1 - 0.011) * 1.11* 0.109 = 0.0062 kW

FOSSIL FUEL SAVINGS

Heating penalty if Natural Gas heated home, or if heating fuel is unknown.

 Δ therms = - (((WattsBase - WattsEE) / 1000) * ISR * (1-Leakage) * Hours * HF * 0.03412) / η Heat

Where:

HF = Heating factor, or percentage of lighting savings that must be replaced by heating

system.

= 49% for interior 1194

= 0% for exterior location

= 42% for unknown location 1195

0.03412 = Converts kWh to Therms

ηHeat = Average heating system efficiency.

_

HC7.1 Air Conditioning in U.S. Homes, By Housing Unit Type, 2009" which is for the whole of the US, scaled to IL air conditioning prevalence compared to US average)

¹¹⁹⁰ Unknown is weighted average of interior v exterior (assuming 15% exterior specialty lighting based on distribution of LEDs from on-site lighting inventory conducted as part of the IL Statewide LED Lighting Logger study) and SF v MF interior based on statewide weighted average of 69% single family and 31% multifamily, based on IL data from 2009 RECS Table HC2.9 Structural and Geographic Characteristics of Homes in Midwest Region, Divisions and States, 2009.

¹¹⁹¹ Based on the IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs.

¹¹⁹² Based on lighting logger study conducted as part of the PY5/6 ComEd Residential Lighting Program evaluation. the IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs was unable to provide coincidence factors for specialty LEDs in exterior applications.

¹¹⁹³ Based on a weighted average of coincidence factors in interior and exterior applications, assuming 5% exterior lighting. The distribution of LEDs is based on the on-site lighting inventory conducted as part of the IL Statewide LED Lighting Logger study.

¹¹⁹⁴ Average result from REMRate modeling of several different configurations and IL locations of homes

¹¹⁹⁵ Based on a weighted average of interior and exterior hours of use from the IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs, assuming 15% exterior specialty lighting. The distribution of LEDs is based on the on-site lighting inventory conducted as part of the IL Statewide LED Lighting Logger study.

 $= 0.70^{1196}$

Other factors as defined above

For example, a 13W PAR20 LED is purchased through a ComEd upstream program and installed in place of a 750 lumen PAR20 incandescent screw-in lamp with medium screw base, diameter >2.5" in single family interior location with gas heating at 70% total efficiency:

Δtherms = - (((75 - 13) / 1000) * 0.840 * (1 - 0.011) * 763 * 0.49 * 0.03412) / 0.70

= - 0.94 therms

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

For income eligible populations, an annual baseline cost of \$1.74 for decorative and \$3.53 for directional should be applied.

It is important to note that for cost-effectiveness screening purposes, the O&M cost adjustments should only be applied in cases where the light bulbs area actually in service and so should be multiplied by the appropriate ISR.

MEASURE CODE: RS-LTG-LEDD-V17-240101

REVIEW DEADLINE: 1/1/2026

¹¹⁹⁶ This has been estimated assuming that natural gas central furnace heating is typical for Illinois residences (66% of Illinois homes have a Natural Gas Furnace (based on Energy Information Administration, 2009 Residential Energy Consumption Survey) In 2000, 24% of furnaces purchased in Illinois were condensing (based on data from GAMA, provided to Department of Energy during the federal standard setting process for residential heating equipment - see Furnace Penetration.xls). Furnaces tend to last up to 20 years and so units purchased 10 years ago provide a reasonable proxy for the current mix of furnaces in the State. Assuming typical efficiencies for condensing and non-condensing furnaces and duct losses, the average heating system efficiency is estimated as follows:

5.5.7 LED Exit Signs

DESCRIPTION

This measure characterizes the savings associated with installing a Light Emitting Diode (LED) exit sign in place of a fluorescent or incandescent exit sign in a Multifamily building within unit (use 4.5.5 Commercial Exit Signs for multifamily common area exit signs). Light Emitting Diode exit signs have a string of very small, typically red or green, glowing LEDs arranged in a circle or oval. The LEDs may also be arranged in a line on the side, top or bottom of the exit sign. LED exit signs provide the best balance of safety, low maintenance, and very low energy usage compared to other exit sign technologies.

This measure was developed to be applicable to the following program types: RF.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient equipment is assumed to be an exit sign illuminated by LEDs.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is assumed to be an existing fluorescent or incandescent model.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The measure life is assumed to be 5 years. 1197

DEEMED MEASURE COST

The actual material and labor costs should be used if available. If actual costs are unavailable, assume a total installed cost of at \$32.50.1198

LOADSHAPE

Loadshape C53 - Flat

COINCIDENCE FACTOR

The summer peak coincidence factor for this measure is assumed to be 100%. 1199

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 Δ kWh = ((WattsBase - WattsEE) / 1000) * HOURS * WHF_e

Where:

WattsBase = Actual wattage if known, if unknown assume the following:

Baseline Type	Watts _{Base}
Incandescent	35W ¹²⁰⁰

¹¹⁹⁷ Estimate of remaining life of existing unit being replaced.

_

¹¹⁹⁸ Price includes new exit sign/fixture and installation. LED exit sign cost/unit is \$22.50 based on the NYSERDA Deemed Savings Database and review of LED exit signs available as of April 2023, and assuming I labor cost of 15 minutes @ \$40/hr.

¹¹⁹⁹ Assuming continuous operation of an LED exit sign, the Summer Peak Coincidence Factor is assumed to equal 1.0.

¹²⁰⁰ Based on review of available product.

Baseline Type	Watts _{Base}
CFL (dual sided)	14W ¹²⁰¹
CFL (single sided)	7W
Unknown	7W

WattsEE = Actual wattage if known, if single sided or unknown assume 2W, if dual sided assume

4W.1202

HOURS = Annual operating hours

= 8766

WHF_e = Waste heat factor for energy; accounts for cooling savings from efficient lighting.

 $= 1.04^{1203}$

Default if replacing incandescent fixture

 Δ kWh = (35 - 2)/1000 * 8766 * 1.04

Default if replacing dual sided fluorescent fixture

= 301 kWh

 Δ kWh = (14 – 4)/1000 * 8766 * 1.04 = 91 kWh

Default if replacing single sided fluorescent (or unknown) fixture

 Δ kWh = (7 - 2)/1000 * 8766 * 1.04= 46 kWh

HEATING PENALTY

If electric heated home (if heating fuel is unknown assume gas, see Fossil Fuel section):

 $\Delta kWh^{1204} = -(((WattsBase - WattsEE) / 1000) * Hours * HF) / \eta Heat$

Where:

HF = Heating Factor or percentage of light savings that must be heated

 $=49\%^{1205}$

ηHeat = Efficiency in COP of Heating equipment

¹²⁰¹ Average CFL single sided (5W, 7W, 9W) from Appendix B 2013-14 Table of Standard Fixture Wattages.

¹²⁰² Average LED single sided (2W) from Appendix B 2013-14 Table of Standard Fixture Wattages.

¹²⁰³ The value is estimated at 1.04 (calculated as 1 + (0.45*(0.27 / 2.8)). Based on cooling loads decreasing by 27% of the lighting savings (average result from REMRate modeling of several different configurations and IL locations of homes), assuming typical cooling system operating efficiency of 3.1 COP (starting from standard assumption of SEER 10.5 central AC unit, converted to 9.5 EER using algorithm (-0.02 * SEER2) + (1.12 * SEER) (from Wassmer, M. (2003). A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations. Masters Thesis, University of Colorado at Boulder), converted to COP = EER/3.412 = 2.8COP) and estimate of 45% of multi family buildings in Illinois having central cooling (based on data from "Table HC7.1 Air Conditioning in U.S. Homes, By Housing Unit Type, 2009" which is for the whole of the US, scaled to IL air conditioning prevalence compared to US average)

¹²⁰⁴ Negative value because this is an increase in heating consumption due to the efficient lighting.

¹²⁰⁵ This means that heating loads increase by 49% of the lighting savings. This is based on the average result from REMRate modeling of several different configurations and IL locations of homes.

= Actual. If not available use: 1206

System Type	Age of Equipment	HSPF2 Estimate	COP _{HEAT} (COP Estimate) = (HSPF2/3.413)*0.85
Heat Pump	Before 2006	5.8	1.44
(if age unknown	After 2006 - 2014	6.5	1.62
assume 2006-2014)	2015 on	7.0	1.74
Resistance	N/A	N/A	1.00
Unknown ¹²⁰⁷	N/A	N/A	1.28

For example, a 2.0 COP (including duct loss) Heat Pump heated building:

If incandescent fixture: $\Delta kWh = -((35-2)/1000 * 8766 * 0.49) / 2$

= -71 kWh

If unknown fixture $\Delta kWh = -((7-2)/1000 * 8766 * 0.49) / 2$

= -10.7 kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = ((WattsBase - WattsEE) / 1000) * WHFd * CF$

Where:

WHF_d = Waste heat factor for demand to account for cooling savings from efficient lighting. The

cooling savings are only added to the summer peak savings.

=1.071208

CF = Summer Peak Coincidence Factor for measure

= 1.0

Default if incandescent fixture

 Δ kW = (35 - 2)/1000 * 1.07 * 1.0= 0.035 kW

Default if dual sided fluorescent fixture

 $\Delta kW = (14-4)/1000 * 1.07 * 1.0$ = 0.0107 kW

Default if single sided fluorescent fixture

 $\Delta kW = (7-2)/1000 * 1.07 * 1.0$

¹²⁰⁶ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate. Note efficiency should include duct losses. Defaults provided assume 15% duct loss for heat pumps.

¹²⁰⁷ Calculation assumes 35% Heat Pump and 65% Resistance, which is based upon data from Energy Information Administration, 2009 Residential Energy Consumption Survey, see "HC6.9 Space Heating in Midwest Region.xls", using average for East North Central Region. Average efficiency of heat pump is based on assumption that 50% are units from before 2006 and 50% from 2006-2014. Program or evaluation data should be used to improve this assumption if available.

 $^{^{1208}}$ The value is estimated at 1.11 (calculated as 1 + (0.45 * 0.466 / 2.8)). See footnote relating to WHFe for details. Note the 46.6% factor represents the average Residential cooling coincidence factor calculated by dividing average load during the peak hours divided by the maximum cooling load.

= 0.0054 kW

FOSSIL FUEL SAVINGS

Heating penalty if Natural Gas heated building, or if heating fuel is unknown.

ΔTherms = - (((WattsBase - WattsEE) / 1000) * Hours * HF * 0.03412) / ηHeat

Where:

HF = Heating factor, or percentage of lighting savings that must be replaced by heating

system.

=49% 1209

0.03412 = Converts kWh to Therms

= Average heating system efficiency. nHeat

 $= 0.70^{1210}$

Other factors as defined above

Default if incandescent fixture

ΔTherms = - (((35 - 2) / 1000) * 8766 * 0.49* 0.03412) / 0.70

= -6.9 therms

Default if dual sided fluorescent fixture

ΔTherms = - (((14 - 4) / 1000) * 8766 * 0.49* 0.03412) / 0.70

= -2.1 therms

Default if single sided fluorescent fixture

= - (((7 - 2) / 1000) * 8766 * 0.49* 0.03412) / 0.70 ΔTherms

= -1.05 therms

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

The annual O&M Cost Adjustment savings should be calculated using the following component costs and lifetimes.

	Baseline Measures		
Component	Cost	Life (yrs)	
Lamp	\$12.45 ¹²¹¹	1.37 years ¹²¹²	

¹²⁰⁹ Average result from REMRate modeling of several different configurations and IL locations of homes

(0.24*0.92) + (0.76*0.8) * (1-0.15) = 0.70

¹²¹⁰ This has been estimated assuming that natural gas central furnace heating is typical for Illinois residences (66% of Illinois homes have a Natural Gas Furnace (based on Energy Information Administration, 2009 Residential Energy Consumption Survey) In 2000, 24% of furnaces purchased in Illinois were condensing (based on data from GAMA, provided to Department of Energy during the federal standard setting process for residential heating equipment - see Furnace Penetration.xls). Furnaces tend to last up to 20 years and so units purchased 10 years ago provide a reasonable proxy for the current mix of furnaces in the State. Assuming typical efficiencies for condensing and non-condensing furnaces and duct losses, the average heating system efficiency is estimated as follows:

¹²¹¹ Consistent with assumption for a Standard CFL bulb (\$2.45) with an estimated labor cost of \$10 (assuming \$40/hour and a task time of 15 minutes).

 $^{^{1212}}$ Assumes a lamp life of 12,000 hours and 8766 run hours 12000/8766 = 1.37 years.

MEASURE CODE: RS-LTG-LEDE-V04-240101

REVIEW DEADLINE: 1/1/2028

5.5.8 LED Screw Based Omnidirectional Bulbs

DESCRIPTION

Please note that this measure characterization contains specific assumptions that were negotiated as a compromise between the utilities and stakeholders and also reflects input from community-based organizations. The compromise is designed to allow for a gradual change in Income Qualified programming and to address the unique challenges that an abrupt change makes within the context of the Illinois CPAS savings goal structure. Such compromise shall not be taken as precedent for future non-consensus discussions.

This characterization provides savings assumptions for LED Screw Based Omnidirectional (e.g., A-Type lamps) lamps within the Income Qualified residential and multifamily sectors. This characterization assumes that the LED lamp is installed in a residential location. For stores easily accessed by income qualified communities, 100% of sales are assumed to be Income Qualified (IQ) residential.

This measure was developed to be applicable to the following program types: TOS, NC, EREP, DI, KITS.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, new lamps must be ENERGY STAR labeled or equivalent to the most recent version of ENERGY STAR specifications. Note a new ENERGY STAR specification v2.1 became effective on 1/2/2017.

DEFINITION OF BASELINE EQUIPMENT

In 2012, Federal legislation stemming from the Energy Independence and Security Act of 2007 (EISA) will require all general-purpose light bulbs between 40 watts and 100 watts to have ~30% increased efficiency, essentially phasing out standard incandescent technology. In 2012, the 100 w lamp standards apply; in 2013 the 75 w lamp standards will apply, followed by restrictions on the 60 w and 40 w lamps in 2014. Since measures installed under this TRM all occur after 2014, baseline equipment are the values after EISA. These are shown in the baseline table below.

Additionally, an EISA backstop provision was included that would require replacement baseline lamps to meet an efficacy requirement of 45 lumens/watt or higher beginning on 1/1/2020. In December 2019, DOE issued a final determination for General Service Incandescent Lamps (GSILs), finding that this more stringent standard was not economically justified. However, in May 2022 DOE reversed this decision by issuing a Final rule for both the broadened General Service Lamp definition as well as the implementation of the 45 lumen per watt backstop. DOE stated that it will use its enforcement discretion to minimize impacts on the supply chain and effectively allow companies to continue the manufacture and import of noncompliant bulbs through the remainder of 2022, and allow retailers to continue selling them with limited enforcement until July 2023.

As of 6/30/2023, no savings are claimed for non-income qualified programs unless via direct install programs. Direct Install programs where it can be shown that the LED is replacing working inefficient lighting should continue to use the existing inefficient lighting as baseline and also assume a measure life of 2 years.

Income Qualified Programs

Through 2025, Retail programs in stores 'easily accessed by income qualified communities' (as defined below), and Kit, School and Foodbank programs, will continue to assume a halogen baseline and apply a measure life of 8 years.

A store is considered easily accessed by income qualified communities 1213:

c. For Ameren:

¹²¹³ Utilities to provide list of all stores that are easily accessed by income qualified communities, as defined above, by December 31, 2022, with one of the utility's quarterly reports and to the utility's independent evaluator. The Utilities will update the list of stores annually, by December 31 of each year of the current portfolio cycle in a similar fashion.

- i. if it is a retail store that is closest to a community with a zip code that has 65% of family households with an income less than or equal to 299% of the Federal poverty level for their household size (Applies to big box (e.g., Walmart), club (e.g., Costco), DIY (e.g., Home Depot), hardware and grocery stores); or
- ii. If it is a "dollar store" in the AIC service area; or
- iii. If it is a "thrift store" in the AIC service area.

d. For ComEd:

- i. if it is a retail store is within a zip code where at least 60% or more of the households are at or below 80% Area Median Income (AMI); or
- ii. If it is a "dollar store" in the ComEd service area; or
- iii. If it is a "thrift store" in the ComEd service area.

100% of sales from such stores as defined above will count as IQ lighting.

Direct Install programs where it can be shown that the LED is replacing working inefficient lighting should continue to use the existing inefficient lighting as baseline and also assume a measure life of 8 years.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The average rated life for Omnidirectional lamps on the ENERGY STAR Qualified Products list (accessed 6/16/2020) is approximately 20,000 hours.

However, for all purchases through 2025 the measure life is assumed to be two years for Direct Install in non-income eligible populations and eight years for income eligible populations.

DEEMED MEASURE COST

The price of LED lamps is falling quickly. Where possible, the actual LED lamp cost should be used and compared to the baseline cost provided below. If the incremental cost is unknown, assume the following: 1214

Year	EISA Compliant Halogen	LED A-Lamp	Incremental Cost
2020 and on	\$1.25	\$2.70	\$1.45

LOADSHAPE

Loadshape R06 – Residential Indoor Lighting

Loadshape R07 - Residential Outdoor Lighting

COINCIDENCE FACTOR

The summer peak coincidence factor is assumed to be 0.128 for Residential and in-unit Multi Family bulbs, ¹²¹⁵ 0.273 for exterior bulbs, ¹²¹⁶ and 0.135 for unknown, ¹²¹⁷

¹²¹⁴ Baseline and LED lamp costs are based on field data collected by CLEAResult and provided by ComEd. See ComEd Pricing Projections 06302016.xlsx for analysis.

¹²¹⁵ Based on the IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs.

¹²¹⁶ Based on lighting logger study conducted as part of the PY5/6 ComEd Residential Lighting Program evaluation. the IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs was unable to provide coincidence factors for screw-based omnidirectional LEDs in exterior applications.

¹²¹⁷Based on a weighted average of coincidence factors in interior and exterior applications, assuming 5% exterior lighting. The distribution of LEDs is based on the on-site lighting inventory conducted as part of the IL Statewide LED Lighting Logger study.

Use Multifamily if: Building meets utility's definition for multifamily.

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = ((Watts_{base}-Watts_{EE})/1000) * ISR * (1-Leakage) * Hours *WHF_e$

Where:

Wattsbase

= Input wattage of the existing or baseline system. Reference the "LED New and Baseline Assumptions" table for default values.

Wattser

= Actual wattage of LED purchased / installed. If unknown, use default provided below:1218

LED New and Baseline Assumptions Table

Minimum Lumens	Maximum Lumens	LED Wattage (WattsEE)	Baseline (WattsBase)	Delta Watts (WattsEE)
310	399	4.0	25	21.0
400	749	6.6	29	22.4
750	899	9.6	43	33.4
900	1,399	13.1	53	39.9
1,400	1,999	16.0	72	56.0
2,000	2,999	21.8	150	128.2
3,000	3,299	28.9	200	171.1

= In Service Rate, the percentage of lamps rebated that are actually in service.

Program	In Service Rate (ISR) ¹²¹⁹
Retail (Time of Sale)	97.9% ¹²²⁰
Direct Install	94.5% ¹²²¹

¹²¹⁸ See file "LED Lamp Updates 2021-06-09" for details on Guidehouse lamp wattage calculations based on equivalent baseline wattage and LED wattage of available ENERGY STAR product.

ISR

¹²¹⁹ In Service Rates now represent the lifetime In Service Rates with the second and third year installations discounted by the Real Discount Rate of 0.46%. Lifetime ISR assumptions for efficiency kits are based upon comparing with CFL Distribution First year ISR and multiplying by the CFL Distribution Final ISR value, capped at 95%, and second and third year estimates based on same proportion of future installs. For all other programs The 98% Lifetime ISR assumption is based upon the standard CFL measure in the absence of any better reference. This value is based upon review of two evaluations:

^{&#}x27;Nexus Market Research, RLW Analytics and GDS Associates study; "New England Residential Lighting Markdown Impact Evaluation, January 20, 2009' and 'KEMA Inc, Feb 2010, Final Evaluation Report:, Upstream Lighting Program, Volume 1.' This implies that only 2% of bulbs purchased are never installed. The second and third year installations are based upon Ameren analysis of the Californian KEMA study showing that 54% of future installs occur in year 2 and 46% in year 3.

^{1220 1}st year in service rate is based upon analysis of ComEd PY8, PY9 and CY2018 and Ameren PY8 intercept data (see 'RES Lighting ISR 2019.xlsx' for more information).

¹²²¹ Based upon average of Navigant low income single family direct install field work LED ISR and Standard CFL assumption in the absence of better data, and is based upon review of the PY2 and PY3 ComEd Direct Install program surveys. This value includes bulb failures in the 1st year to be consistent with the Commission approval of annualization of savings for first year

Program		In Service Rate (ISR) ¹²¹⁹
Virtual Assessment followed by Unverified Self-Install		97.9% ¹²²²
	LED Distribution ¹²²⁴	82.8%
	School Kits ¹²²⁵	83.8%
Efficiency	Direct Mail Kits ¹²²⁶	91.8%
Kits ¹²²³	Direct Mail Kits, Income Qualified ¹²²⁷	60%
	Community Distributed Kits ¹²²⁸	95.0%
Food Bank / Pantry Distribution 1229		97.9% ¹²³⁰

Leakage

= Adjustment to account for the percentage of program bulbs that move out (and in if deemed appropriate)¹²³¹ of the Utility Jurisdiction.

KITS programs = Determined through evaluation

Upstream (TOS) Lighting programs = Use deemed assumptions below: 1232

ComEd: 0.8%

Ameren: 13.1%

All other programs = 0

Hours = Average hours of use per year

Installation Location	Hours
Residential and in-unit Multi Family	1,089 ¹²³³

savings claims. ComEd PY2 All Electric Single Family Home Energy Performance Tune-Up Program Evaluation, Navigant Consulting, December 21, 2010.

¹²²² An equal weighted average of Direct Install and Direct Mail Kit ISRs. Interest and applicability of measures confirmed through virtual assessment.

¹²²³ In Service Rates provided are for the bulb within a kit only. Given the significant differences in program design and the level of education provided through Efficiency Kits programs, the evaluators should apply the ISR estimated through evaluations (either past evaluations or the current program year evaluation) of the specific Efficiency Kits program. In cases where program-specific evaluation results for an ISR are unavailable, the default ISR values for Efficiency Kits provide may be used.

¹²²⁴ Free bulbs provided without request, with little or no education. Consistent with Standard CFL assumptions.

¹²²⁵ 1st year ISR for school kits based on ComEd PY9 data for the Elementary Energy Education program. Final ISR assumptions are based upon comparing with CFL Distribution First year ISR and multiplying by the CFL Distribution Final ISR value, and second and third year estimates based on same proportion of future installs.

¹²²⁶ Opt-in program to receive kits via mail, with little or no education. Consistent with Standard CFL assumptions.

¹²²⁷ Research from 2021 Ameren Illinois Income Qualified participant survey (customer self-report), available on IL SAG website: https://ilsag.s3.amazonaws.com/AIC-Income-Qualified-Initiative-Participant-Survey-Results-Memo-FINAL-2022-02-01.pdf
1228 Kits distributed in a community setting, targeted to income qualified communities. Research from 2018 Ameren Illinois Income Qualified participant survey.

¹²²⁹ Free bulbs provided through local food banks and food pantries.

¹²³⁰ 1st year ISR is determined based on online surveys conducted for ComEd CY2018 Food Bank LED Distribution program. See 'CY2018 ComEd Foodbank LED Dist Survey Results Navigant'.

¹²³¹ Leakage in is only appropriate to credit to IL utility program savings if it is reasonably expected that the IL utility program marketing efforts played an important role in influencing customer to purchase the light bulbs. Furthermore, consideration that such customers might be free riders should be addressed. If leakage in is assessed, efforts should be made to ensure no double counting of savings occurs if the evaluation is estimating both leakage in and spillover savings of light bulbs.

¹²³² Leakage rate is based upon review of PY8-CY2018 evaluations from ComEd and PY8 for Ameren.

¹²³³ Based on the IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs.

Installation Location	Hours
Exterior	2,475 ¹²³⁴
Unknown	1,159 ¹²³⁵

WHFe = Waste heat factor for energy to account for cooling energy savings from efficient lighting

Bulb Location	WHFe
Interior single family	1.06 ¹²³⁶
Multifamily in unit	1.04 ¹²³⁷
Exterior or uncooled location	1.0
Unknown location	1.051 ¹²³⁸

For example, an 8W LED lamp, 450 lumens, is installed in the interior of a home. The customer purchased the lamp through a ComEd upstream program:

$$\Delta$$
kWh = ((29.0 - 8) /1000) * 0.784 * (1 - 0.008) * 1,089 * 1.06
= 18.9 kWh

HEATING PENALTY

If electric heated home (if heating fuel is unknown assume gas, see Fossil Fuel section):

Where:

Survey)

HF = Heating Factor or percentage of light savings that must be heated = 49% for interior¹²⁴⁰

1234 Based on lighting logger study conducted as part of the PY5/6 ComEd Residential Lighting Program evaluation. The IL

Midwest Region, Divisions, and States, 2009 from Energy Information Administration", 2009 Residential Energy Consumption

Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs was unable to provide hours of use for screw-based omnidirectional LEDs in exterior applications.

1235 Based on a weighted average of hours of use in interior and exterior applications, assuming 5% exterior lighting. The distribution of LEDs is based on the on-site lighting inventory conducted as part of the IL Statewide LED Lighting Logger study.

1236 The value is estimated at 1.06 (calculated as 1 + (0.66*(0.27 / 2.8)). Based on cooling loads decreasing by 27% of the lighting savings (average result from REMRate modeling of several different configurations and IL locations of homes), assuming typical cooling system operating efficiency of 2.8 COP (starting from standard assumption of SEER 10.5 central AC unit, converted to 9.5 EER using algorithm (-0.02 * SEER2) + (1.12 * SEER) (from Wassmer, M. (2003). A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations. Masters Thesis, University of Colorado at Boulder), converted to COP = EER/3.412 = 2.8COP) and 66% of homes in Illinois having central cooling ("Table HC7.9 Air Conditioning in Homes in

¹²³⁷ As above but using estimate of 45% of multifamily buildings in Illinois having central cooling (based on data from "Table HC7.1 Air Conditioning in U.S. Homes, By Housing Unit Type, 2009" which is for the whole of the US, scaled to IL air conditioning prevalence compared to US average)

¹²³⁸ Unknown is weighted average of interior v exterior (assuming 5% exterior lighting based on distribution of LEDs from on-site lighting inventory conducted as part of the IL Statewide LED Lighting Logger study) and SF v MF interior based on statewide weighted average of 69% single family and 31% multifamily, based on IL data from 2009 RECS Table HC2.9 Structural and Geographic Characteristics of Homes in Midwest Region, Divisions and States, 2009.

¹²³⁹ Negative value because this is an increase in heating consumption due to the efficient lighting.

¹²⁴⁰ This means that heating loads increase by 49% of the lighting savings. This is based on the average result from REMRate modeling of several different configurations and IL locations of homes.

= 0% for exterior or unheated location

= 42% for unknown location 1241

ηHeat = Efficiency in COP of Heating equipment

= actual. If not available use:1242

System Type	Age of Equipment	HSPF2 Estimate	COP _{HEAT} (COP Estimate) = (HSPF2/3.413)*0.85
Heat Pump	Before 2006	5.8	1.44
(if age unknown	After 2006 - 2014	6.5	1.62
assume 2006-2014)	2015 on	7.0	1.74
Resistance	N/A	N/A	1.00
Unknown ¹²⁴³	N/A	N/A	1.28

For example: using the same 8 W LED that is installed in home with 2.0 COP Heat Pump (including duct loss) through a ComEd upstream program:

$$\Delta kWh_{1st year}$$
 = - (((29 - 8) / 1000) * 0.784 * (1-0.008) * 1,089 * 0.42) / 2.0

 $= -3.7 \, kWh$

Second and third year install savings should be calculated using the appropriate ISR and the delta watts and hours from the install year.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

ΔkW = ((WattsBase - WattsEE) / 1000) * ISR * (1-Leakage) * WHFd * CF

Where:

WHFd

= Waste heat factor for demand to account for cooling savings from efficient lighting.

Bulb Location	WHFd
Interior single family	1.11 ¹²⁴⁴
Multifamily in unit	1.07 ¹²⁴⁵
Exterior or uncooled location	1.0

¹²⁴¹ Based on a weighted average of interior and exterior hours of use from the IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs, assuming 15% exterior specialty lighting. The distribution of LEDs is based on the on-site lighting inventory conducted as part of the IL Statewide LED Lighting Logger study.

¹²⁴² These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate. Note efficiency should include duct losses. Defaults provided assume 15% duct loss for heat pumps.

¹²⁴³ Calculation assumes 35% Heat Pump and 65% Resistance, which is based upon data from Energy Information Administration, 2009 Residential Energy Consumption Survey, see "HC6.9 Space Heating in Midwest Region.xls", using average for East North Central Region. Average efficiency of heat pump is based on assumption that 50% are units from before 2006 and 50% from 2006-2014. Program or evaluation data should be used to improve this assumption if available.

 $^{^{1244}}$ The value is estimated at 1.11 (calculated as 1 + (0.66 * 0.466 / 2.8)). See footnote relating to WHFe for details. Note the 46.6% factor represents the average Residential cooling coincidence factor calculated by dividing average load during the peak hours divided by the maximum cooling load.

¹²⁴⁵ As above but using estimate of 45% of multifamily buildings in Illinois having central cooling (based on data from "Table HC7.1 Air Conditioning in U.S. Homes, By Housing Unit Type, 2009" which is for the whole of the US, scaled to IL air conditioning prevalence compared to US average)

Bulb Location	WHFd
Unknown location	1.093 ¹²⁴⁶

CF = Summer Peak Coincidence Factor for measure.

Bulb Location	CF
Interior	0.1281247
Exterior	0.2731248
Unknown	0.1351249

Other factors as defined above

For example: for the same 8 W LED that is installed in a single family interior location through a ComEd upstream program:

Second and third year install savings should be calculated using the appropriate ISR and the delta watts and hours from the install year.

FOSSIL FUEL SAVINGS

Heating penalty if Natural Gas heated home, or if heating fuel is unknown.

ΔTherms = - (((WattsBase - WattsEE) / 1000) * ISR * (1-Leakage) * Hours * HF * 0.03412) / nHeat

Where:

HF = Heating factor, or percentage of lighting savings that must be replaced by heating

system.

= 49% for interior¹²⁵⁰

= 0% for exterior location

= 42% for unknown location 1251

0.03412 = Converts kWh to Therms

2025 IL TRM v13.0 Vol. 3 September 20, 2024 FINAL

ηHeat = Average heating system efficiency.

Page **355** of **533**

¹²⁴⁶ Unknown is weighted average of interior v exterior (assuming 5% exterior lighting based on distribution of LEDs from on-site lighting inventory conducted as part of the IL Statewide LED Lighting Logger study) and SF v MF interior based on statewide weighted average of 69% single family and 31% multifamily, based on IL data from 2009 RECS Table HC2.9 Structural and Geographic Characteristics of Homes in Midwest Region, Divisions and States, 2009.

¹²⁴⁷ Based on the IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs.

¹²⁴⁸ Based on lighting logger study conducted as part of the PY5/6 ComEd Residential Lighting Program evaluation. the IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs was unable to provide coincidence factors for screw-based omnidirectional LEDs in exterior applications.

¹²⁴⁹ Based on a weighted average of coincidence factors in interior and exterior applications, assuming 5% exterior lighting. The distribution of LEDs is based on the on-site lighting inventory conducted as part of the IL Statewide LED Lighting Logger study.

¹²⁵⁰ Average result from REMRate modeling of several different configurations and IL locations of homes

¹²⁵¹ Based on a weighted average of interior and exterior hours of use from the IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs, assuming 15% exterior specialty lighting. The distribution of LEDs is based on the on-site lighting inventory conducted as part of the IL Statewide LED Lighting Logger study.

 $= 0.70^{1252}$

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

For income eligible populations, an annual baseline cost of \$1 should be applied.

It is important to note that for cost-effectiveness screening purposes, the O&M cost adjustments should only be applied in cases where the light bulbs area actually in service and so should be multiplied by the appropriate ISR:

MEASURE CODE: RS-LTG-LEDA-V16-240101

REVIEW DEADLINE: 1/1/2026

¹²⁵² This has been estimated assuming that natural gas central furnace heating is typical for Illinois residences (66% of Illinois homes have a Natural Gas Furnace (based on Energy Information Administration, 2009 Residential Energy Consumption Survey) In 2000, 24% of furnaces purchased in Illinois were condensing (based on data from GAMA, provided to Department of Energy during the federal standard setting process for residential heating equipment - see Furnace Penetration.xls). Furnaces tend to last up to 20 years and so units purchased 10 years ago provide a reasonable proxy for the current mix of furnaces in the State. Assuming typical efficiencies for condensing and non-condensing furnaces and duct losses, the average heating system efficiency is estimated as follows:

5.5.9 LED Fixtures

DESCRIPTION

Please note that this measure characterization contains specific assumptions that were negotiated as a compromise between the utilities and stakeholders and also reflects input from community-based organizations. The compromise is designed to allow for a gradual change in Income Qualified programming and to address the unique challenges that an abrupt change makes within the context of the Illinois CPAS savings goal structure. Such compromise shall not be taken as precedent for future non-consensus discussions.

This characterization provides savings assumptions for LED Fixtures and is broken into five ENERGY STAR fixture types: Indoor Fixtures (including track lighting, wall-wash, sconces, ceiling and fan lights), Task and Downlight Under Cabinet Fixtures, including LED desk lamps (linear under cabinet fixtures are exempt from EISA and so can be found in measure 5.5.13), Outdoor Fixtures (including flood light, hanging lights, security/path lights, outdoor porch lights), and Downlight Fixtures.

For stores easily accessed by income qualified communities, 100% of sales are assumed to be Income Qualified (IQ) residential.

This measure was developed to be applicable to the following program types: TOS, NC.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, new fixtures must be ENERGY STAR labeled based upon the v2.1 ENERGY STAR specification for luminaires or equivalent to the most recent version of ENERGY STAR specifications. Specifications are as follows:

Fixture Category	Lumens/Watt
Indoor	65
Downlight Task and Under Cabinet	50
Outdoor	60
Downlight	55

DEFINITION OF BASELINE EQUIPMENT

The baseline condition for this measure is assumed to be an average of EISA-equivalent wattages for ENERGY STAR-qualified products. Most of the lamp types in this measure are considered specialty so the baseline adjustments are consistent with the 5.5.6 LED Specialty Lamps.

Specialty and Directional lamps were not included in the original definition of General Service Lamps in the Energy Independence and Security Act of 2007 (EISA). Therefore, the initial baseline is an incandescent / halogen lamp described in the tables below.

A DOE Final Rule released on 1/19/2017 updated the EISA regulations to remove the exemption for these lamp types such that they become subject to the backstop provision defined within the original legislation. In September 2019 this decision was revoked in a DOE Final Rule. However, in May 2022 DOE reversed this decision by issuing a Final rule for both the broadened General Service Lamp definition as well as the implementation of the 45 lumen per watt backstop. DOE stated that it will use its enforcement discretion to minimize impacts on the supply chain and effectively allow companies to continue the manufacture and import of noncompliant bulbs through the remainder of 2022, and allow retailers to continue selling them with limited enforcement until July 2023.

As of 6/30/2023, no savings are claimed for non-income qualified programs unless via direct install programs. Direct Install programs where it can be shown that the LED is replacing working inefficient lighting should continue to use the existing inefficient lighting as baseline and also assume a measure life of 2 years.

Income Qualified Programs

Through 2025, Retail programs in stores 'easily accessed by income qualified communities' (as defined below), and Kit, School and Foodbank programs, will continue to assume a halogen baseline and apply a measure life of 8 years.

A store is considered easily accessed by income qualified communities 1253:

a. For Ameren:

- iv. if it is a retail store that is closest to a community with a zip code that has 65% of family households with an income less than or equal to 299% of the Federal poverty level for their household size (Applies to big box (e.g., Walmart), club (e.g., Costco), DIY (e.g., Home Depot), hardware and grocery stores); or
- v. If it is a "dollar store" in the AIC service area; or
- vi. If it is a "thrift store" in the AIC service area.

b. For ComEd:

- vii. if it is a retail store is within a zip code where at least 60% or more of the households are at or below 80% Area Median Income (AMI); or
- viii. If it is a "dollar store" in the ComEd service area; or
- ix. If it is a "thrift store" in the ComEd service area.

100% of sales from such stores as defined above will count as IQ lighting.

Direct Install programs where it can be shown that the LED is replacing working inefficient lighting should continue to use the existing inefficient lighting as baseline and also assume a measure life of 8 years.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The lifetime of a fixture is a function of its rated life and average hours of use. The rated life is 47,000 hours for indoor and downlight, 45,000 for downlight task and under cabinet, and 49,000 for outdoor fixtures. 1254

However, for all purchases through 2025 the measure life is assumed to be two years for Direct Install non-income eligible populations and eight years for income eligible populations.

DEEMED MEASURE COST

Wherever possible, actual incremental costs should be used. If unavailable, assume the following incremental costs:

Fixture Category	Incremental Cost
Indoor	\$26 ¹²⁵⁵
Downlight Task /Under	
Cabinet	\$18 ¹²⁵⁶
Outdoor	\$26
Downlight	\$13

¹²⁵³ Utilities to provide list of all stores that are easily accessed by income qualified communities, as defined above, by December 31, 2022, with one of the utility's quarterly reports and to the utility's independent evaluator. The Utilities will update the list of stores annually, by December 31 of each year of the current portfolio cycle in a similar fashion.

¹²⁵⁴ Average rated lives are based on the average rated lives of fixtures available on the ENERGY STAR qualifying list as of 2/26/2018.

¹²⁵⁵ Incremental costs for indoor and outdoor fixtures based on ENERGY STAR Light Fixtures and Ceiling Fans Calculator, which cites "EPA research on available products, 2012." ENERGY STAR cost assumptions were reduced by 20% to account for falling LED prices.

¹²⁵⁶ Incremental costs for task/under cabinet and downlight fixtures are from the 2018 Michigan Energy Measures Database.

LOADSHAPE

Loadshape R06 - Residential Indoor Lighting

Loadshape R07 - Residential Outdoor Lighting

COINCIDENCE FACTOR

The summer peak coincidence factor is assumed to be 0.119 for residential and in-unit multifamily fixtures, 1257 0.273 for exterior fixtures, 1258 and 0.127 for unknown. 1259

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = ((Watts_{base}-Watts_{EE})/1000) * ISR * (1-Leakage) * Hours *WHF_e$

Where:

= Baseline is an average of lumen-equivalent EISA wattages for ENERGY STAR products WattsBase

within the fixture category; 1260 see table below.

Wattse = Actual wattage of LED fixture purchased / installed - If unknown, use default provided

below:1261

Fixture Category	Watts _{Base}	Watts _{EE}
Indoor	88.5	22.4
Downlight Task and Under Cabinet	45.2	11.6
Outdoor	79.6	18.3
Downlight	72.8	20.3

ISR = In Service Rate, the percentage of units rebated that are actually in service

 $= 1.0^{1262}$

= Adjustment to account for the percentage of program bulbs that move out (and in if Leakage

deemed appropriate)¹²⁶³ of the Utility Jurisdiction.

¹²⁵⁷ Based on the IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs. Average of values for standard and specialty bulbs.

¹²⁵⁸ Based on lighting logger study conducted as part of the PY5/6 ComEd Residential Lighting Program evaluation. the IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs was unable to provide coincidence factors for screw-based omnidirectional LEDs in exterior applications.

¹²⁵⁹Based on a weighted average of coincidence factors in interior and exterior applications, assuming 5% exterior lighting. The distribution of LEDs is based on the on-site lighting inventory conducted as part of the IL Statewide LED Lighting Logger study.

¹²⁶⁰ See "Analysis" tab within file Residential LED Fixtures Analysis June 2018.xlsx for baseline calculations.

¹²⁶¹ Average of ENERGY STAR product category watts for products at or above the version 2.1 efficacy specification

¹²⁶² ISR recommendation for fixtures in the Dunsky Energy Consulting, Livingston Energy Innovations and Opinion Dynamics Corporation; NEEP Emerging Technology Research Report, p 6-22.

¹²⁶³ Leakage in is only appropriate to credit to IL utility program savings if it is reasonably expected that the IL utility program marketing efforts played an important role in influencing customer to purchase the light bulbs. Furthermore, consideration that such customers might be free riders should be addressed. If leakage in is assessed, efforts should be made to ensure no double counting of savings occurs if the evaluation is estimating both leakage in and spillover savings of light bulbs.

Upstream (TOS) Lighting programs = Use deemed assumptions below: 1264

ComEd: 0.7%

Ameren: 6.6%

All other programs = 0

Hours = Average hours of use per year

Fixture Category	Hours
Indoor and Downlight	926 ¹²⁶⁵
Task/Under Cabinet	730 ¹²⁶⁶
Outdoor	2,475 ¹²⁶⁷

WHFe

= Waste heat factor for energy to account for cooling energy savings from efficient lighting

Bulb Location	WHFe
Interior single family	1.06 ¹²⁶⁸
Multifamily in unit	1.04 1269
Exterior or uncooled location	1.0
Unknown location	1.051 ¹²⁷⁰

For example, an indoor LED fixture is purchased through a ComEd retail program in 2019:

$$\Delta$$
kWh = ((88.5 – 22.4) /1000) * 1.0 * (1 – 0.007) * 926 * 1.06
= 64.4 kWh

¹²⁶⁴ Leakage rate is based upon review of PY7-9 evaluations from ComEd and PY8 for Ameren (see for more information) for LED omnidirectional and specialty lamps. Leakage rates for fixtures are an average of rates for standard and specialty lamps, reduced by half according to TAC agreement.

¹²⁶⁵ Assuming 365.25 days/year and average of recommended values for standard LED lamps (2.98) and specialty LED lamps (2.09) in interior locations from the IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs

¹²⁶⁶ Task/under cabinet hours of use are estimated at 2 hours per day.

¹²⁶⁷ Based on lighting logger study conducted as part of the PYS/6 ComEd Residential Lighting Program evaluation. The IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs was unable to provide hours of use for screw-based omnidirectional LEDs in exterior applications.

¹²⁶⁸ The value is estimated at 1.06 (calculated as 1 + (0.66*(0.27 / 2.8)). Based on cooling loads decreasing by 27% of the lighting savings (average result from REMRate modeling of several different configurations and IL locations of homes), assuming typical cooling system operating efficiency of 2.8 COP (starting from standard assumption of SEER 10.5 central AC unit, converted to 9.5 EER using algorithm (-0.02 * SEER2) + (1.12 * SEER) (from Wassmer, M. (2003). A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations. Masters Thesis, University of Colorado at Boulder), converted to COP = EER/3.412 = 2.8COP) and 66% of homes in Illinois having central cooling ("Table HC7.9 Air Conditioning in Homes in Midwest Region, Divisions, and States, 2009 from Energy Information Administration", 2009 Residential Energy Consumption Survey)

¹²⁶⁹ As above but using estimate of 45% of multifamily buildings in Illinois having central cooling (based on data from "Table HC7.1 Air Conditioning in U.S. Homes, By Housing Unit Type, 2009" which is for the whole of the US, scaled to IL air conditioning prevalence compared to US average)

¹²⁷⁰ Unknown is weighted average of interior v exterior (assuming 5% exterior lighting based on distribution of LEDs from on-site lighting inventory conducted as part of the IL Statewide LED Lighting Logger study) and SF v MF interior based on statewide weighted average of 69% single family and 31% multifamily, based on IL data from 2009 RECS Table HC2.9 Structural and Geographic Characteristics of Homes in Midwest Region, Divisions and States, 2009.

HEATING PENALTY

If electric heated home (if heating fuel is unknown assume gas, see Fossil Fuel section):

 $\Delta kWh^{1271} = -(((WattsBase - WattsEE) / 1000) * ISR * (1-Leakage) * Hours * HF) / \eta Heat$

Where:

HF = Heating Factor or percentage of light savings that must be heated

 $=49\%^{1272}$ for interior location

= 0% for exterior or unheated location

= 42%¹²⁷³ for unknown location

ηHeat = Efficiency in COP of Heating equipment

= actual. If not available use:1274

System Type	Age of Equipment	HSPF2 Estimate	COP _{HEAT} (COP Estimate) = (HSPF2/3.413)*0.85
Heat Pump	Before 2006	5.8	1.44
(if age unknown	After 2006 - 2014	6.5	1.62
assume 2006-2014)	2015 on	7.0	1.74
Resistance	N/A	N/A	1.00
Unknown ¹²⁷⁵	N/A	N/A	1.28

For example, using the same indoor LED fixture that is installed in home with 2.0 COP Heat Pump (including duct loss) through a ComEd retail program in 2019:

$$\Delta kWh_{1st year}$$
 = - (((88.5 - 22.4) / 1000) * 1.0 * (1 - 0.007) * 926 * 0.49) / 2.0 = - 14.9 kWh

Second and third year install savings should be calculated using the appropriate ISR and the delta watts and hours from the install year. The appropriate baseline shift adjustment should then be applied to all installs.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = ((WattsBase - WattsEE) / 1000) * ISR * (1-Leakage) * WHFd * CF$

Where:

¹²⁷¹ Negative value because this is an increase in heating consumption due to the efficient lighting.

¹²⁷² This means that heating loads increase by 49% of the lighting savings. This is based on the average result from REMRate modeling of several different configurations and IL locations of homes.

¹²⁷³ Based on a weighted average of interior and exterior hours of use from the IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs, assuming 15% exterior specialty lighting. The distribution of LEDs is based on the on-site lighting inventory conducted as part of the IL Statewide LED Lighting Logger study.

¹²⁷⁴ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate. Note efficiency should include duct losses. Defaults provided assume 15% duct loss for heat pumps.

¹²⁷⁵ Calculation assumes 35% Heat Pump and 65% Resistance, which is based upon data from Energy Information Administration, 2009 Residential Energy Consumption Survey, see "HC6.9 Space Heating in Midwest Region.xls", using average for East North Central Region. Average efficiency of heat pump is based on assumption that 50% are units from before 2006 and 50% from 2006-2014. Program or evaluation data should be used to improve this assumption if available.

WHFd

= Waste heat factor for demand to account for cooling savings from efficient lighting.

Bulb Location	WHFd
Interior single family	1.11 ¹²⁷⁶
Multifamily in unit	1.07 ¹²⁷⁷
Exterior or uncooled location	1.0
Unknown location	1.093 ¹²⁷⁸

CF

= Summer Peak Coincidence Factor for measure.

Bulb Location	CF
Interior	0.119 ¹²⁷⁹
Exterior	0.2731280
Unknown	0.127 ¹²⁸¹

Other factors as defined above

For example, for the same indoor LED fixture that is installed in a single family interior location through a ComEd retail program in 2019, the demand savings are:

$$\Delta kW = ((88.5 - 22.4) / 1000) * 1.0 * (1-0.007) * 1.11 * 0.119$$

= 0.0087 kW

Second and third year install savings should be calculated using the appropriate ISR and the delta watts and hours from the install year. The appropriate baseline shift adjustment should then be applied to all installs.

FOSSIL FUEL SAVINGS

Heating penalty if Natural Gas heated home, or if heating fuel is unknown.

 Δ Therms = - (((WattsBase - WattsEE) / 1000) * ISR * (1-Leakage) * Hours * HF * 0.03412) / η Heat

Where:

HF = Heating factor, or percentage of lighting savings that must be replaced by heating

system.

= 49% for interior or unknown location 1282

 $^{^{1276}}$ The value is estimated at 1.11 (calculated as 1 + (0.66 * 0.466 / 2.8)). See footnote relating to WHFe for details. Note the 46.6% factor represents the average Residential cooling coincidence factor calculated by dividing average load during the peak hours divided by the maximum cooling load.

¹²⁷⁷ As above but using estimate of 45% of multifamily buildings in Illinois having central cooling (based on data from "Table HC7.1 Air Conditioning in U.S. Homes, By Housing Unit Type, 2009" which is for the whole of the US, scaled to IL air conditioning prevalence compared to US average)

¹²⁷⁸ Unknown is weighted average of interior v exterior (assuming 5% exterior lighting based on distribution of LEDs from on-site lighting inventory conducted as part of the IL Statewide LED Lighting Logger study) and SF v MF interior based on statewide weighted average of 69% single family and 31% multifamily, based on IL data from 2009 RECS Table HC2.9 Structural and Geographic Characteristics of Homes in Midwest Region, Divisions and States, 2009.

¹²⁷⁹ Based on the IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs. Average of values for standard and specialty bulbs.

¹²⁸⁰ Based on lighting logger study conducted as part of the PY5/6 ComEd Residential Lighting Program evaluation. the IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs was unable to provide coincidence factors for screw-based omnidirectional LEDs in exterior applications.

¹²⁸¹ Based on a weighted average of coincidence factors in interior and exterior applications, assuming 5% exterior lighting. The distribution of LEDs is based on the on-site lighting inventory conducted as part of the IL Statewide LED Lighting Logger study. ¹²⁸² Average result from REMRate modeling of several different configurations and IL locations of homes

= 0% for exterior location

= 42% for unknown location 1283

0.03412 = Converts kWh to Therms

ηHeat = Average heating system efficiency.

 $= 0.70^{1284}$

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

For income eligible populations, an annual baseline cost of \$1.90 should be applied.

It is important to note that for cost-effectiveness screening purposes, the O&M cost adjustments should only be applied in cases where the light bulbs area actually in service and so should be multiplied by the appropriate ISR:

MEASURE CODE: RS-LTG-LDFX-V07-240101

REVIEW DEADLINE: 1/1/2026

¹²⁸³ Based on a weighted average of interior and exterior hours of use from the IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs, assuming 15% exterior specialty lighting. The distribution of LEDs is based on the on-site lighting inventory conducted as part of the IL Statewide LED Lighting Logger study.

¹²⁸⁴ This has been estimated assuming that natural gas central furnace heating is typical for Illinois residences (66% of Illinois homes have a Natural Gas Furnace (based on Energy Information Administration, 2009 Residential Energy Consumption Survey) In 2000, 24% of furnaces purchased in Illinois were condensing (based on data from GAMA, provided to Department of Energy during the federal standard setting process for residential heating equipment - see Furnace Penetration.xls). Furnaces tend to last up to 20 years and so units purchased 10 years ago provide a reasonable proxy for the current mix of furnaces in the State. Assuming typical efficiencies for condensing and non-condensing furnaces and duct losses, the average heating system efficiency is estimated as follows:

5.5.10 Holiday String Lighting

DESCRIPTION

This measure categorizes the savings from customers handing in incandescent string lighting typically used during the holidays and receiving equivalent LED string lighting. LED bulbs on string lights can consume up to 98% less power when compared to incandescent bulbs. Besides less energy to operate, LED string lighting offers many other advantages over incandescent: longer bulb life, a higher brightness, less heat buildup making them safer especially when used indoors on live trees, and better durability since they use a plastic covering over the diode instead of a glass bulb. 1285

This measure applies to mini, C7, and C9 bulb shape types used in residential locations. Description of the bulb types of string lighting are listed below: 1286, 1287

- Mini: About 1/4" wide x 5/8" high with a shape described as a miniature candle with a pointed tip. The mini is the most common type of string light today and shares about 80% of the market. They have a female-to-male push type base.
- C7: Approximately 1" wide x 1-1/2" high with a shape described as a strawberry. The C7 (and C9) are thought of as more "old fashioned" or traditional since they were the first types of string lighting used for decorative purposes. The C7 shares about 7% of the market and has a screw-in E12 candelabra base.
- C9: Similar in shape to the C7, the C9 is slightly larger at 1-1/4" wide x 2-1/2" high. The C9 shares about 5% of the market and has a screw-in E17 intermediate base.

A third variant of the "C" bulb exists, which is called C6. However, due to lack of availability of the C6 incandescent from retailers, it is assumed the market has already adopted the LED as the baseline for this bulb shape type and should not be claimed for utility program savings.

The implementation strategy for this measure is only geared towards residential customers. Furthermore, the deemed hours of operation are sourced on residential only. As such, the proposed deemed split of 100% Residential and 0% Commercial assumptions should be used.

This measure was developed to be applicable to the following program types: EREP. To ensure that the baseline is appropriate, the measure is limited to an exchange event where the customer has to turn in a string of inefficient lighting.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, new string lights must be LED and one of the eligible bulb shape categories listed in this measure (mini, C7, C9).

Some manufacturers offer integrated "smart" control of new LED strings; however, these are not included in this measure.

DEFINITION OF BASELINE EQUIPMENT

The baseline condition is the existing incandescent mini, C7, or C9 string lighting turned in during an exchange event.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The rated lifespan of LED bulbs for string lighting is in the range of 20,000 to 100,000 hours of use. However, the measure lifetime is capped at 7 years due to wear on bulbs and string from weather, sunlight, and annual installation

2025 IL TRM v13.0 Vol. 3 September 20, 2024 FINAL

¹²⁸⁵ See 'Christmas Lights Buying Guide – Hayneedle'.

 $^{^{\}rm 1286}$ See 'Christmas Lights Buying Guide – Hayneedle'.

¹²⁸⁷ See 'Christmas Lights Guide Visual'.

and storage. 1288

DEEMED MEASURE COST

Where possible, the actual, full cost of new LED string lighting should be used. If unavailable, assume the following costs.

Bulb Type	Measure Cost ¹²⁸⁹
Mini	\$15.38
C7	\$21.42
C9	\$17.28

Loadshape

Loadshape R16; Residential Holiday String Lighting

COINCIDENCE FACTOR

Due to the seasonal nature and evening operation of holiday string lights, there is no expected reduction in a utility's peak demand.

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

 Δ kWh = ((Watts_{base}-Watts_{EE})/1000) * ISR * (1-Leakage) * Hours *WHF_e

Where:

Wattsbase = Total wattage of the existing incandescent string lights = Bulb Wattage * # Bulbs; see

table below for baseline bulb wattage assumptions

Watts_{EE} = Actual total wattage of the new LED string lights = Bulb Wattage * # Bulbs. If

unknown, assume total wattage of new LED string lights = Bulb Wattage * # Bulbs; see

table below for LED bulb wattage assumptions

Where:

Bulb Wattage = Reference the "Bulb Wattage Assumptions" table below.

Bulb Wattage Assumptions 1290

Туре	Incandescent Bulb (Watts)	LED Bulb (Watts)
Mini	0.40	0.07
C7	5.00	0.48
C9	7.00	2.00

Bulbs = Actual quantity of bulbs on the string. If baseline is unknown, assume same as

the new string.

ISR = In Service Rate, or percentage of string lights that get installed. Derive from program

¹²⁸⁸ LED string lighting lifetime from https://www.christmasdesigners.com/blog/how-long-do-led-christmas-lights-really-last/ Christmas Designers'

 $^{^{1289}}$ See file Holiday Lights Research and Calcs_2018.xlsx for CLEAResult research on holiday string lighting costs.

¹²⁹⁰ Average wattages from PGE "Cost of holiday lights", published December 2021, and PA PUC Feb 2021.

evaluation analysis, otherwise assume 100%.

Leakage

= Adjustment to account for the percentage of program string lights that move out (and in, if deemed appropriate) of the Utility Jurisdiction.

= For an exchange event, assume 0% if customer is required to be a utility customer. If not, determine leakage rate through evaluation. If customer is not required to be utility customer and if leakage is not determined through evaluation, use the deemed leakage rates LED omnidirectional bulbs sold through Upstream (TOS) programs: 1291

ComEd: 1.6%

Ameren: 13.1%

Hours = Average hours of use per year

= 210 hours 1292

WHFe

= Waste heat factor for energy to account for cooling energy savings from efficient lighting, assumed value of 1.0 since operation of string lights (if indoors) does not coincide with cooling season and there are no interactive effects for outdoor string lights.

For example, a customer replaces a 50-bulb mini incandescent string with a 50-bulb mini LED string through exchange event:

$$\Delta$$
kWh = ((0.40 * 50) – (0.07 * 50))/1000) * 1.00 * (1 - 0) * 210 * 1.0
= 3.5 kWh

HEATING PENALTY

If electric heated home (if heating fuel is unknown assume gas, see Fossil Fuel section):

ΔkWh¹²⁹³ = - (((WattsBase - WattsEE)/1000) * ISR * (1-Leakage) * Hours * HF) / ηHeat

Where:

HF

= Heating Factor or percentage of light savings that must be heated

= 49% for interior or unknown location 1294

= 0% for exterior or unheated location

ηHeat

= Efficiency in COP of Heating equipment

= actual. If not available, use:1295

System Type	Age of Equipment	HSPF2 Estimate	COPheat (COP Estimate) = (HSPF2/3.413) * 0.85
Heat Pump	Before 2006	5.8	1.44

¹²⁹¹ Leakage rate is based upon review of PY8-CY2018 evaluations from ComEd and PY8 for Ameren.

¹²⁹² Based on typical holiday lighting hours of use (6 hours per day, 7 days per week for 5 weeks) from California Municipal Utilities Association "TRM 205 LED Holiday Lights."

¹²⁹³ Negative value because this is an increase in heating consumption due to the efficient lighting.

¹²⁹⁴ This means that heating loads increase by 49% of the lighting savings. This is based on the average result from REMRate modeling of several different configurations and IL locations of homes.

¹²⁹⁵ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate. Note efficiency should include duct losses. Defaults provided assume 15% duct loss for heat pumps.

System Type	Age of Equipment	HSPF2 Estimate	COPheat (COP Estimate) = (HSPF2/3.413) * 0.85
(if age unknown	After 2006-2014	6.5	1.62
assume 2006-2014)	2015 on	7.0	1.74
Resistance	N/A	N/A	1
Unknown ¹²⁹⁶	N/A	N/A	1.28

For example, using the same 50-bulb mini LED string that is installed in home with 2.0 COP Heat Pump (including duct loss):

$$\Delta$$
kWh = - ((((0.40 * 50) - (0.07 * 50))/1000) * 1.00 * (1 - 0) * 210 * 0.49) / 2.0 = -0.8 kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

FOSSIL FUEL SAVINGS

Heating penalty if installed in a natural gas heated home, or if heating fuel is unknown.

ΔTherms = - (((WattsBase - WattsEE)/1000) * ISR * (1-Leakage) * Hours * HF * 0.03412) / ηHeat

Where:

HF = Heating factor, or percentage of lighting savings that must be replaced by heating

system.

= 49% for interior or unknown location 1297

= 0% for exterior location

0.03412 = Converts kWh to Therms

ηHeat = Actual heating system efficiency

= 70% 1298

(0.24*0.92) + (0.76*0.8) * (1-0.15) = 0.70

¹²⁹⁶ Calculation assumes 35% Heat Pump and 65% Resistance, which is based upon data from Energy Information Administration, 2009 Residential Energy Consumption Survey, see "HC6.9 Space Heating in Midwest Region.xls", using average for East North Central Region. Average efficiency of heat pump is based on assumption that 50% are units from before 2006 and 50% from 2006-2014. Program or evaluation data should be used to improve this assumption if available.

¹²⁹⁷ Average result from REMRate modeling of several different configurations and IL locations of homes.

¹²⁹⁸ This has been estimated assuming that natural gas central furnace heating is typical for Illinois residences (66% of Illinois homes have a Natural Gas Furnace (based on Energy Information Administration, 2009 Residential Energy Consumption Survey). In 2000, 24% of furnaces purchased in Illinois were condensing (based on data from GAMA, provided to Department of Energy during the federal standard setting process for residential heating equipment - see Furnace Penetration.xls). Furnaces tend to last up to 20 years and so units purchased 10 years ago provide a reasonable proxy for the current mix of furnaces in the State. Assuming typical efficiencies for condensing and non-condensing furnaces and duct losses, the average heating system efficiency is estimated as follows:

For example, using the same 50-bulb mini LED string that is installed in a single family interior location with gas heating at 70% total efficiency:

$$\Delta$$
therms = - ((((0.40 * 50) - (0.07 * 50))/1000) * 1.00 * (1 - 0) * 210 * 0.49 * 0.03412) / 0.70 = - 0.08 therms

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-LTG-LEDH-V04-250101

REVIEW DEADLINE: 1/1/2028

5.5.11 LED Nightlights

DESCRIPTION

This measure describes savings from LED nightlights. This characterization assumes that the LED nightlight is installed in a residential location.

This measure was developed to be applicable to the following program types: TOS, NC.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

For this characterization to apply, the high-efficiency equipment must be a qualified LED nightlight.

DEFINITION OF BASELINE EQUIPMENT

The baseline condition is assumed to be an incandescent/halogen nightlight.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The estimated useful life of the is estimated is 8 years. 1299

DEEMED MEASURE COST

Where possible, the actual cost should be used and compared to the baseline cost. If the incremental cost is unknown, assume the following: 1300

Bulb Type	Year	Incandescent	LED	Incremental Cost
Nightlights	All	\$2.84	\$6.19	\$3.35

LOADSHAPE

Loadshape R07 - Residential Outdoor Lighting

COINCIDENCE FACTOR

Demand savings is assumed to be zero for this measure.

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 Δ kWh = ((WattsBase - WattsEE) / 1000) * ISR * (1-Leakage) * Hours * WHFe

Where:

Watts_{base} = Actual wattage if known, if unknown, assume 7W.¹³⁰¹

Watts_{EE} = Actual wattage of LED purchased / installed.

¹²⁹⁹ Southern California Edison Company, "LED, Electroluminescent & Fluorescent Night Lights", Work Paper WPSCRELG0029 Rev. 1, February 2009, p. 2. and p.3.

¹³⁰⁰ Average cost data provided in Stanley Mertz, "LED Nightlights Energy Efficiency Retail products programs", March 2018.

¹³⁰¹ Based on Stanley Mertz, "LED Nightlights Energy Efficiency Retail products programs", March 2018.

ISR = In Service Rate or the percentage of nightlights rebated that get installed

Program	In Service Rate (ISR) ¹³⁰²
Retail (Time of Sale)	97.9% ¹³⁰³
Direct Install	96.9% ¹³⁰⁴
School Kits	83.8% ¹³⁰⁵

Leakage = Adjustment to account for the percentage of program bulbs that move out (and in if deemed appropriate)¹³⁰⁶ of the Utility Jurisdiction.

KITS programs = Determined through evaluation

Upstream (TOS) Lighting programs = Use deemed assumptions below: 1307

ComEd: 2.0%

Ameren: 13.1%

Hours = Average hours of use per year

 $=4,380^{1308}$

WHFe = Waste heat factor for energy to account for cooling savings from efficient lighting

Bulb Location	WHFe
Interior single family	1.06 ¹³⁰⁹

¹³⁰² In Service Rates now represent the lifetime In Service Rates with the second and third year installations discounted by the Real Discount Rate of 0.46%. Lifetime ISR assumptions for efficiency kits are based upon comparing with CFL Distribution First year ISR and multiplying by the CFL Distribution Final ISR value, capped at 95%, and second and third year estimates based on same proportion of future installs. For all other programs The 98% Lifetime ISR assumption is based upon the standard CFL measure in the absence of any better reference. This value is based upon review of two evaluations:

_

^{&#}x27;Nexus Market Research, RLW Analytics and GDS Associates study; "New England Residential Lighting Markdown Impact Evaluation, January 20, 2009' and 'KEMA Inc, Feb 2010, Final Evaluation Report:, Upstream Lighting Program, Volume 1.' This implies that only 2% of bulbs purchased are never installed. The second and third year installations are based upon Ameren analysis of the Californian KEMA study showing that 54% of future installs occur in year 2 and 46% in year 3.

¹³⁰³ 1st year in service rate is based upon analysis of ComEd PY8, PY9 and CY2018 and Ameren PY8 intercept data (see 'RES Lighting ISR_2019.xlsx' for more information).

¹³⁰⁴ Consistent with assumption for standard CFLs (in the absence of evidence that it should be different for this bulb type). Based upon review of the PY2 and PY3 ComEd Direct Install program surveys. This value includes bulb failures in the 1st year to be consistent with the Commission approval of annualization of savings for first year savings claims. ComEd PY2 All Electric Single Family Home Energy Performance Tune-Up Program Evaluation, Navigant Consulting, December 21, 2010.

^{1305 1}st year ISR for school kits based on ComEd PY9 data for the Elementary Energy Education program.

¹³⁰⁶ Leakage in is only appropriate to credit to IL utility program savings if it is reasonably expected that the IL utility program marketing efforts played an important role in influencing customer to purchase the light bulbs. Furthermore, consideration that such customers might be free riders should be addressed. If leakage in is assessed, efforts should be made to ensure no double counting of savings occurs if the evaluation is estimating both leakage in and spillover savings of light bulbs.

¹³⁰⁷ Leakage rate is based upon review of PY7-9 evaluations from ComEd and PY5,6 and 8 for Ameren (see for more information). ¹³⁰⁸ Assumes nightlight is operating 12 hours per day, consistent with the 2016 Pennsylvania TRM.

¹³⁰⁹ The value is estimated at 1.06 (calculated as 1 + (0.66*(0.27 / 2.8)). Based on cooling loads decreasing by 27% of the lighting savings (average result from REMRate modeling of several different configurations and IL locations of homes), assuming typical cooling system operating efficiency of 2.8 COP (starting from standard assumption of SEER 10.5 central AC unit, converted to 9.5 EER using algorithm (-0.02 * SEER2) + (1.12 * SEER) (from Wassmer, M. (2003). A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations. Masters Thesis, University of Colorado at Boulder), converted to COP = EER/3.412 = 2.8COP) and 66% of homes in Illinois having central cooling ("Table HC7.9 Air Conditioning in Homes in Midwest Region, Divisions, and States, 2009 from Energy Information Administration", 2009 Residential Energy Consumption Survey)

Bulb Location	WHFe
Multifamily in unit	1.04 1310
Unknown location	1.054 ¹³¹¹

For example, a 0.3W LED nightlight is direct installed in single family interior location within ComEd territory:

$$\Delta$$
kWh = ((7 – 0.3) / 1000) * 0.969 * (1 – 0) * 4380 * 1.06
= 30.1 kWh

HEATING PENALTY

If electric heated home (if heating fuel is unknown assume gas, see Fossil Fuel section):

 $\Delta kWh^{1312} = -(((WattsBase - WattsEE) / 1000) * ISR * Hours * HF) / \eta Heat$

Where:=(

HF = Heating Factor or percentage of light savings that must be heated

= 49% for interior¹³¹³

ηHeat = Efficiency in COP of Heating equipment

= Actual. If not available use: 1314

System Type	Age of Equipment	HSPF2 Estimate	COP _{HEAT} (COP Estimate) = (HSPF2/3.413)*0.85
Heat Pump	Before 2006	5.8	1.44
(if age unknown	After 2006 - 2014	6.5	1.62
assume 2006-2014)	2015 on	7.0	1.74
Resistance	N/A	N/A	1.00
Unknown ¹³¹⁵	N/A	N/A	1.28

-

¹³¹⁰ As above but using estimate of 45% of multifamily buildings in Illinois having central cooling (based on data from "Table HC7.1 Air Conditioning in U.S. Homes, By Housing Unit Type, 2009" which is for the whole of the US, scaled to IL air conditioning prevalence compared to US average)

¹³¹¹ Unknown is based on statewide weighted average of 69% single family and 31% multifamily, based on IL data from 2009 RECS Table HC2.9 Structural and Geographic Characteristics of Homes in Midwest Region, Divisions and States, 2009.

¹³¹² Negative value because this is an increase in heating consumption due to the efficient lighting.

¹³¹³ This means that heating loads increase by 49% of the lighting savings. This is based on the average result from REMRate modeling of several different configurations and IL locations of homes.

¹³¹⁴ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate. Note efficiency should include duct losses. Defaults provided assume 15% duct loss for heat pumps.

¹³¹⁵ Calculation assumes 35% Heat Pump and 65% Resistance, which is based upon data from Energy Information Administration, 2009 Residential Energy Consumption Survey, see "HC6.9 Space Heating in Midwest Region.xls", using average for East North Central Region. Average efficiency of heat pump is based on assumption that 50% are units from before 2006 and 50% from 2006-2014. Program or evaluation data should be used to improve this assumption if available.

For example, a 0.3W LED nightlight is direct installed in single family interior location with a 2016 heat pump:

ΔkWh = - (((7 – 0.3) / 1000) * 0.969 * (1-0) * 4380 * 0.49) / 2.04

= - 6.83 kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

ΔkW = ((WattsBase - WattsEE) / 1 000) * ISR * (1-Leakage) * WHFd * CF

Where:

WHFd = Waste heat factor for demand to account for cooling savings from efficient lighting.

Bulb Location	WHFd
Interior single family or unknown location	1.11 ¹³¹⁶
Multifamily in unit	1.07 ¹³¹⁷
Unknown location	1.098 ¹³¹⁸

CF = Summer Peak Coincidence Factor for measure.

= 0

FOSSIL FUEL SAVINGS

Heating penalty if Natural Gas heated home, or if heating fuel is unknown.

 Δ therms = - (((WattsBase - WattsEE) / 1000) * ISR * Hours * HF * 0.03412) / η Heat

Where:

HF = Heating factor, or percentage of lighting savings that must be replaced by heating

system.

= 49% for interior 1319

0.03412 = Converts kWh to Therms

ηHeat = Average heating system efficiency

 $= 0.70^{1320}$

Other factors as defined above

(0.24*0.92) + (0.76*0.8) * (1-0.15) = 0.70

 $^{^{1316}}$ The value is estimated at 1.11 (calculated as 1 + (0.66 * 0.466 / 2.8)). See footnote relating to WHFe for details. Note the 46.6% factor represents the average Residential cooling coincidence factor calculated by dividing average load during the peak hours divided by the maximum cooling load.

¹³¹⁷ As above but using estimate of 45% of multifamily buildings in Illinois having central cooling (based on data from "Table HC7.1 Air Conditioning in U.S. Homes, By Housing Unit Type, 2009" which is for the whole of the US, scaled to IL air conditioning prevalence compared to US average)

¹³¹⁸ Unknown is based on statewide weighted average of 69% single family and 31% multifamily, based on IL data from 2009 RECS Table HC2.9 Structural and Geographic Characteristics of Homes in Midwest Region, Divisions and States, 2009.

¹³¹⁹ Average result from REMRate modeling of several different configurations and IL locations of homes

¹³²⁰ This has been estimated assuming that natural gas central furnace heating is typical for Illinois residences (66% of Illinois homes have a Natural Gas Furnace (based on Energy Information Administration, 2009 Residential Energy Consumption Survey) In 2000, 24% of furnaces purchased in Illinois were condensing (based on data from GAMA, provided to Department of Energy during the federal standard setting process for residential heating equipment - see Furnace Penetration.xls). Furnaces tend to last up to 20 years and so units purchased 10 years ago provide a reasonable proxy for the current mix of furnaces in the State. Assuming typical efficiencies for condensing and non-condensing furnaces and duct losses, the average heating system efficiency is estimated as follows:

For example, a 0.3W LED nightlight is direct installed in single family interior location with gas heating at 70% total efficiency:

 Δ therms = - (((7 - 0.3) / 1000) * 0.969 * (1-0) * 4380 * 0.49* 0.03412) / 0.70

= - 0.68 therms

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

MEASURE CODE: RS-LTG-NITL-V03-250101

REVIEW DEADLINE: 1/1/2028

5.5.12 Connected LED Lamps

DESCRIPTION

Many home devices in the market have become integrated with smart technology in recent years. Home devices able to connect to Wifi or a mobile network allow the user to control the device over the internet. This measure defines the savings associated with connected lighting. Connected LEDs allow for remote user control through a smart device, such as smart phone, tablet, or smart speaker. The standard LED provides light in one shade at one lumen level and color temperature. Connected LEDs have options integrated that allow for customizable color, color temperature, and lumen output. The Connected LED can also be turned on and off with a set schedule or controlled remotely. Savings from this measure come from both reduced hours of operation and dimming.

This measure was developed to be applicable to the following program types: TOS, NC

DEFINITION OF EFFICIENT EQUIPMENT

For this characterization to apply, the efficient condition must be LED lighting that is controlled by a smart device. The savings for this measure are the estimated incremental control savings compared to a non-connected efficient lamp. Some connected LEDs come with hubs for managing their operations. Connected LEDs with hubs do not qualify for this savings characterization, as the energy use by the hub cancels out the savings attributed to the connectivity of the lamp.

DEFINITION OF BASELINE EQUIPMENT

The baseline condition is the efficient LED without the connected capabilities.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The deemed measure life is 6.1 years for exterior application. ¹³²¹ For all other applications, lifetimes are capped at 10 years. ¹³²²

DEEMED MEASURE COST

The incremental cost can be assumed to be \$20, the difference between the average cost of the baseline non-connected LED and the average cost of the connected LED. 1323

LOADSHAPE

Loadshape R06 – Residential Indoor Lighting

Loadshape R07 – Residential Outdoor Lighting

COINCIDENCE FACTOR

The summer peak coincidence factor is assumed to be 0.128 for Residential and in-unit Multi Family bulbs, 1324 0.273

¹³²¹ ENERGY STAR v2.1 requires omnidirectional LED bulbs to be rated for at least 15,000 hours. 15000/2475 (exterior hours of use) = 6.1 years.

¹³²² Based on recommendation in the Dunsky Energy Consulting, Livingston Energy Innovations and Opinion Dynamics Corporation; NEEP Emerging Technology Research Report, p 6-18.

¹³²³ Estimate based on review of available product and estimates provided in King J., ACEEE, "Energy Impacts of Smart Home Technologies", April 2018.

¹³²⁴ Based on the IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs.

for exterior bulbs, 1325 and 0.135 for unknown. 1326

Use Multifamily if: Building meets utility's definition for multifamily.

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

ΔkWh = (((Watts_{EE}/1000) * HOURS * SVGe * WHFe) - Standby_{kWh}) * ISR * (1 – Leakage)

Where:

WattsEE

= Actual wattage of LED. If unknown, then use defaults provided below: 1327

Minimum Lumens	Maximum Lumens	LED Wattage (WattsEE)
310	399	4.0
400	749	6.6
750	899	9.6
900	1,399	13.1
1,400	1,999	16.0
2,000	2,999	21.8
3,000	3,299	28.9

HOURS = Average hours of use per year

Installation Location	Hours
Residential and in-unit Multi Family	1,089 ¹³²⁸
Exterior	2,475 ¹³²⁹
Unknown	1,159 ¹³³⁰

SVGe

= Percentage of annual lighting energy saved by lighting control; determined on a site-specific basis or using default below

¹³²⁵ Based on lighting logger study conducted as part of the PY5/6 ComEd Residential Lighting Program evaluation. the IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs was unable to provide coincidence factors for screw-based omnidirectional LEDs in exterior applications.

¹³²⁶Based on a weighted average of coincidence factors in interior and exterior applications, assuming 5% exterior lighting. The distribution of LEDs is based on the on-site lighting inventory conducted as part of the IL Statewide LED Lighting Logger study.

¹³²⁷ See file "LED Lamp Updates 2021-06-09" for details on Guidehouse lamp wattage calculations based on equivalent baseline wattage and LED wattage of available ENERGY STAR product.

¹³²⁸ Based on the IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs.

¹³²⁹ Based on lighting logger study conducted as part of the PYS/6 ComEd Residential Lighting Program evaluation. The IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs was unable to provide hours of use for screw-based omnidirectional LEDs in exterior applications.

¹³³⁰ Based on a weighted average of hours of use in interior and exterior applications, assuming 5% exterior lighting. The distribution of LEDs is based on the on-site lighting inventory conducted as part of the IL Statewide LED Lighting Logger study.

 $= 0.37^{1331}$

ISR

= In Service Rate, the percentage of lamps rebated that are actually in service.

Program		Weighted Average 1 st year In Service Rate (ISR) ¹³³²
Retail (Time	e of Sale)	98.0%
Direct Install		94.5%
	LED Distribution	83%
	School Kits	84%
Efficiency	Direct Mail Kits	93%
Efficiency Kits	Direct Mail Kits, Income Qualified	95%
	Community Distributed Kits	95%
Food Bank / Pantry Distribution		98%

Leakage

= Adjustment to account for the percentage of program bulbs that move out (and in if deemed appropriate)¹³³³ of the Utility Jurisdiction.

KITS programs = Determined through evaluation

Upstream (TOS) Lighting programs = Use deemed assumptions below: 1334

ComEd: 0.8%

Ameren: 13.1%

All other programs = 0

WHFe

= Waste heat factor for energy to account for cooling savings

Bulb Location	WHFe
Interior single family	1.06 ¹³³⁵

¹³³¹ Based on Lockheed Martin, 'Home Energy Management System/Cmart Lighting Pilot for National Grid's Massachusetts and Rhode Island Residential Energy Efficiency Programs', Final Report, March 18, 2019. The study found the energy consumption of the LED to be 11.5/1000 * 1200 hours = 13.8kWh. Savings from the smart lamp included both geo fencing (96% of studied homes providing 5.1kWh of savings) and in-room occupancy (3% of studied homes providing 6.6kWh of savings), for a total savings of 5.1kWh (0.96*5.1 + 0.03*6.6). As a percentage of the LED consumption this is 5.1/13.8 = 37%.

¹³³² ISRs are consistent with the LED Screw Based Standard Lamp measure, however since 2nd and 3rd year savings for this measure are so minimal, for ease of implementation the 3 year installs are discounted using the real discount rate to a single assumption.

¹³³³ Leakage in is only appropriate to credit to IL utility program savings if it is reasonably expected that the IL utility program marketing efforts played an important role in influencing customer to purchase the light bulbs. Furthermore, consideration that such customers might be free riders should be addressed. If leakage in is assessed, efforts should be made to ensure no double counting of savings occurs if the evaluation is estimating both leakage in and spillover savings of light bulbs.

¹³³⁴ Leakage rate is based upon review of PY8-CY2018 evaluations from ComEd and PY8 for Ameren.

¹³³⁵ The value is estimated at 1.06 (calculated as 1 + (0.66*(0.27 / 2.8)). Based on cooling loads decreasing by 27% of the lighting savings (average result from REMRate modeling of several different configurations and IL locations of homes), assuming typical cooling system operating efficiency of 2.8 COP (starting from standard assumption of SEER 10.5 central AC unit, converted to 9.5 EER using algorithm (-0.02 * SEER2) + (1.12 * SEER) (from Wassmer, M. (2003). A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations. Masters Thesis, University of Colorado at Boulder), converted to COP = EER/3.412 = 2.8COP) and 66% of homes in Illinois having central cooling ("Table HC7.9 Air Conditioning in Homes in Midwest Region, Divisions, and States, 2009 from Energy Information Administration", 2009 Residential Energy Consumption Survey)

Bulb Location	WHFe
Multifamily in unit	1.04 ¹³³⁶
Exterior or uncooled location	1.0
Unknown location	1.051 ¹³³⁷

StandbykWh

= Standby power draw of the controlled lamp. Use actual value from manufacturer specification. If not known then assume:

 $= 0.63 \text{ kWh}^{1338}$

For example, a 9W Connected LED is purchased through a ComEd upstream program.

 $\Delta kWh_{1st \ year \ installs}$ = (((9/1000) * 1,089 * 0.37 * 1.051) - 0.63) * 0.9 * (1 - 0.008)

= 2.84 kWh

HEATING PENALTY

If electric heated home (if heating fuel is unknown assume gas, see Fossil Fuel section):

 $\Delta kWh^{1339} = -(((WattsBase - WattsEE) / 1000) * ISR * Hours * HF) / \eta Heat$

Where:

HF = Heating Factor or percentage of light savings that must be heated

= 49% for interior 1340

ηHeat = Efficiency in COP of Heating equipment

= Actual. If not available use: 1341

System Type	Age of Equipment	HSPF2 Estimate	COP _{HEAT} (COP Estimate) = (HSPF2/3.413)*0.85
Heat Pump	Before 2006	5.8	1.44
(if age unknown	After 2006 - 2014	6.5	1.62
assume 2006-2014)	2015 on	7.0	1.74
Resistance	N/A	N/A	1.00
Unknown ¹³⁴²	N/A	N/A	1.28

¹³³⁶ As above but using estimate of 45% of multifamily buildings in Illinois having central cooling (based on data from "Table HC7.1 Air Conditioning in U.S. Homes, By Housing Unit Type, 2009" which is for the whole of the US, scaled to IL air conditioning prevalence compared to US average)

¹³³⁷ Unknown is weighted average of interior v exterior (assuming 5% exterior lighting based on distribution of LEDs from on-site lighting inventory conducted as part of the IL Statewide LED Lighting Logger study) and SF v MF interior based on statewide weighted average of 69% single family and 31% multifamily, based on IL data from 2009 RECS Table HC2.9 Structural and Geographic Characteristics of Homes in Midwest Region, Divisions and States, 2009.

¹³³⁸ Based on Lockheed Martin, 'Home Energy Management System/Cmart Lighting Pilot for National Grid's Massachusetts and Rhode Island Residential Energy Efficiency Programs', Final Report, March 18, 2019.

¹³³⁹ Negative value because this is an increase in heating consumption due to the efficient lighting.

¹³⁴⁰ This means that heating loads increase by 49% of the lighting savings. This is based on the average result from REMRate modeling of several different configurations and IL locations of homes.

¹³⁴¹ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate. Note efficiency should include duct losses. Defaults provided assume 15% duct loss for heat pumps.

¹³⁴² Calculation assumes 35% Heat Pump and 65% Resistance, which is based upon data from Energy Information Administration,

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 Δ kWh = (Watts_{EE}/1000) * SVGd * WHFd * ISR * (1 – Leakage) * CF

Where:

SVGd = Percentage of annual lighting demand saved by lighting control; determined on a site-

specific basis or using default below

 $= 0.37^{1343}$

WHFd = Waste heat factor for demand to account for cooling savings from efficient lighting.

Bulb Location	WHFd
Interior single family	1.11 ¹³⁴⁴
Multifamily in unit	1.07 ¹³⁴⁵
Exterior or uncooled location	1.0
Unknown location	1.093 ¹³⁴⁶

CF = Summer Peak Coincidence Factor for measure.

Bulb Location	CF
Interior	0.128 ¹³⁴⁷
Exterior	0.273 ¹³⁴⁸
Unknown	0.135 ¹³⁴⁹

For example, a 9W Connected LED is purchased through a ComEd upstream program.

 $\Delta kW_{1st \ year \ installs}$ = (((9/1000) * 0.37 * 1.093)) * 0.9 * (1 - 0.008)

= 0.0032 kW

FOSSIL FUEL SAVINGS

Heating penalty if Natural Gas heated home, or if heating fuel is unknown.

2009 Residential Energy Consumption Survey, see "HC6.9 Space Heating in Midwest Region.xls", using average for East North Central Region. Average efficiency of heat pump is based on assumption that 50% are units from before 2006 and 50% from 2006-2014. Program or evaluation data should be used to improve this assumption if available.

¹³⁴³ Assumed equal to SVGe.

 $^{^{1344}}$ The value is estimated at 1.11 (calculated as 1 + (0.66 * 0.466 / 2.8)). See footnote relating to WHFe for details. Note the 46.6% factor represents the average Residential cooling coincidence factor calculated by dividing average load during the peak hours divided by the maximum cooling load.

¹³⁴⁵ As above but using estimate of 45% of multifamily buildings in Illinois having central cooling (based on data from "Table HC7.1 Air Conditioning in U.S. Homes, By Housing Unit Type, 2009" which is for the whole of the US, scaled to IL air conditioning prevalence compared to US average)

¹³⁴⁶ Unknown is weighted average of interior v exterior (assuming 5% exterior lighting based on distribution of LEDs from on-site lighting inventory conducted as part of the IL Statewide LED Lighting Logger study) and SF v MF interior based on statewide weighted average of 69% single family and 31% multifamily, based on IL data from 2009 RECS Table HC2.9 Structural and Geographic Characteristics of Homes in Midwest Region, Divisions and States, 2009.

¹³⁴⁷ Based on the IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs.

¹³⁴⁸ Based on lighting logger study conducted as part of the PY5/6 ComEd Residential Lighting Program evaluation. the IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs was unable to provide coincidence factors for screw-based omnidirectional LEDs in exterior applications.

¹³⁴⁹ Based on a weighted average of coincidence factors in interior and exterior applications, assuming 5% exterior lighting. The distribution of LEDs is based on the on-site lighting inventory conducted as part of the IL Statewide LED Lighting Logger study.

 Δ therms = - (((WattsBase - WattsEE) / 1000) * ISR * Hours * HF * 0.03412) / η Heat

Where:

HF = Heating factor, or percentage of lighting savings that must be replaced by heating

system.

= 49% for interior¹³⁵⁰

0.03412 = Converts kWh to Therms

ηHeat = Average heating system efficiency

= 0.70 1351

Other factors as defined above

WATER AND OTHER NON-ENERGY IMPACT DESCRIPTIONS AND CALCULATION

NA

DEEMED O&M COST ADJUSTMENT CALCULATION

NA

MEASURE CODE: RS-LTG-LEDC-V04-250101

REVIEW DEADLINE: 1/1/2026

¹³⁵⁰ Average result from REMRate modeling of several different configurations and IL locations of homes

¹³⁵¹ This has been estimated assuming that natural gas central furnace heating is typical for Illinois residences (66% of Illinois homes have a Natural Gas Furnace (based on Energy Information Administration, 2009 Residential Energy Consumption Survey) In 2000, 24% of furnaces purchased in Illinois were condensing (based on data from GAMA, provided to Department of Energy during the federal standard setting process for residential heating equipment - see Furnace Penetration.xls). Furnaces tend to last up to 20 years and so units purchased 10 years ago provide a reasonable proxy for the current mix of furnaces in the State. Assuming typical efficiencies for condensing and non-condensing furnaces and duct losses, the average heating system efficiency is estimated as follows:

5.5.13 EISA Exempt LED Lighting

DESCRIPTION

This characterization provides savings assumptions for LED lamps and fixture types that are exempt from the EISA legislation. This characterization assumes that the LED lamp is installed in a residential location. Where the implementation strategy does not allow for the installation location to be known (e.g., an upstream retail program) a deemed split of 97% Residential and 3% Commercial assumptions should be used.¹³⁵²

This measure was developed to be applicable to the following program types: TOS, NC, EREP, DI, KITS.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, new lamps must be ENERGY STAR labeled or equivalent to the most recent version of ENERGY STAR specifications or be listed on the Design Lights Consortium Qualifying Product List. Note a new ENERGY STAR specification v2.1 became effective on 1/2/2017.

DEFINITION OF BASELINE EQUIPMENT

This measure is only for lamp and fixture types that are exempt from EISA, including lamps with an initial lumen output of less than 310 lumens, with initial lumen output greater than 3,300 lumens, and Task/Undercabinet Fixtures with a linear fluorescent baseline.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The average rated life for lamps on the ENERGY STAR Qualified Products list (accessed 6/16/2020) is approximately 20,000 hours for omnidirectional lamps, 17,000 hours for decorative lamps and 25,000 for directional lamps. The deemed measure life is 8 years for exterior omnidirectional lamps and 6.9 years for exterior decorative lamps and lifetimes are capped at 10 years for other applications. For early replacement measures, if replacing a halogen or incandescent bulb, the remaining life is assumed to be 333 hours. For CFL's, the remaining life is 3,333 hours.

The rated life of linear task and under cabinet fixtures is 45,000 hours ¹³⁵⁵ and for T-LEDS is 50,000 hours. However, all fixture lifetimes are capped at 15 years. ¹³⁵⁶

DEEMED MEASURE COST

The price of LED lamps is falling quickly. Where possible, the actual LED lamp cost should be used and compared to the baseline cost provided below. If the incremental cost is unknown, assume the following:

Туре	Incremental Cost
Omni-directional	\$1.45 ¹³⁵⁷
A-Lamps	
Decorative	\$1.66

¹³⁵² RES v C&I split is based on a weighted (by sales volume) average of ComEd PY8, PY9 and CY2018 and Ameren PY8 in store intercept survey results. See 'RESvCI Split_2019.xlsx'.

2025 IL TRM v13.0 Vol. 3 September 20, 2024 FINAL

¹³⁵³ Based on recommendation in the Dunsky Energy Consulting, Livingston Energy Innovations and Opinion Dynamics Corporation; NEEP Emerging Technology Research Report, p 6-18.

¹³⁵⁴ Representing a third of the expected lamp lifetime.

¹³⁵⁵ Average rated lives are based on the average rated lives of fixtures available on the ENERGY STAR qualifying list as of 2/26/2018.

¹³⁵⁶ Based on recommendation in the Dunsky Energy Consulting, Livingston Energy Innovations and Opinion Dynamics Corporation; NEEP Emerging Technology Research Report, p 6-18.

¹³⁵⁷ Baseline and LED lamp costs are based on field data collected by CLEAResult and provided by ComEd. See ComEd Pricing Projections 06302016.xlsx for analysis.

Туре	Incremental Cost
Directional	\$1.65
Linear Task/Under Cabinet	\$18 ¹³⁵⁸
T-LEDs	\$13 ¹³⁵⁹

LOADSHAPE

Loadshape R06 - Residential Indoor Lighting

Loadshape R07 - Residential Outdoor Lighting

COINCIDENCE FACTOR

The summer peak coincidence factor is assumed to be 0.128 for Residential and in-unit Multi Family bulbs, ¹³⁶⁰ 0.273 for exterior bulbs, ¹³⁶¹ and 0.135 for unknown, ¹³⁶²

Use Multifamily if: Building meets utility's definition for multifamily.

Algo	rithm
Aigu	

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

ΔkWh = ((Watts_{base}-Watts_{EE})/1000) * ISR * (1-Leakage) * Hours *WHF_e

Where:

Wattsbase = Input wattage of the existing or baseline system. Reference the "LED New and Baseline

Assumptions" table for default values.

Wattsee = Actual wattage of LED purchased / installed. If unknown, use default provided

below:1363

LED New and Baseline Assumptions Table

¹³⁵⁸ Incremental costs for task/under cabinet and downlight fixtures are from the 2018 Michigan Energy Measures Database.

¹³⁵⁹ Consistent with measure 4.5.4 LED Bulbs and Fixtures in Volume 2.

¹³⁶⁰ Based on the IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs.

¹³⁶¹ Based on lighting logger study conducted as part of the PY5/6 ComEd Residential Lighting Program evaluation. the IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs was unable to provide coincidence factors for screw-based omnidirectional LEDs in exterior applications.

¹³⁶²Based on a weighted average of coincidence factors in interior and exterior applications, assuming 5% exterior lighting. The distribution of LEDs is based on the on-site lighting inventory conducted as part of the IL Statewide LED Lighting Logger study. ¹³⁶³ See file "LED Lamp Updates 2021-06-09" for details on Guidehouse lamp wattage calculations based on equivalent baseline wattage and LED wattage of available ENERGY STAR product.

Туре		Minimum Lumens	Maximum Lumens	LED Wattage (WattsEE)	Baseline (WattsBase)	Delta Watts
		120	309	4.0	25	21.0
	A-Lamps	3,300	3,999	28.9	200	171.1
		4,000	5,000	35.7	300	264.3
	Globe (medium and intermediate bases less than 750 lumens)	150	309	3.0	25	22
	Globe (candelabra bases less than 1050 lumens)	150	309	3.5	25	21.5
	Decorative	160	299	2.6	25	22.4
Decorative	(Shapes B, BA, C, CA, DC, F, G, medium and intermediate bases less than 750 lumens)	300	309	4.3	40	35.7
	Decorative	120	159	1.5	15	13.5
	(Shapes B, BA, C, CA, DC, F,	160	299	2.7	25	22.3
	G, candelabra bases less than 1050 lumens)	300	309	4.2	40	35.8
	Decorative (Shape ST)	250	309	6.5	40	33.5
	Decorative	50	75	1.0	11	10.0
	(Shape S)	100	120	1.2	15	13.8
	(Shape 3)	120	309	2.25	25	22.8
	Reflector lamp types with medium screw bases (PAR20, PAR30(S,L), PAR38, R40, etc.) w/ diameter >2.25"	3,300	4,200	27.3	250	222.7
Reflector lamp types with medium screw bases (PAR16, R14, R16, etc.) w/ diameter <2.25" (*see exceptions below)		280	309	4.6	35	30.4
*MR16		250	309	3.8	20.0	16.2
Line	ar Task/Under Cabinet	Α	\II	11.6	45.2	33.6
			1,199	8.9	15	6.1
T-LEDs		1,200	2,399	15.8	28.2	12.4
		2,400		22.9	41.8	18.9

ISR = In Service Rate, the percentage of lamps rebated that are actually in service.

	Program	In Service Rate (ISR) ¹³⁶⁴
Retail (Time	e of Sale)	97.9% ¹³⁶⁵
Direct Insta	II	94.5% ¹³⁶⁶
Virtual Assessment followed by Unverified Self-Install		97.9% ¹³⁶⁷
	LED Distribution ¹³⁶⁹	82.8%
	School Kits ¹³⁷⁰	83.8%
Efficiency	Direct Mail Kits ¹³⁷¹	91.8%
Kits ¹³⁶⁸	Direct Mail Kits, Income Qualified ¹³⁷²	60%
	Community Distributed Kits ¹³⁷³	95.0%
Food Bank / Pantry Distribution 1374		97.9% ¹³⁷⁵

Leakage

= Adjustment to account for the percentage of program bulbs that move out (and in if deemed appropriate)¹³⁷⁶ of the Utility Jurisdiction.

¹³⁶⁴ In Service Rates now represent the lifetime In Service Rates with the second and third year installations discounted by the Real Discount Rate of 0.46%. Lifetime ISR assumptions for efficiency kits are based upon comparing with CFL Distribution First year ISR and multiplying by the CFL Distribution Final ISR value, capped at 95%, and second and third year estimates based on same proportion of future installs. For all other programs Tthe 98% Lifetime ISR assumption is based upon the standard CFL measure in the absence of any better reference. This value is based upon review of two evaluations:

^{&#}x27;Nexus Market Research, RLW Analytics and GDS Associates study; "New England Residential Lighting Markdown Impact Evaluation, January 20, 2009' and 'KEMA Inc, Feb 2010, Final Evaluation Report:, Upstream Lighting Program, Volume 1.' This implies that only 2% of bulbs purchased are never installed. The second and third year installations are based upon Ameren analysis of the Californian KEMA study showing that 54% of future installs occur in year 2 and 46% in year 3.

¹³⁶⁵ 1st year in service rate is based upon analysis of ComEd PY8, PY9 and CY2018 and Ameren PY8 intercept data (see 'RES Lighting ISR 2019.xlsx' for more information).

¹³⁶⁶ Based upon average of Navigant low income single family direct install field work LED ISR and Standard CFL assumption in the absence of better data, and is based upon review of the PY2 and PY3 ComEd Direct Install program surveys. This value includes bulb failures in the 1st year to be consistent with the Commission approval of annualization of savings for first year savings claims. ComEd PY2 All Electric Single Family Home Energy Performance Tune-Up Program Evaluation, Navigant Consulting, December 21, 2010.

¹³⁶⁷ An equal weighted average of Direct Install and Direct Mail Kit ISRs. Interest and applicability of measures confirmed through virtual assessment.

¹³⁶⁸ In Service Rates provided are for the bulb within a kit only. Given the significant differences in program design and the level of education provided through Efficiency Kits programs, the evaluators should apply the ISR estimated through evaluations (either past evaluations or the current program year evaluation) of the specific Efficiency Kits program. In cases where program-specific evaluation results for an ISR are unavailable, the default ISR values for Efficiency Kits provide may be used.

¹³⁶⁹ Free bulbs provided without request, with little or no education. Consistent with Standard CFL assumptions.

¹³⁷⁰ 1st year ISR for school kits based on ComEd PY9 data for the Elementary Energy Education program. Final ISR assumptions are based upon comparing with CFL Distribution First year ISR and multiplying by the CFL Distribution Final ISR value, and second and third year estimates based on same proportion of future installs.

¹³⁷¹ Opt-in program to receive kits via mail, with little or no education. Consistent with Standard CFL assumptions.

¹³⁷² Research from 2021 Ameren Illinois Income Qualified participant survey (customer self-report), available on IL SAG website: https://ilsag.s3.amazonaws.com/AIC-Income-Qualified-Initiative-Participant-Survey-Results-Memo-FINAL-2022-02-01.pdf ¹³⁷³ Kits distributed in a community setting, targeted to income qualified communities. Research from 2018 Ameren Illinois Income Qualified participant survey.

¹³⁷⁴ Free bulbs provided through local food banks and food pantries.

¹³⁷⁵ 1st year ISR is determined based on online surveys conducted for ComEd CY2018 Food Bank LED Distribution program. See 'CY2018 ComEd Foodbank LED Dist Survey Results_Navigant'.

Leakage in is only appropriate to credit to IL utility program savings if it is reasonably expected that the IL utility program marketing efforts played an important role in influencing customer to purchase the light bulbs. Furthermore, consideration that such customers might be free riders should be addressed. If leakage in is assessed, efforts should be made to ensure no double counting of savings occurs if the evaluation is estimating both leakage in and spillover savings of light bulbs.

KITS programs = Determined through evaluation

Upstream (TOS) Lighting programs = Use deemed assumptions below: 1377

ComEd: 0.8%

Ameren: 13.1%

All other programs = 0

Hours = Average hours of use per year

Туре	Installation Location	Hours
Omnidirectional	Residential and in-unit Multi Family	1,089 ¹³⁷⁸
	Exterior	2,475 ¹³⁷⁹
A-Lamps	Unknown	1,159 ¹³⁸⁰
Descriptive and	Residential and In-Unit Multi Family	763 ¹³⁸¹
Decorative and	Exterior	2,475 ¹³⁸²
Directional Lamps	Unknown	1,020 ¹³⁸³
Linear Task/Under Cabinet	All	730 ¹³⁸⁴
T-LEDs	All	730 ¹³⁸⁵

WHFe = Waste heat factor for energy to account for cooling energy savings from efficient lighting

Bulb Location	WHFe
Interior single family	1.06 ¹³⁸⁶
Multifamily in unit	1.04 ¹³⁸⁷

¹³⁷⁷ Leakage rate is based upon review of PY8-CY2018 evaluations from ComEd and PY8 for Ameren.

¹³⁷⁸ Based on the IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs.

¹³⁷⁹ Based on lighting logger study conducted as part of the PY5/6 ComEd Residential Lighting Program evaluation. The IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs was unable to provide hours of use for screw-based omnidirectional LEDs in exterior applications.

¹³⁸⁰ Based on a weighted average of hours of use in interior and exterior applications, assuming 5% exterior lighting. The distribution of LEDs is based on the on-site lighting inventory conducted as part of the IL Statewide LED Lighting Logger study.

¹³⁸¹ Based on the IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs.

¹³⁸² Based on lighting logger study conducted as part of the PY5/6 ComEd Residential Lighting Program evaluation. The IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs was unable to provide hours of use for specialty LEDs in exterior applications.

¹³⁸³ Based on a weighted average of interior and exterior hours of use from the IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs, assuming 15% exterior specialty lighting. The distribution of LEDs is based on the on-site lighting inventory conducted as part of the IL Statewide LED Lighting Logger study.

¹³⁸⁴ Task/under cabinet hours of use are estimated at 2 hours per day.

¹³⁸⁵ Consistent with Linear Task/Under Cabinet assumption.

¹³⁸⁶ The value is estimated at 1.06 (calculated as 1 + (0.66*(0.27 / 2.8)). Based on cooling loads decreasing by 27% of the lighting savings (average result from REMRate modeling of several different configurations and IL locations of homes), assuming typical cooling system operating efficiency of 2.8 COP (starting from standard assumption of SEER 10.5 central AC unit, converted to 9.5 EER using algorithm (-0.02 * SEER2) + (1.12 * SEER) (from Wassmer, M. (2003). A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations. Masters Thesis, University of Colorado at Boulder), converted to COP = EER/3.412 = 2.8COP) and 66% of homes in Illinois having central cooling ("Table HC7.9 Air Conditioning in Homes in Midwest Region, Divisions, and States, 2009 from Energy Information Administration", 2009 Residential Energy Consumption Survey)

¹³⁸⁷ As above but using estimate of 45% of multifamily buildings in Illinois having central cooling (based on data from "Table

Bulb Location	WHFe
Exterior or uncooled location	1.0
Unknown location	1.051 ¹³⁸⁸

For example, an 4W LED lamp, 300 lumens, is installed in the interior of a home. The customer purchased the lamp through a ComEd upstream program:

$$\Delta$$
kWh = ((25.0 - 4) /1000) * 0.784 * (1 - 0.008) * 1,089 * 1.06
= 18.9 kWh

HEATING PENALTY

If electric heated home (if heating fuel is unknown assume gas, see Fossil Fuel section):

 $\Delta kWh^{1389} = -(((WattsBase - WattsEE) / 1000) * ISR * (1-Leakage) * Hours * HF) / \eta Heat$

Where:

HF = Heating Factor or percentage of light savings that must be heated

= 49% for interior¹³⁹⁰

= 0% for exterior or unheated location

= 42% for unknown location 1391

ηHeat = Efficiency in COP of Heating equipment

= actual. If not available use: 1392

System Type	Age of Equipment	HSPF2 Estimate	COP _{HEAT} (COP Estimate) = (HSPF2/3.413)*0.85
Heat Pump	Before 2006	5.8	1.44
(if age unknown	After 2006 - 2014	6.5	1.62
assume 2006-2014)	2015 on	7.0	1.74
Resistance	N/A	N/A	1.00

_

HC7.1 Air Conditioning in U.S. Homes, By Housing Unit Type, 2009" which is for the whole of the US, scaled to IL air conditioning prevalence compared to US average)

¹³⁸⁸ Unknown is weighted average of interior v exterior (assuming 5% exterior lighting based on distribution of LEDs from on-site lighting inventory conducted as part of the IL Statewide LED Lighting Logger study) and SF v MF interior based on statewide weighted average of 69% single family and 31% multifamily, based on IL data from 2009 RECS Table HC2.9 Structural and Geographic Characteristics of Homes in Midwest Region, Divisions and States, 2009.

¹³⁸⁹ Negative value because this is an increase in heating consumption due to the efficient lighting.

¹³⁹⁰ This means that heating loads increase by 49% of the lighting savings. This is based on the average result from REMRate modeling of several different configurations and IL locations of homes.

¹³⁹¹ Based on a weighted average of interior and exterior hours of use from the IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs, assuming 15% exterior specialty lighting. The distribution of LEDs is based on the on-site lighting inventory conducted as part of the IL Statewide LED Lighting Logger study.

¹³⁹² These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate. Note efficiency should include duct losses. Defaults provided assume 15% duct loss for heat pumps.

System Type	Age of Equipment	HSPF2 Estimate	COP _{HEAT} (COP Estimate) = (HSPF2/3.413)*0.85
Unknown ¹³⁹³	N/A	N/A	1.28

For example: using the same 4W LED that is installed in home with 2.0 COP Heat Pump (including duct loss) through a ComEd upstream program:

$$\Delta kWh_{1st year}$$
 = - (((25 - 4) / 1000) * 0.784 * (1-0.008) * 1,089 * 0.42) / 2.0

 $= -3.7 \, kWh$

Second and third year install savings should be calculated using the appropriate ISR and the delta watts and hours from the install year.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = ((WattsBase - WattsEE) / 1000) * ISR * (1-Leakage) * WHFd * CF$

Where:

WHFd

= Waste heat factor for demand to account for cooling savings from efficient lighting.

Bulb Location	WHFd
Interior single family	1.11 ¹³⁹⁴
Multifamily in unit	1.07 ¹³⁹⁵
Exterior or uncooled location	1.0
Unknown location	1.093 ¹³⁹⁶

CF = Summer Peak Coincidence Factor for measure.

Bulb Location	CF
Interior	0.128 ¹³⁹⁷
Exterior	0.273 ¹³⁹⁸
Unknown	0.135 ¹³⁹⁹

¹³⁹³ Calculation assumes 35% Heat Pump and 65% Resistance, which is based upon data from Energy Information Administration, 2009 Residential Energy Consumption Survey, see "HC6.9 Space Heating in Midwest Region.xls", using average for East North Central Region. Average efficiency of heat pump is based on assumption that 50% are units from before 2006 and 50% from 2006-2014. Program or evaluation data should be used to improve this assumption if available.

 $^{^{1394}}$ The value is estimated at 1.11 (calculated as 1 + (0.66 * 0.466 / 2.8)). See footnote relating to WHFe for details. Note the 46.6% factor represents the average Residential cooling coincidence factor calculated by dividing average load during the peak hours divided by the maximum cooling load.

¹³⁹⁵ As above but using estimate of 45% of multifamily buildings in Illinois having central cooling (based on data from "Table HC7.1 Air Conditioning in U.S. Homes, By Housing Unit Type, 2009" which is for the whole of the US, scaled to IL air conditioning prevalence compared to US average)

¹³⁹⁶ Unknown is weighted average of interior v exterior (assuming 5% exterior lighting based on distribution of LEDs from on-site lighting inventory conducted as part of the IL Statewide LED Lighting Logger study) and SF v MF interior based on statewide weighted average of 69% single family and 31% multifamily, based on IL data from 2009 RECS Table HC2.9 Structural and Geographic Characteristics of Homes in Midwest Region, Divisions and States, 2009.

¹³⁹⁷ Based on the IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs.

¹³⁹⁸ Based on lighting logger study conducted as part of the PY5/6 ComEd Residential Lighting Program evaluation. the IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs was unable to provide coincidence factors for screw-based omnidirectional LEDs in exterior applications.

¹³⁹⁹ Based on a weighted average of coincidence factors in interior and exterior applications, assuming 5% exterior lighting. The distribution of LEDs is based on the on-site lighting inventory conducted as part of the IL Statewide LED Lighting Logger study.

Other factors as defined above

For example: for the same 4W LED that is installed in a single family interior location through a ComEd upstream program:

```
\DeltakW = ((25 - 4) / 1000) * 0.784 * (1-0.008) * 1.11 * 0.128
= 0.0023 kW
```

Second and third year install savings should be calculated using the appropriate ISR and the delta watts and hours from the install year.

FOSSIL FUEL SAVINGS

Heating penalty if Natural Gas heated home, or if heating fuel is unknown.

 Δ Therms = - (((WattsBase - WattsEE) / 1000) * ISR * (1-Leakage) * Hours * HF * 0.03412) / η Heat

Where:

HF = Heating factor, or percentage of lighting savings that must be replaced by heating

system.

= 49% for interior 1400

= 0% for exterior location

= 42% for unknown location 1401

0.03412 = Converts kWh to Therms

ηHeat = Average heating system efficiency.

 $= 0.70^{1402}$

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

For Omni-directional A-lamps, the baseline lamp is assumed to need replacing after 1000 hours. Therefore a baseline cost of \$1.25 should be applied every 0.92 years for interior applications, 0.40 years for exterior applications and 0.86 years for unknown.

For Decorative a baseline cost of \$1.74 should be applied every 0.92 years for interior applications, 0.40 years for exterior applications and 0.86 years for unknown.

(0.24*0.92) + (0.76*0.8) * (1-0.15) = 0.70

¹⁴⁰⁰ Average result from REMRate modeling of several different configurations and IL locations of homes

¹⁴⁰¹ Based on a weighted average of interior and exterior hours of use from the IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs, assuming 15% exterior specialty lighting. The distribution of LEDs is based on the on-site lighting inventory conducted as part of the IL Statewide LED Lighting Logger study.

¹⁴⁰² This has been estimated assuming that natural gas central furnace heating is typical for Illinois residences (66% of Illinois homes have a Natural Gas Furnace (based on Energy Information Administration, 2009 Residential Energy Consumption Survey) In 2000, 24% of furnaces purchased in Illinois were condensing (based on data from GAMA, provided to Department of Energy during the federal standard setting process for residential heating equipment - see Furnace Penetration.xls). Furnaces tend to last up to 20 years and so units purchased 10 years ago provide a reasonable proxy for the current mix of furnaces in the State. Assuming typical efficiencies for condensing and non-condensing furnaces and duct losses, the average heating system efficiency is estimated as follows:

For Directional a baseline cost of \$3.53 should be applied every 0.92 years for interior applications, 0.40 years for exterior applications and 0.86 years for unknown.

For Linear Task/Under Cabinet and T-LEDs, with a linear fluorescent baseline, there is assumed no O&M impact since the baseline lamp life is 18,000 – 30,000 hours and which is longer than the assumed measure life.

It is important to note that for cost-effectiveness screening purposes, the O&M cost adjustments should only be applied in cases where the light bulbs area actually in service and so should be multiplied by the appropriate ISR.

MEASURE CODE: RS-LTG-LEDE-V3-240101

REVIEW DEADLINE: 1/1/2028

5.5.14 Ultra-Efficient LED Lighting

DESCRIPTION

This characterization provides savings assumptions for a variety of ultra-efficient LED screw-based lamp types including omnidirectional and specialty (globe, decorative and downlights) types. This characterization assumes that the LED lamp is installed in a residential location. Where the implementation strategy does not allow for the installation location to be known (e.g., an upstream retail program not in a store 'easily accessed by income qualified communities' (see discussion below)) a deemed split of 97% Residential and 3% Commercial assumptions should be used.

Income Qualified Programs should not use this measure, but should continue to follow the dedicated guidance found in TRM sections 5.5.6 and 5.5.8 through 2025.

This measure was developed to be applicable to the following program types: TOS. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, new lamps must exceed efficiency specifications defined in the Standard-Efficiency LED Baseline Wattage Tables below. Consult the tables to find the *maximum* wattage that can be considered ultra-efficient for each bulb type.

Actual lamp wattages of the efficient equipment should be used to determine savings.

DEFINITION OF BASELINE EQUIPMENT

This TRM assumes that as of 6/30/2023, non-income qualified participants no longer have access to bulbs that do not meet the efficacy requirement defined by an EISA backstop provision. That provision effectively ensures that all lamps available in the market are at minimum an LED (no incandescent or compact fluorescent products). Therefore, lamp wattages that were historically considered efficient have now become the baseline to compare against emerging ultra-efficient options. See "Standard-Efficiency LED Baseline Wattage" tables below for specific baseline wattages by lamp type and lumen output.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

According to the ENERGY STAR Qualified Products list (accessed 6/16/2020), the average rated life for Omnidirectional lamps is approximately 20,000 hours, 17,000 hours for decorative and 25,000 for directional lamps.

DEEMED MEASURE COST

The actual ultra-efficient LED lamp cost should be used. For incremental cost, assume a baseline cost according to the following table 1403:

Bulb Type	Standard LED Baseline Cost
Omnidirectional	\$2.70
Directional	\$5.18
Decorative and Globe	\$3.40

¹⁴⁰³ Baseline and LED lamp costs are based on field data collected by CLEAResult and provided by ComEd. See ComEd Pricing Projections 06302016.xlsx for analysis. Given LED prices are expected to continue declining assumed costs should be reassessed on an annual basis and replaced with IL specific LED program information when available.

LOADSHAPE

Loadshape R06 - Residential Indoor Lighting

Loadshape R07 - Residential Outdoor Lighting

COINCIDENCE FACTOR

For omnidirectional: The summer peak coincidence factor is assumed to be 0.128 for Residential and in-unit Multi Family bulbs, 1404 0.273 for exterior bulbs, 1405 and 0.135 for unknown, 1406

For specialty bulbs: The summer peak coincidence factor is assumed to be 0.109 for residential and in-unit multifamily bulbs, 1407, 0.273 for exterior bulbs 1408 and 0.117 for unknown 1409.

Use Multifamily if the building meets the utility's definition for multifamily.

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

ΔkWh = ((Watts_{base}-Watts_{EE})/1000) * ISR * (1-Leakage) * Hours *WHF_e

Where:

Wattsbase = Input wattage of the existing or baseline system. Reference the "Standard-Efficiency

LED Baseline Wattage" table for default values.-1410

Watts_{EE} = Actual wattage of LED purchased / installed must be used.

Standard-Efficiency LED Baseline Wattage Table: Omnidirectional

Minimum Lumens	Maximum Lumens	Standard LED Baseline Wattage (WattsBase)
120	399	4.0
400	749	6.6
750	899	9.6

¹⁴⁰⁴ Based on the IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs.

¹⁴⁰⁵ Based on lighting logger study conducted as part of the PY5/6 ComEd Residential Lighting Program evaluation. the IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs was unable to provide coincidence factors for screw-based omnidirectional LEDs in exterior applications.

¹⁴⁰⁶Based on a weighted average of coincidence factors in interior and exterior applications, assuming 5% exterior lighting. The distribution of LEDs is based on the on-site lighting inventory conducted as part of the IL Statewide LED Lighting Logger study.

¹⁴⁰⁷ Based on the IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs.

¹⁴⁰⁸ Based on lighting logger study conducted as part of the PY5/6 ComEd Residential Lighting Program evaluation. the IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs was unable to provide coincidence factors for specialty LEDs in exterior applications.

 ¹⁴⁰⁹ Based on a weighted average of coincidence factors in interior and exterior applications, assuming 5% exterior lighting. The distribution of LEDs is based on the on-site lighting inventory conducted as part of the IL Statewide LED Lighting Logger study.
 1410 See file "LED Lamp Updates 2021-06-09" for details on Guidehouse lamp wattage calculations based on equivalent baseline wattage and LED wattage of available ENERGY STAR product.

Minimum Lumens	Maximum Lumens	Standard LED Baseline Wattage (WattsBase)
900	1,399	13.1
1,400	1,999	16.0
2,000	2,999	21.8
3,000	3,299	28.9

Standard-Efficiency LED Baseline Wattage Table: Decorative Lamps

Bulb Type	Minimum Lumens	Maximum Lumens	Standard LED Baseline Wattage (Watts _{Base})
Omni-Directional	1,100	1,999	14.7
3-Way	2,000	2,700	22.6
Globe	310	349	3.0
(medium and	350	499	4.7
intermediate bases	500	574	5.7
less than 750	575	649	6.5
lumens)	650	1,000	8.2
Globe	310	349	3.5
(candelabra bases	350	499	4.4
less than 1050 lumens)	500	574	5.5
Decorative	310	499	4.3
(Shapes B, BA, C, CA, DC, F, G, medium and intermediate bases less than 750 lumens)	500	800	5.8
Decorative	310	499	4.2
(Shapes B, BA, C, CA, DC, F, G, candelabra bases less than 1050 lumens)	500	650	5.5
	310	499	6.5
Decorative	500	999	8.8
(Shape ST)	1000	1500	10.0
Decorative (Shape S)	310	340	2.25

Standard-Efficiency LED Baseline Wattage Table: Directional Lamps

Bulb Type	Minimum Lumens	Maximum Lumens	Standard LED Baseline Wattage (Watts _{Base})
Reflector lamp	400	649	7.0
types with medium	650	899	10.7
screw bases (PAR20,	900	1,049	13.9
PAR30(S,L), PAR38,	1,050	1,199	13.8
R40, etc.) w/	1,200	1,499	15.9
diameter >2.25"	1,500	1,999	18.9
ulameter >2.25	2,000	3,299	27.3
Reflector lamp	310	374	4.6
types with medium screw bases (PAR16, R14, R16, etc.) w/ diameter <2.25"	375	600	6.4
	650	949	9.3
	950	1,099	12.7
BR30, BR40, or ER40	1,100	1,399	14.4
	1,400	1,600	16.6
	1,601	1,800	22.2
D20	450	524	6.0
R20	525	750	7.1
	310	324	3.8
MR16	325	369	4.8
	370	400	4.9

Standard-Efficiency LED Baseline Wattage Table: Additional EISA non-exempt bulb types

Bulb Type	Minimum Lumens	Maximum Lumens	Standard LED Baseline Wattage (Watts _{Base})
Dimmable	310	399	4.0
Twist, Globe	400	749	6.6
(less than 5" in	750	899	9.6
diameter and >	900	1,399	13.1
749 lumens), candle (shapes B, BA, CA > 749 lumens), Candelabra Base Lamps (>1049 lumens), Intermediate Base Lamps (>749 lumens)	1,400	1,999	16.0

= In Service Rate, the percentage of lamps rebated that are actually in service.

2025 IL TRM v13.0 Vol. 3_September 20, 2024_FINAL

Program		In Service Rate (ISR) ¹⁴¹¹ s	
Retail (Time	e of Sale)	97.9% ¹⁴¹²	
Direct Insta	II	94.5%1413	
Virtual Assessment followed by Unverified Self-Install		97.9% ¹⁴¹⁴	
	LED Distribution ¹⁴¹⁶	82.8%	
Efficiency	School Kits ¹⁴¹⁷	83.8%	
Kits ¹⁴¹⁵	Direct Mail Kits ¹⁴¹⁸	91.8%	
	Community Distributed Kits ¹⁴¹⁹	95.0%	
Food Bank / Pantry Distribution 1420		97.9% ¹⁴²¹	

Leakage

= Adjustment to account for the percentage of program bulbs that move out (and in if deemed appropriate)¹⁴²² of the Utility Jurisdiction.

KITS programs = Determined through evaluation

¹⁴¹¹ In Service Rates now represent the lifetime In Service Rates with the second and third year installations discounted by the Real Discount Rate of 0.46%. Lifetime ISR assumptions for efficiency kits are based upon comparing with CFL Distribution First year ISR and multiplying by the CFL Distribution Final ISR value, capped at 95%, and second and third year estimates based on same proportion of future installs. For all other programs Tthe 98% Lifetime ISR assumption is based upon the standard CFL measure in the absence of any better reference. This value is based upon review of two evaluations:

^{&#}x27;Nexus Market Research, RLW Analytics and GDS Associates study; "New England Residential Lighting Markdown Impact Evaluation, January 20, 2009' and 'KEMA Inc, Feb 2010, Final Evaluation Report:, Upstream Lighting Program, Volume 1.' This implies that only 2% of bulbs purchased are never installed. The second and third year installations are based upon Ameren analysis of the Californian KEMA study showing that 54% of future installs occur in year 2 and 46% in year 3.

¹⁴¹² 1st year in service rate is based upon analysis of ComEd PY8, PY9 and CY2018 and Ameren PY8 intercept data (see 'RES Lighting ISR 2019.xlsx' for more information).

¹⁴¹³ Based upon average of Navigant low income single family direct install field work LED ISR and Standard CFL assumption in the absence of better data, and is based upon review of the PY2 and PY3 ComEd Direct Install program surveys. This value includes bulb failures in the 1st year to be consistent with the Commission approval of annualization of savings for first year savings claims. ComEd PY2 All Electric Single Family Home Energy Performance Tune-Up Program Evaluation, Navigant Consulting, December 21, 2010.

¹⁴¹⁴ An equal weighted average of Direct Install and Direct Mail Kit ISRs. Interest and applicability of measures confirmed through virtual assessment.

¹⁴¹⁵ In Service Rates provided are for the bulb within a kit only. Given the significant differences in program design and the level of education provided through Efficiency Kits programs, the evaluators should apply the ISR estimated through evaluations (either past evaluations or the current program year evaluation) of the specific Efficiency Kits program. In cases where program-specific evaluation results for an ISR are unavailable, the default ISR values for Efficiency Kits provide may be used.

¹⁴¹⁶ Free bulbs provided without request, with little or no education. Consistent with Standard CFL assumptions.

¹⁴¹⁷ 1st year ISR for school kits based on ComEd PY9 data for the Elementary Energy Education program. Final ISR assumptions are based upon comparing with CFL Distribution First year ISR and multiplying by the CFL Distribution Final ISR value, and second and third year estimates based on same proportion of future installs.

¹⁴¹⁸ Opt-in program to receive kits via mail, with little or no education. Consistent with Standard CFL assumptions.

¹⁴¹⁹ Kits distributed in a community setting, targeted to income qualified communities. Research from 2018 Ameren Illinois Income Qualified participant survey.

¹⁴²⁰ Free bulbs provided through local food banks and food pantries.

¹⁴²¹ 1st year ISR is determined based on online surveys conducted for ComEd CY2018 Food Bank LED Distribution program. See 'CY2018 ComEd Foodbank LED Dist Survey Results_Navigant'.

¹⁴²² Leakage in is only appropriate to credit to IL utility program savings if it is reasonably expected that the IL utility program marketing efforts played an important role in influencing customer to purchase the light bulbs. Furthermore, consideration that such customers might be free riders should be addressed. If leakage in is assessed, efforts should be made to ensure no double counting of savings occurs if the evaluation is estimating both leakage in and spillover savings of light bulbs.

Upstream (TOS) Lighting programs = Use deemed assumptions below: 1423

ComEd: 0.95%

Ameren: 13.1%

All other programs = 0

Hours = Average hours of use per year depending on bulb type

Installation Location	Omnidirectional Hours	Specialty Hours
Residential and in-unit Multi Family	1,089 ¹⁴²⁴	763 ¹⁴²⁵
Exterior	2,475 ¹⁴²⁶	2,475 ¹⁴²⁷
Unknown	1,159 ¹⁴²⁸	1,020 ¹⁴²⁹

WHFe = Waste heat factor for energy to account for cooling energy savings from efficient lighting

Bulb Location	WHFe
Interior single family	1.06 ¹⁴³⁰
Multifamily in unit	1.04 1431
Exterior or uncooled location	1.0
Unknown location	1.049 ¹⁴³²

HEATING PENALTY

If electric heated home (if heating fuel is unknown assume gas, see Fossil Fuel section):

¹⁴²³ Leakage rate is based upon an average of the decorative and omnidirectional leakage values provided fom a review of evaluations from ComEd and Ameren.

¹⁴²⁴ Based on the IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs.

¹⁴²⁵ Based on the IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs.

¹⁴²⁶ Based on lighting logger study conducted as part of the PY5/6 ComEd Residential Lighting Program evaluation. The IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs was unable to provide hours of use for screw-based omnidirectional LEDs in exterior applications.

¹⁴²⁷ Based on lighting logger study conducted as part of the PYS/6 ComEd Residential Lighting Program evaluation. The IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs was unable to provide hours of use for specialty LEDs in exterior applications.

¹⁴²⁸ Based on a weighted average of hours of use in interior and exterior applications, assuming 5% exterior lighting. The distribution of LEDs is based on the on-site lighting inventory conducted as part of the IL Statewide LED Lighting Logger study.

¹⁴²⁹ Based on a weighted average of interior and exterior hours of use from the IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs, assuming 15% exterior specialty lighting. The distribution of LEDs is based on the on-site lighting inventory conducted as part of the IL Statewide LED Lighting Logger study.

¹⁴³⁰ The value is estimated at 1.06 (calculated as 1 + (0.66*(0.27 / 2.8)). Based on cooling loads decreasing by 27% of the lighting savings (average result from REMRate modeling of several different configurations and IL locations of homes), assuming typical cooling system operating efficiency of 2.8 COP (starting from standard assumption of SEER 10.5 central AC unit, converted to 9.5 EER using algorithm (-0.02 * SEER2) + (1.12 * SEER) (from Wassmer, M. (2003). A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations. Masters Thesis, University of Colorado at Boulder), converted to COP = EER/3.412 = 2.8COP) and 66% of homes in Illinois having central cooling ("Table HC7.9 Air Conditioning in Homes in Midwest Region, Divisions, and States, 2009 from Energy Information Administration", 2009 Residential Energy Consumption Survey)

¹⁴³¹ As above but using estimate of 45% of multifamily buildings in Illinois having central cooling (based on data from "Table HC7.1 Air Conditioning in U.S. Homes, By Housing Unit Type, 2009" which is for the whole of the US, scaled to IL air conditioning prevalence compared to US average)

 $^{^{1432}}$ Unknown is the average of the 5.5.6 LED Specialty Lamps and 5.5.8 LED Screw Based Omnidirectional Bulbs unknown assumptions.

 $\Delta kWh^{1433} = -(((WattsBase - WattsEE) / 1000) * ISR * (1-Leakage) * Hours * HF) / \etaHeat$

Where:

HF = Heating Factor or percentage of light savings that must be heated

= 49% for interior 1434

= 0% for exterior or unheated location

= 42% for unknown location 1435

ηHeat = Efficiency in COP of Heating equipment

= actual. If not available use:1436

System Type	Age of Equipment	HSPF2 Estimate	COP _{HEAT} (COP Estimate) = (HSPF2/3.413)*0.85
Heat Pump	Before 2006	5.8	1.44
(if age unknown	After 2006 - 2014	6.5	1.62
assume 2006- 2014)	2015 on	7.0	1.74
Resistance	N/A	N/A	1.00
Unknown ¹⁴³⁷	N/A	N/A	1.28

SUMMER COINCIDENT PEAK DEMAND SAVINGS

ΔkW = ((WattsBase - WattsEE) / 1000) * ISR * (1-Leakage) * WHFd * CF

Where:

WHFd

= Waste heat factor for demand to account for cooling savings from efficient lighting.

Bulb Location	WHFd
Interior single family	1.11 ¹⁴³⁸
Multifamily in unit	1.07 ¹⁴³⁹

¹⁴³³ Negative value because this is an increase in heating consumption due to the efficient lighting.

¹⁴³⁴ This means that heating loads increase by 49% of the lighting savings. This is based on the average result from REMRate modeling of several different configurations and IL locations of homes.

¹⁴³⁵ Based on a weighted average of interior and exterior hours of use from the IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs, assuming 15% exterior specialty lighting. The distribution of LEDs is based on the on-site lighting inventory conducted as part of the IL Statewide LED Lighting Logger study.

¹⁴³⁶ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate. Note efficiency should include duct losses. Defaults provided assume 15% duct loss for heat pumps.

¹⁴³⁷ Calculation assumes 35% Heat Pump and 65% Resistance, which is based upon data from Energy Information Administration, 2009 Residential Energy Consumption Survey, see "HC6.9 Space Heating in Midwest Region.xls", using average for East North Central Region. Average efficiency of heat pump is based on assumption that 50% are units from before 2006 and 50% from 2006-2014. Program or evaluation data should be used to improve this assumption if available.

¹⁴³⁸ The value is estimated at 1.11 (calculated as 1 + (0.66 * 0.466 / 2.8)). See footnote relating to WHFe for details. Note the 46.6% factor represents the average Residential cooling coincidence factor calculated by dividing average load during the peak hours divided by the maximum cooling load.

¹⁴³⁹ As above but using estimate of 45% of multifamily buildings in Illinois having central cooling (based on data from "Table

Bulb Location	WHFd
Exterior or uncooled location	1.0
Unknown location	1.088 ¹⁴⁴⁰

CF = Summer Peak Coincidence Factor for measure. See table depening on the bulb type

Bulb Location	Omnidirectional CF	Specialty CF
Interior	0.1281441	0.1091442
Exterior	0.273 ¹⁴⁴³	0.273 ¹⁴⁴⁴
Unknown	0.1351445	0.177 ¹⁴⁴⁶

Other factors as defined above

FOSSIL FUEL SAVINGS

Heating penalty if Natural Gas heated home, or if heating fuel is unknown.

 Δ Therms = - (((WattsBase - WattsEE) / 1000) * ISR * (1-Leakage) * Hours * HF * 0.03412) / η Heat

Where:

HF = Heating factor, or percentage of lighting savings that must be replaced by heating

system.

= 49% for interior 1447

= 0% for exterior location

= 42% for unknown location 1448

0.03412 = Converts kWh to Therms

ηHeat = Average heating system efficiency.

HC7.1 Air Conditioning in U.S. Homes, By Housing Unit Type, 2009" which is for the whole of the US, scaled to IL air conditioning prevalence compared to US average)

¹⁴⁴⁰ Unknown is the average of the 5.5.6 LED Specialty Lamps and 5.5.8 LED Screw Based Omnidirectional Bulbs unknown assumptions.

¹⁴⁴¹ Based on the IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs.

¹⁴⁴² Based on the IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs.

¹⁴⁴³ Based on lighting logger study conducted as part of the PY5/6 ComEd Residential Lighting Program evaluation. the IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs was unable to provide coincidence factors for screw-based omnidirectional LEDs in exterior applications.

¹⁴⁴⁴ Based on lighting logger study conducted as part of the PY5/6 ComEd Residential Lighting Program evaluation. the IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs was unable to provide coincidence factors for specialty LEDs in exterior applications.

¹⁴⁴⁵ Based on a weighted average of coincidence factors in interior and exterior applications, assuming 5% exterior lighting. The distribution of LEDs is based on the on-site lighting inventory conducted as part of the IL Statewide LED Lighting Logger study.

¹⁴⁴⁶ Based on a weighted average of coincidence factors in interior and exterior applications, assuming 5% exterior lighting. The distribution of LEDs is based on the on-site lighting inventory conducted as part of the IL Statewide LED Lighting Logger study.

¹⁴⁴⁷ Average result from REMRate modeling of several different configurations and IL locations of homes

¹⁴⁴⁸ Based on a weighted average of interior and exterior hours of use from the IL Statewide LED Lighting Logger study conducted as part of the PY8/PY9 evaluations of the Ameren Illinois and ComEd Residential Lighting programs, assuming 15% exterior specialty lighting. The distribution of LEDs is based on the on-site lighting inventory conducted as part of the IL Statewide LED Lighting Logger study.

= 0.70 1449

WATER AND OTHER NON-ENERGY IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-LTG-ULED-V1-240101

REVIEW DEADLINE: 1/1/2026

¹⁴⁴⁹ This has been estimated assuming that natural gas central furnace heating is typical for Illinois residences (66% of Illinois homes have a Natural Gas Furnace (based on Energy Information Administration, 2009 Residential Energy Consumption Survey) In 2000, 24% of furnaces purchased in Illinois were condensing (based on data from GAMA, provided to Department of Energy during the federal standard setting process for residential heating equipment - see Furnace Penetration.xls). Furnaces tend to last up to 20 years and so units purchased 10 years ago provide a reasonable proxy for the current mix of furnaces in the State. Assuming typical efficiencies for condensing and non-condensing furnaces and duct losses, the average heating system efficiency is estimated as follows:

5.6 Shell End Use

5.6.1 Air Sealing

DESCRIPTION

Thermal shell air leaks are sealed through strategic use and location of air-tight materials. Leaks are detected and leakage rates measured with the assistance of a blower-door. The algorithm for this measure can be used when the program implementation does not allow for more detailed forecasting through the use of residential modeling software. Prescriptive savings are provided for use only when a blower door test is not conducted.

This measure was developed to be applicable to the following program types: RF.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

Air sealing materials and diagnostic testing should meet all eligibility program qualification criteria. The initial and final tested leakage rates should be performed in such a manner that the identified reductions can be properly discerned, particularly in situations wherein multiple building envelope measures may be implemented simultaneously.

DEFINITION OF BASELINE EQUIPMENT

The existing air leakage should be determined through approved and appropriate test methods using a blower door. The baseline condition of a building upon first inspection significantly impacts the opportunity for cost-effective energy savings through air-sealing. Savings are provided for prescriptive air sealing measures when a blower door test is not conducted.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 20 years. 1450

The expected measure life of prescriptive shrink-fit window film is assumed to be 1 year.

Note a mid-life adjustment to account for replacement of HVAC equipment during the measure life should be applied after 10 years or 13 years for boilers. 1451 See section below for detail.

DEEMED MEASURE COST

The actual capital cost for this measure should be used in screening.

LOADSHAPE

Loadshape R08 - Residential Cooling

Loadshape R09 - Residential Electric Space Heat

Loadshape R10 - Residential Electric Heating and Cooling

COINCIDENCE FACTOR

The summer peak coincidence factor for cooling is provided in two different ways below. The first is used to estimate peak savings during the utility peak hour and is most indicative of actual peak benefits, and the second represents the *average* savings over the defined summer peak period, and is presented so that savings can be bid into PJM's capacity market.

¹⁴⁵⁰ As recommended in Navigant 'ComEd Effective Useful Life Research Report', May 2018.

¹⁴⁵¹ This is intentionally longer than the assumptions found in the early replacement measures as the application of this measure will occur in a variety of homes that will not be targeted for early replacement HVAC systems.

CF _{SSP}	= Summer System Peak Coincidence Factor for Central A/C (during utility peak hour) = 68% ¹⁴⁵²
CF _{SSP} SF	= Summer System Peak Coincidence Factor for Heat Pumps in single-family homes (during system peak hour)
	= 72% ¹⁴⁵³
CF _{SSP} , MF	= Summer System Peak Coincidence Factor for Heat Pumps in multi-family homes (during system peak hour)
	= 67% ¹⁴⁵⁴
СҒрјм	= PJM Summer Peak Coincidence Factor for Central A/C (average during PJM peak period)
	= 46.6% ¹⁴⁵⁵
CF _{PJM} SF	= PJM Summer Peak Coincidence Factor for Heat Pumps in single-family homes (average during PJM peak period)
	= 46.6% ¹⁴⁵⁶
CF _{PJM} , MF	= PJM Summer Peak Coincidence Factor for Heat Pumps in multi-family homes (average during peak period)

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Methodology 1: Blower Door Test

Required methodology when blower door testing is conducted.

= 28.5%

 $\Delta kWh = \Delta kWh$ _cooling + ΔkWh _heatingElectric + ΔkWh _heatingFurnace

Where:

ΔkWh_cooling = If central cooling, reduction in annual cooling requirement due to air sealing

= [(((CFM50_existing - CFM50_new)/N_cool) * 60 * 24 * CDD * DUA * 0.018) / (1,000 *

ηCool) * LM * ADJ_{AirSealingCool}] * IE_{NetCorrection} * %Cool

CFM50_existing = Infiltration at 50 Pascals as measured by blower door before air sealing.

= Actual

¹⁴⁵² Based on metering of 24 homes with central AC during PY4 and PY5 in Ameren Illinois service territory.

¹⁴⁵³ Based on analysis of metering results from 24 heat pumps in Ameren Illinois service territory in PY5 coincident with AIC's 2010 system peak; 'Impact and Process Evaluation of Ameren Illinois Company's Residential HVAC Program (PY5)'.

¹⁴⁵⁴ Multifamily coincidence factors both from; *All-Electric Homes PY6 Metering Results: Multifamily HVAC Systems*, Cadmus, October 2015

¹⁴⁵⁵ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

¹⁴⁵⁶ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

CFM50 new = Infiltration at 50 Pascals as measured by blower door after air sealing.

= Actual

= Conversion factor from leakage at 50 Pascal to leakage at natural conditions N_cool

=Dependent on location and number of stories: 1457

Climate Zone	N_cool (by # of stories)			
(City based upon) 1458	1	1.5	2	3
1 (Rockford)	39.5	35.0	32.1	28.4
2 (Chicago)	38.9	34.4	31.6	28.0
3 (Springfield)	41.2	36.5	33.4	29.6
4 (St Louis, MO)	40.4	35.8	32.9	29.1
5 (Paducah, KY)	43.6	38.6	35.4	31.3

60 * 24 = Converts Cubic Feet per Minute to Cubic Feet per Day

CDD = Cooling Degree Days

= Dependent on location: 1459

Climate Zone (City based upon)	CDD 65
1 (Rockford)	877
2 (Chicago)	1047
3 (Springfield)	1183
4 (Belleville)	1641
5 (Marion/Murphysboro)	1450

DUA	= Discretionary Use Adjustment (reflects the fact that people do not always operate their
	AC when conditions may call for it).

 $= 0.75^{1460}$

= Specific Heat Capacity of Air (Btu/ft3*°F) 0.018

1000 = Converts Btu to kBtu

ηCool = Efficiency (SEER2) of Air Conditioning equipment (kBtu/kWh)

> = Actual (where it is possible to measure or reasonably estimate). Note where new HVAC is installed in addition to shell measures, the old HVAC unit efficiency should be used and

¹⁴⁵⁷ N-factor is used to convert 50-pascal blower door air flows to natural air flows and is dependent on geographic location and # of stories. These were developed by applying the LBNL infiltration model (see LBNL paper 21040, Exegisis of Proposed ASHRAE Standard 119: Air Leakage Performance for Detached Single-Family Residential Buildings; Sherman, 1986; page v-vi, Appendix page 7-9) to the reported wind speeds and outdoor temperatures provided by the NRDC 30 year climate normals. For more information see Bruce Harley, CLEAResult "Infiltration Factor Calculations Methodology.doc".

¹⁴⁵⁸ Note, the methodology for developing n-factors requires hourly normals as opposed to annual normals which are used for other assumptions in the TRM. Hourly normals were not available for all sites used for other climate assumptions and so the nearest locations were used (St Louis, MO for Belleville, IL and Paducah, KY for Marion, IL).

¹⁴⁵⁹ National Centers for Environmental Information (NCEI) Annual Normals, from 2006 - 2020, calculated with a base temp of

¹⁴⁶⁰ This factor's source is: Energy Center of Wisconsin, May 2008 metering study; "Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research", p31.

the shell measure savings calculated first, the HVAC measure then assuming the reduced heat/cooling loads. If using rated efficiencies, derate efficiency value by 1% per year (maximum of 30 years) to account for degradation over time, 1461 or if unknown assume the following. 1462 If unknown value is used, it should not be derated by age.

Age of Equipment	SEER2 Estimate
Before 2006	9.5
2006 - 2014	12.4
Central AC After 1/1/2015	12.4
Heat Pump After 1/1/2015	13.3
Unknown (for use in program evaluation only)	10.0

LM = Latent multiplier to account for latent cooling demand 1463

Climate Zone (City based upon)	LM
1 (Rockford)	3.3
2 (Chicago)	3.2
3 (Springfield)	3.7
4 (St Louis, MO)	3.6
5 (Paducah, KY)	3.7

ADJAirSealingCool

= Adjustment for cooling savings to account for innacuracies in engineering algorithms¹⁴⁶⁴

Measure	ADJ _{AirSealingCool}
Air sealing and attic insulation	114%
Air sealing without attic insulation	100%

IE_{NetCorrection}

- = 100% if not income eligible or air sealing is installed without attic insulation.
- = 110% if installing air sealing and attic insulation in income eligible projects with a deemed NTG value of 1.0 to offset net savings adjustment inherent when using

¹⁴⁶¹ Justification for degradation factors can be found on page 14 of 'AIC HVAC Metering Study Memo FINAL 2_28_2018'. Estimate efficiency as (Rated Efficiency * (1-0.01)^Equipment Age).

¹⁴⁶² These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Central AC was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate. Note all ratings have been converted to SEER2 equivalents – since the new rating better reflects the actual efficiency of the units.

¹⁴⁶³ Derived by calculating the sensible and total loads in each hour. For more information see Bruce Harley, CLEAResult "Infiltration Factor Calculations Methodology.doc". Note, the methodology requires hourly normals as opposed to annual normals which are used for other assumptions in the TRM. Hourly normals were not available for all sites used for other climate assumptions and so the nearest locations were used (St Louis, MO for Belleville, IL and Paducah, KY for Marion, IL).

¹⁴⁶⁴ As demonstrated in air sealing and insulation research by Navigant, see Navigant (2018). ComEd and Nicor Gas Air Sealing and Insulation Research Report. Presented to Commonwealth Edison Company and Nicor Gas Company.

These adjustment factors are based on a consumption data analysis using matching to non-participants. The values are therefore between net and gross with respect to free ridership. Like all consumption data analyses, they are net with respect to participant spillover and gross with respect to non-participant spillover. For more detail, see Table 5-3 in Volume 4 of the IL-TRM. Consistent with Section 7.2 of the Illinois EE Policy Manual, applicable net-to-gross adjustments to the savings will be determined as part of the annual SAG net-to-gross process. During update cycle for version v.12, applied the percent change of NCEI Annual Normals CDD65 from 30 yr data set (1981-2010) to more recent 15 yr data (2006-2020) for all cooling-related adjustment values.

ADJ_{AirSealingCool} of 114% ¹⁴⁶⁵

%Cool = Percent of homes that have cooling

Central Cooling?	%Cool
Yes	100%
No	0%
Unknown (for use in program evaluation only) ¹⁴⁶⁶	66%

ΔkWh_heatingElectric sealing

= If electric heat (resistance or heat pump), reduction in annual electric heating due to air

= [(((CFM50_existing - CFM50_new)/N_heat) * 60 * 24 * HDD * 0.018) / (ηHeat * 3,412)] *%ElectricHeat

N heat

= Conversion factor from leakage at 50 Pascal to leakage at natural conditions

= Based on climate zone, building height and exposure level: 1467

Climate Zone	N_heat (by # of stories)			
(City based upon)	1	1.5	2	3
1 (Rockford)	23.8	21.1	19.3	17.1
2 (Chicago)	23.9	21.1	19.4	17.2
3 (Springfield)	24.2	21.5	19.7	17.4
4 (St Louis, MO)	25.4	22.5	20.7	18.3
5 (Paducah, KY)	27.8	24.6	22.6	20.0

HDD

= Heating Degree Days

= Dependent on location: 1468

Climate Zone (City based upon)	HDD 60
1 (Rockford)	5230
2 (Chicago)	4798
3 (Springfield)	4266
4 (Belleville)	3188

¹⁴⁶⁵ The additional value of 10% was selected to acknowledge that some portion of the regression-derived adjustment factors accounts for gross impact effects, and that removing net effects embedded in the adjustment factors would increase savings to some degree. A review of historical NTG values for air sealing and insulation measures in non-income eligible populations did not provide definitive guidance for estimating the net component of the adjustment factors. Historically, free ridership has ranged from 9% to 26% for like measures, and spillover has ranged from 1% to 14%, while NTGs have ranged from 0.75 to 1.05. The midpoint of the NTG range would be 0.90, a 10% reduction from 1.0.

¹⁴⁶⁶ Percentage of homes in Illinois that have central cooling from "Table HC7.9 Air Conditioning in Homes in Midwest Region, Divisions, and States, 2009" from Energy Information Administration, 2009 Residential Energy Consumption Survey ¹⁴⁶⁷ N-factor is used to convert 50-pascal blower door air flows to natural air flows and is dependent on geographic location and # of stories. These were developed by applying the LBNL infiltration model (see LBNL paper 21040, *Exegisis of Proposed ASHRAE Standard 119: Air Leakage Performance for Detached Single-Family Residential Buildings*; Sherman, 1986; page v-vi, Appendix page 7-9) to the reported wind speeds and outdoor temperatures provided by the NRDC 30 year climate normals. For more information see Bruce Harley, CLEAResult "Infiltration Factor Calculations Methodology.doc". Note, the methodology for developing n-factors requires hourly normals as opposed to annual normals which are used for other assumptions in the TRM. Hourly normals were not available for all sites used for other climate assumptions and so the nearest locations were used (St Louis, MO for Belleville, IL and Paducah, KY for Marion, IL).

¹⁴⁶⁸ National Climatic Data Center, calculated from 1981-2010 climate normals with a base temp of 60°F.

Climate Zone (City based upon)	HDD 60
5 (Marion/Murphysboro)	3390

ηHeat

- = Efficiency of heating system
- = Actual heat efficiency * distribution efficiency (where it is possible to measure or reasonably estimate). Note where new HVAC is installed in addition to shell measures, the old HVAC unit efficiency should be used and the shell measure savings calculated first, the HVAC measure then assuming the reduced heat/cooling loads. If using rated efficiencies, derate efficiency value by 1% per year (maximum of 30 years) to account for degradation over time, ¹⁴⁶⁹ or if not available refer to default table below. ¹⁴⁷⁰ If unknown value is used, it should not be derated by age. If actual Distribution Efficiency is not available, use 85% for heat pumps.

System Type	Age of Equipment	HSPF2 Estimate	ηHeat (Effective COP Estimate * Distribution Efficiency) = (HSPF2/3.413)*0.85
Heat Pump	Before 2006	5.8	1.44
(if age unknown assume 2006-	2006 - 2014	6.5	1.62
2014)	2015 on	7.0	1.74
Resistance	N/A	N/A	1.00
Unknown (for use in program evaluation only) ¹⁴⁷¹	N/A	N/A	1.32

3412 = Converts Btu to kWh

%ElectricHeat

= Percent of homes that have electric space heating

= 100 % for Electric Resistance or Heat Pump

= 0 % for Fossil Fuels

= If unknown¹⁴⁷², use the following table:

 $^{^{1469}}$ Justification for degradation factors can be found on page 14 of 'AIC HVAC Metering Study Memo FINAL 2_28_2018'. Estimate efficiency as (Rated Efficiency * (1-0.01)^Equipment Age).

¹⁴⁷⁰ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time means that using the minimum standard is appropriate. An 85% distribution efficiency is then applied to account for duct losses for heat pumps. Note all ratings have been converted to HSPF2 equivalents – since the new rating better reflects the actual efficiency of the units.

¹⁴⁷¹ Calculation assumes 35% Heat Pump and 65% Resistance, which is based upon data from Energy Information Administration, 2009 Residential Energy Consumption Survey, see "HC6.9 Space Heating in Midwest Region.xls", using average for East North Central Region. Average efficiency of heat pump is based on assumption that 50% are units from before 2006 and 50% from 2006-2014. Program or evaluation data should be used to improve this assumption if available.

¹⁴⁷² Based on the average % Natural Gas used for space heating in Unknown residential structure types across all utilities covered by the IL program. Residence types include: SF, SF LI, MF & MF LI. Utilities included: Ameren, ComEd, People's Gas, Northshore Gas & Nicor. Data provided from 2016 Ameren Illinois Demand Side Management (DSM) Market Potential Study by Applied Energy Group, ComEd's 2019 Baseline Survey on residential space heating share, and PY2022-2023 Implementation Contractors Data for People's Gas, Northshore Gas & Nicor .

	Location				
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown
Ameren	18%	26%	38%	39%	29%
ComEd	14%	22%	43%	48%	21%
PGL	1.0%	1.5%	4.0%	2.8%	2.2%
NSG	1.3%	0.8%	32.5%	1.2%	3.3%
Nicor	1.3%	0.8%	32.5%	1.2%	3.3%
All DUs ¹⁴⁷³					26%

<u>Note</u>: If a measure is supported by a gas and electric utility through a joint program, and it is unknown whether the participant has a gas supply, the electric utility values in the table above should be used. If it is known that the participant has a gas supply, the values from the gas utility above should be applied.

For example: energy savings from air sealing. Energy savings for attic insulation are included in a separate example in Section 5.6.5: Ceiling/Attic Insulation.

Assume a 2-story single family non-income eligible home in Chicago completes air sealing, installs attic insulation, has 10.5 SEER central cooling and a heat pump with COP of 2 (1.92 including distribution losses), and has pre and post blower door test results of 3,400 and 2,250 CFM:

```
\DeltakWh = \DeltakWh_cooling + \DeltakWh_heating

= [(((3,400 - 2,250) / 31.6) * 60 * 24 * 1,047 * 0.75 * 0.018) / (1,000 * 10.5) * 3.2 * 114%] * 100% * 100% + [(((3,400 - 2,250) / 19.4) * 60 * 24 * 4,798 * 0.018) / (1.92 * 3,412)] * 100%

= 257 + 1,125

= 1,382 kWh
```

ΔkWh_heatingFurnace = If fossil fuel *furnace* heat, kWh savings for reduction in fan run time

= ΔTherms * Fe * 29.3 * ADJ_{AirSealingHeatFan}

Fe = Furnace Fan energy consumption as a percentage of annual fuel consumption

 $= 3.14\%^{1474}$

29.3 = kWh per therm

ADJ_{AirSealingHeatFan} = Adjustment for fan savings during heating season to account for inaccuracies

in engineering algorithms 1475

-

¹⁴⁷³ For the weighted average calculations, please see the Analysis file. PGL, NSG, Nicor & gas customers were assumed to follow the provided split. ComEd total customers, minus overlap with PGL,NSG & Nicor, therefore electric only homes. Ameren is total customers minus Nicor.

 $^{^{1474}}$ F_e is not one of the AHRI certified ratings provided for residential furnaces, but can be reasonably estimated from a calculation based on the certified values for fuel energy (Ef in MMBtu/yr) and Eae (kWh/yr). An average of a 300 record sample (non-random) out of 1495 was 3.14%. This is, appropriately, ~50% greater than the ENERGY STAR version 3 criteria for 2% F_e. See "Programmable Thermostats Furnace Fan Analysis.xlsx" for reference.

¹⁴⁷⁵ As demonstrated in air sealing and insulation research by Navigant, see Navigant (2018). ComEd and Nicor Gas Air Sealing and Insulation Research Report. Presented to Commonwealth Edison Company and Nicor Gas Company. These adjustment factors are based on a consumption data analysis using matching to non-participants. The values are therefore between net and gross with respect to free ridership. Like all consumption data analyses, they are net with respect to participant spillover and gross with respect to non-participant spillover. For more detail, see Table 5-3 in Volume 4 of the IL-TRM. Consistent with Section 7.2 of the

Measure	ADJAirSealingHeatFan
Air sealing and attic insulation	113%
Air sealing without attic insulation	100%

For example: energy savings from air sealing. Energy savings for attic insulation are included in a separate example in Section 5.6.5: Ceiling/Attic Insulation.

Assume a well shielded, 2-story non-income eligible single family home in Chicago completes air sealing, installs attic insulation, has a gas furnace with system efficiency of 70%, and has pre and post blower door test results of 3,400 and 2,250 CFM (see therm calculation in Fossil Fuel Savings section):

Methodology 2: Prescriptive Infiltration Reduction Measures 1476

Savings shall only be calculated via Methodology 2 if a blower door test is not conducted.

Where:

 ΔkWh_{gasket}

= Annual kWh savings from installation of air sealing gasket on an electric outlet on an external wall.

Climate Zone	ΔkWh _{gasket_heat} / gasket		ΔkWh_{gasket}	cool / gasket
(City based upon)	Electric Resistance	Heat Pump	With Cooling	Unknown Cooling
1 (Rockford)	10.5	5.3	1	0.7
2 (Chicago)	10.2	5.1	1.2	0.8
3 (Springfield)	8.8	4.4	1.4	1
4 (Belleville)	7	3.5	2	1.3
5 (Marion)	7.2	3.6	1.7	1.1

 n_{gasket}

= Number of gaskets installed

2025 IL TRM v13.0 Vol. 3 September 20, 2024 FINAL

Illinois EE Policy Manual, applicable net-to-gross adjustments to the savings will be determined as part of the annual SAG net-to-gross process. During update cycle for version v.12, applied the percent change of NCEI Annual Normals HDD60 from 30 yr data set (1981-2010) to more recent 15 yr data (2006-2020) for all heating-related adjustment values.

¹⁴⁷⁶ Prescriptive savings are based upon "Evaluation of the Weatherization Residential Assistance Partnership and Helps Programs (WRAP/Helps)." Middletown, CT: KEMA, 2010. Accessed July 30, 2015, and adjusted for relative HDD of Bridgeport/Hartford CT with the IL climate zones. See 'Rx Airsealing HDD adjustment.xls' for more information. Cooling savings derived using savings assumptions pulled from ASHRAE, 2001 AHSRAE Handbook – Fundamentals, Chapter 26, Table 1. Effective Air Leakage Areas (Low-Rise Residential Applications Only). See 'Prescriptive Air Sealing Cooling Calculation.xls' for details.

ΔkWh_{windows} = Annual kWh savings from installation of Shrink-Fit Window Kit¹⁴⁷⁷

Climate Zone	ΔkWh _{windows_heat} / sf			
(City based upon)	Electric Resistance	Heat Pump		
1 (Rockford)	4	2.1		
2 (Chicago)	3.9	2		
3 (Springfield)	3.3	1.7		
4 (Belleville)	2.5	1.3		
5 (Marion)	2.6	1.3		

sf_{windows} = square footage of shrink-fit window film

ΔkWh_{sweep} = Annual kWh savings from installation of a door sweep on a door between conditioned and unconditioned space

Climate Zone	ΔkWh _{sweep_heat} / sweep		ΔkWh _{sweep} _	_{cool} / sweep
(City based upon)	Electric Resistance	Heat Pump	With Cooling	Unknown Cooling
1 (Rockford)	202.4	101.2	3.9	2.6
2 (Chicago)	195.3	97.6	4.6	3
3 (Springfield)	169.3	84.7	5.7	3.7
4 (Belleville)	134.9	67.5	7.8	5.1
5 (Marion)	137.9	68.9	6.6	4.3

n_{sweep} = Number of sweeps installed

ΔkWh_{sealing} = Annual kWh savings from foot of caulking, sealing, or polyethlylene tape in locations between conditioned and unconditioned space.

Climate Zone	ΔkWh _{sealing_heat} / ft		ΔkWh _{seal}	ing_cool / ft
(City based upon)	Electric Resistance	Heat Pump	With Cooling	Unknown Cooling
1 (Rockford)	11.6	5.8	0.11	0.07
2 (Chicago)	11.2	5.6	0.12	0.08
3 (Springfield)	9.7	4.8	0.15	0.1
4 (Belleville)	7.7	3.9	0.21	0.14
5 (Marion)	7 9	3.9	0.18	0.12

If_{sealing} = linear feet of caulking, sealing, or polyethylene tape

ΔkWh_{WX} = Annual kWh savings from window weatherstripping or door weatherstripping

¹⁴⁷⁷ Prescriptive savings are based upon "Cost Benefit Analysis for 2018, Annual Report submitted to Virginia Natural Gas, Inc., submitted by Nexant." July 31, 2018. Adjusted for relative HDD of Virginia Beach VA with the IL climate zones. See "Window Film Savings Calculation.xlsx" for more information.

Climate Zone	Δ kWh _{WX_heat} /ft		ΔkWhw	x_cool / ft
(City based upon)	Electric Resistance	Heat Pump	With Cooling	Unknown Cooling
1 (Rockford)	13.5	6.7	0.1	0.06
2 (Chicago)	13	6.5	0.12	80.0
3 (Springfield)	11.3	5.6	0.14	0.09
4 (Belleville)	9	4.5	0.2	0.13
5 (Marion)	9.2	4.6	0.16	0.11

If_{WX} = Linear feet of window weatherstripping or door weatherstripping

ADJ_{RxAirsealing} = Adjustment for air sealing savings to account for prescriptive estimates overclaiming

savings¹⁴⁷⁸

= 80%

ISR = In service rate of weatherization kits dependant on install method as listed in table

below. 1479

¹⁴⁷⁸ Though we do not have a specific evaluation to point to, modeled savings have often been found to overclaim. Further VEIC reviewed these deemed estimates and consider them to likely be a high estimate. As such an 80% adjustment is applied, and this could be further refined with future evaluations.

 $^{^{1479}}$ For any airsealing kit measure, if research indicates that a certain percentage of participants who indicated during the original ISR survey that they plan to install are found to have actually installed at a later date, these future installs can be claimed as 2^{nd} or 3^{rd} year installs through an errata.

Selection	ISR
Distributed School Weatherization Kits	0.57 ¹⁴⁸⁰
Distributed Self-Install Income-Qualified Kits ¹⁴⁸¹	
Weatherstripping	0.63
Outlet and Switch Gaskets	0.40^{1482}
Window Kit	0.57
Door sweep	0.62 ¹⁴⁸³
Other Distributed Self-Install Income-Qualified Measures	0.67 ¹⁴⁸⁴
Opt-in Weatherization Kits ¹⁴⁸⁵	
V-seal weatherstripping	0.68
Cell foam tape weatherstripping	0.72
Rope Caulk	0.60
Switch and outlet gaskets	0.76
Door sweep	0.68
Other Self-Install Weatherization Measures	0.69
Direct Install, Retail	1.0

¹⁴⁸⁰ Results from Home Energy Worksheets completed by student/families in 2020, 2021, and 2022 were nearly the same as values from: LLUME Advising LLC. School-Based Energy Education Programs: Goals, Challenges, and Opportunities. October 2015. See result for AEP Ohio Weather stripping/door sweep/gaskets kit in table on page 17. Home Energy Worksheets also establish the fraction of participants who indicate they "will install later" for specific measures. Follow-up research completed by Guidehouse for Nicor Gas in 2022 found that, on average, 51.3% of respondents who initially reported that they hadn't installed specific kit measures, but "planned to" subsequently had installed the measures. Combining these findings allows for an ISR that accounts for initial and one round of subsequent installations. To maintain a conservative estimate of ISR, the remaining 48.7% are presumed uninstalled. See: EESchoolKitSubsequentInstall_HEW.xlsx for data and calculations.

¹⁴⁸¹ Guidehouse. Income Eligible Gas Kits ISR Special Study Results. June 16, 2020.

¹⁴⁸² Research from 2021 Ameren Illinois Income Qualified participant survey, available on IL SAG website:

https://ilsag.s3.amazonaws.com/AIC-Income-Qualified-Initiative-Participant-Survey-Results-Memo-FINAL-2022-02-01.pdf ¹⁴⁸³ Research from 2021 Ameren Illinois Income Qualified participant survey, available on IL SAG website:

https://ilsag.s3.amazonaws.com/AlC-Income-Qualified-Initiative-Participant-Survey-Results-Memo-FINAL-2022-02-01.pdf ¹⁴⁸⁴ Straight average of other measures.

¹⁴⁸⁵ Table 16, Illinois TRM Workpaper ESK ISR Follow-up Survey 2023-05-30

For example, 5 gaskets, 2 door sweeps and 10 linear feet of window weatherstripping is provided in a Distributed Self-Install Income-Qualified Kits for a home in Rockford with electric resistance and cooling

$$\Delta kWh = (\Delta kWh_Heating + \Delta kWh_Cooling) * ADJ_{RxAirsealing}$$

$$\Delta kWh_Heating = (\Delta kWh_{gasket_heat} * n_{gasket} * ISR + \Delta kWh_{windows_heat} * sf_{windows} * ISR + \Delta kWh_{sweep_heat} * n_{sweep} * ISR + \Delta kWh_{sealing_heat} * If_{sealing} * ISR + \Delta kWh_{wx_heat} * If_{wx} * ISR)$$

$$\Delta kWh_Cooling = (\Delta kWh_{gasket_cool} * n_{gasket} * ISR + \Delta kWh_{windows_cool} * sf_{windows} * ISR + \Delta kWh_{sweep_cool} * ISR + \Delta kWh_{sweep$$

kWh_Cooling = (
$$\Delta$$
kWh_{gasket_cool} * n_{gasket} * ISR + Δ kWh_{windows_cool} * sf_{windows} * ISR + Δ kWh_{sweep_cool} * n_{sweep} * ISR + Δ kWh_{sealing_cool} * If_{sealing} * ISR + Δ kWh_{wx_cool} * If_{wx} * ISR)

$$\Delta kWh_Heating = (10.5 * 5 * 0.4) + (202.4 * 2 * 0.62) + (13.5 * 10 * 0.63)$$

$$= 357.0 \text{ kWh}$$

$$\Delta kWh_Cooling = (1 * 5 * 0.4) + (3.9 * 2 * 0.62) + (0.1 * 10 * 0.63)$$

$$= 7.5 \text{ kWh}$$

$$\Delta$$
kWh = (357.0 + 7.5) * 0.8
= 291.6 kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = (\Delta kWh_cooling / FLH_cooling) * CF$

Where:

ΔkWh cooling = Cooling savings from measure

FLH_cooling = Full load hours of air conditioning

= Dependent on location: 1486

Climate Zone (City based upon)	Single Family	Multifamily
1 (Rockford)	547	499
2 (Chicago)	709	629
3 (Springfield)	779	707
4 (Belleville)	1,082	982
5 (Marion/Murphysboro)	956	868
Weighted Average ¹⁴⁸⁷	676	603

¹⁴⁸⁶ Full load hours for Chicago, Moline and Rockford are provided in "Final Evaluation Report: Central Air Conditioning Efficiency Services (CACES), 2010, Navigant Consulting", p.33. An average FLH/Cooling Degree Day (from NCDC) ratio was calculated for these locations and applied to the CDD of the other locations in order to estimate FLH. During update cycle for version v.12, applied percent change of CDD65, NCEI Annual Normals from 30 yr data set (1981-2010) to more recent 15 yr data (2006-2020) to all FLHcool values.

¹⁴⁸⁷ Weighting for Ameren is based on electric accounts in each of the cooling zones. Weighting for ComEd and Statewide average is based on number of occupied residential housing units in each zone. ComEd is weighted average of Zones 1-2. Alternative program-weighted assumptions can be used if appropriate.

Climate Zone (City based upon)	Single Family	Multifamily
ComEd	875	791
Ameren	731	655
Statewide		

Use Multifamily if: Building meets utility's definition for multifamily and HVAC system serves single unit. For residential sized systems serving 2 or more units, assume single family hours.

 $=68\%^{1488}$

CF_{SSP SF} = Summer System Peak Coincidence Factor for Heat Pumps in single-family homes

(during system peak hour)

 $=72\%^{1489}$

CF_{SSP, MF} = Summer System Peak Coincidence Factor for Heat Pumps in multi-family homes (during

system peak hour)

= 67% 1490

CF_{PJM} = PJM Summer Peak Coincidence Factor for Central A/C (average during PJM peak

period)

 $=46.6\%^{1491}$

CF_{PJM SF} = PJM Summer Peak Coincidence Factor for Heat Pumps in single-family homes (average

during PJM peak period)

 $=46.6\%^{1492}$

CF_{PJM, MF} = PJM Summer Peak Coincidence Factor for Heat Pumps in multi-family homes (average

during peak period)

= 28.5%

Other factors as defined above.

For example: energy savings from air sealing. Energy savings for attic insulation are included in a separate example in Section 5.6.5: Ceiling/Attic Insulation.

Assume a well shielded, 2-story non-income eligible single family home in Chicago completes air sealing, installs attic insulation, has 10.5 SEER central cooling and a heat pump with COP of 2.0, and has pre and post blower door test results of 3,400 and 2,250 CFM:

 $\Delta kW_{SSP} = 257 / 709 * 0.68$

= 0.25 kW

 $\Delta kW_{PJM} = 257 / 709 * 0.466$

= 0.17 kW

¹⁴⁸⁸ Based on metering of 24 homes with central AC during PY4 and PY5 in Ameren Illinois service territory.

¹⁴⁸⁹ Based on analysis of metering results from 24 heat pumps in Ameren Illinois service territory in PY5 coincident with AIC's 2010 system peak; 'Impact and Process Evaluation of Ameren Illinois Company's Residential HVAC Program (PY5)'.

¹⁴⁹⁰ Multifamily coincidence factors both from; *All-Electric Homes PY6 Metering Results: Multifamily HVAC Systems*, Cadmus, October 2015

¹⁴⁹¹ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

¹⁴⁹² Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

FOSSIL FUEL SAVINGS

Methodology 1: Blower Door Test

Required methodology when blower door testing is conducted.

If Fossil Fuel heating:

ΔTherms = (((CFM50_existing - CFM50_new)/N_heat) * 60 * 24 * HDD * 0.018) / (ηHeat * 100,000) * ADJ_{AirSealingFossilHeat} * IE_{NetCorrection} * %FossilHeat

Where:

N heat

= Conversion factor from leakage at 50 Pascal to leakage at natural conditions

= Based on climate zone and building height: 1493

Climate Zone	N_heat (by # of stories)			
(City based upon)	1	1.5	2	3
1 (Rockford)	23.8	21.1	19.3	17.1
2 (Chicago)	23.9	21.1	19.4	17.2
3 (Springfield)	24.2	21.5	19.7	17.4
4 (St Louis, MO)	25.4	22.5	20.7	18.3
5 (Paducah, KY)	27.8	24.6	22.6	20.0

HDD

= Heating Degree Days

= dependent on location: 1494

Climate Zone (City based upon)	HDD 60
1 (Rockford)	5230
2 (Chicago)	4798
3 (Springfield)	4266
4 (Belleville)	3188
5 (Marion/Murphysboro)	3390

ηHeat

- = Efficiency of heating system
- = Equipment efficiency * distribution efficiency
- = Actual (where it is possible to measure or reasonably estimate). Note where new HVAC is installed in addition to shell measures, the old HVAC unit efficiency should be used and the shell measure savings calculated first, the HVAC measure then assuming the reduced heat/cooling loads. If using rated efficiencies, derate efficiency value by 1% per

¹⁴⁹³ N-factor is used to convert 50-pascal blower door air flows to natural air flows and is dependent on geographic location and # of stories. These were developed by applying the LBNL infiltration model (see LBNL paper 21040, *Exegisis of Proposed ASHRAE Standard 119: Air Leakage Performance for Detached Single-Family Residential Buildings*; Sherman, 1986; page v-vi, Appendix page 7-9) to the reported wind speeds and outdoor temperatures provided by the NRDC 30 year climate normals. For more information see Bruce Harley, CLEAResult "Infiltration Factor Calculations Methodology.doc". Note, the methodology for developing n-factors requires hourly normals as opposed to annual normals which are used for other assumptions in the TRM. Hourly normals were not available for all sites used for other climate assumptions and so the nearest locations were used (St Louis, MO for Belleville, IL and Paducah, KY for Marion, IL).

¹⁴⁹⁴ National Climatic Data Center, National Centers for Environmental Information (NCEI) Annual Normals, from 2006 - 2020, calculated with a base temp of 60°F

¹⁴⁹⁵ Ideally, the System Efficiency should be obtained either by recording the AFUE of the unit, or performing a steady state efficiency test. The Distribution Efficiency can be estimated via a visual inspection and by referring to a look up table such as that provided by the Building Performance Institute: (see 'BPI Distribution Efficiency Table') or by performing duct blaster testing.

year (maximum of 30 years) to account for degradation over time, ¹⁴⁹⁶ or if Equipment Efficiency is not available, use Section 5.3 to select the appropriate equipment efficiency for the project. If unknown value is used, it should not be derated by age. If actual Distribution Efficiency is not available, use 85%.

ADJ_{AirSealingFossilHeat} = Adjustment for fossil heating savings to account for inaccuracies in engineering algorithms: 1497

Measure	ADJ AirSealingFossilHeat
Air sealing and attic insulation	76%
Air sealing without attic insulation	100%

IE_{NetCorrection}

- = 100% if not income eligible or air sealing is installed without attic insulation
- = 110% if installing air sealing and attic insulation in income eligible projects with a deemed NTG value of 1.0 to offset net savings adjustment inherent when using ADJ $_{AirSealingFossilHeat}$ of $76\%^{1498}$

%FossilHeat

- = Percent of homes that have fossil fuel space heating
- = 100 % for Fossil Fuel heating
- = 0 % for Electric Resistance or Heat Pump
- = If unknown¹⁴⁹⁹, use the following table:

	Location				
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown
Ameren	82%	74%	62%	61%	71%
ComEd	86%	78%	57%	52%	79%
PGL	98.9%	98.5%	96.0%	96.9%	97.7%
NSG	98.3%	99.2%	67.5%	98.8%	96.6%
Nicor	98.3%	99.2%	67.5%	98.8%	96.6%
All DUs ¹⁵⁰⁰		_			74%

¹⁴⁹⁶ Justification for degradation factors can be found on page 14 of 'AIC HVAC Metering Study Memo FINAL 2_28_2018'. Estimate efficiency as (Rated Efficiency * (1-0.01)^Equipment Age).

¹⁴⁹⁷ As demonstrated in air sealing and insulation research by Navigant, see Navigant (2018). ComEd and Nicor Gas Air Sealing and Insulation Research Report. Presented to Commonwealth Edison Company and Nicor Gas Company. These adjustment factors are based on a consumption data analysis using matching to non-participants. The values are therefore between net and gross with respect to free ridership. Like all consumption data analyses, they are net with respect to participant spillover and gross with respect to non-participant spillover. For more detail, see Table 5-3 in Volume 4 of the IL-TRM. Consistent with Section 7.2 of the Illinois EE Policy Manual, applicable net-to-gross adjustments to the savings will be determined as part of the annual SAG net-to-gross process. During update cycle for version v.12, applied the percent change of NCEI Annual Normals HDD60 from 30 yr data set (1981-2010) to more recent 15 yr data (2006-2020) for all cooling-related adjustment values.

¹⁴⁹⁸ The additional value of 10% was selected to acknowledge that some portion of the regression-derived adjustment factors accounts for gross impact effects, and that removing net effects embedded in the adjustment factors would increase savings to some degree. A review of historical NTG values for air sealing and insulation measures in non-income eligible populations did not provide definitive guidance for estimating the net component of the adjustment factors. Historically, free ridership has ranged from 9% to 26% for like measures, and spillover has ranged from 1% to 14%, while NTGs have ranged from 0.75 to 1.05. The midpoint of the NTG range would be 0.90, a 10% reduction from 1.0.

¹⁴⁹⁹ Based on the average % Natural Gas used for space heating in Unknown residential structure types across all utilities covered by the IL program. Residence types include: SF, SF LI, MF & MF LI. Utilities included: Ameren, ComEd, People's Gas, Northshore Gas & Nicor. Data provided from 2016 Ameren Illinois Demand Side Management (DSM) Market Potential Study by Applied Energy Group, ComEd's 2019 Baseline Survey on residential space heating share, and PY2022-2023 Implementation Contractors Data for People's Gas, Northshore Gas & Nicor.

¹⁵⁰⁰ For the weighted average calculations, please see the Analysis file. PGL, NSG, Nicor & gas customers were assumed to follow

<u>Note</u>: If a measure is supported by a gas and electric utility through a joint program, and it is unknown whether the participant has a gas supply, the electric utility values in the table above should be used. If it is known that the participant has a gas supply, the values from the gas utility above should be applied.

Other factors as defined above.

For example, energy savings from air sealing. Energy savings for attic insulation are included in a separate example in Section 5.6.5: Ceiling/Attic Insulation.

Assume a 2-story non-income eligible single family home in Chicago completes air sealing, installs attic insulation, has a gas furnace with system efficiency of 72%, and has pre and post blower door test results of 3,400 and 2,250 CFM:

 Δ Therms = (((3,400 - 2,250)/19.4) * 60 * 24 * 4,798 * 0.018) / (0.72 * 100,000) * 76% * 100%

= 77.8 therms

Methodology 2: Prescriptive Infiltration Reduction Measures 1501

Savings shall only be calculated via Methodology 2 when a blower door test is not conducted.

Δtherms = (Δtherms_{gasket} * n_{gasket} * ISR + Δtherms_{windows} * sf_{windows} * ISR + Δtherms_{sweep} * n_{sweep} *

ISR + Δtherms_{sealing} * If_{sealing} * ISR + Δtherms_{WX} * If_{WX} * ISR) * ADJ_{RxAirsealing}

Where:

Δtherms_{gasket} = Annual therm savings from installation of air sealing gasket on an electric outlet on an external wall.

Climate Zone (City based upon)	Δtherms _{gasket} / gasket Fossil Heat
1 (Rockford)	0.49
2 (Chicago)	0.47
3 (Springfield)	0.41
4 (Belleville)	0.33
5 (Marion)	0.33

n_{gasket} = Number of gaskets installed

Δtherms_{windows} = Annual therm savings from installation of Shrink-Fit Window Kit:¹⁵⁰²

Climate Zone	Δthermswindows / sf
(City based upon)	Fossil Heat
1 (Rockford)	0.191
2 (Chicago)	0.183
3 (Springfield)	0.156

the provided split. ComEd total customers, minus overlap with PGL,NSG & Nicor, therefore gas only homes. Ameren is total customers minus Nicor.

¹⁵⁰¹ Prescriptive savings are based upon "Evaluation of the Weatherization Residential Assistance Partnership and Helps Programs (WRAP/Helps)." Middletown, CT: KEMA, 2010. Accessed July 30, 2015, and adjusted for relative HDD of Bridgeport/Hartford CT with the IL climate zones. See 'Rx Airsealing HDD adjustment.xls' for more information.

¹⁵⁰² Prescriptive savings are based upon "Cost Benefit Analysis for 2018, Annual Report submitted to Virginia Natural Gas, Inc., submitted by Nexant." July 31, 2018. Adjusted for relative HDD of Virginia Beach VA with the IL climate zones. See "Window Film Savings Calculation.xlsx" for more information.

4 (Belleville)	0.121
5 (Marion)	0.123

 $sf_{windows}$ = square footage of shrink-fit window film

= Annual therm savings from installation of door sweep on a door between conditioned ∆therms_{sweep} and unconditioned space

Climate Zone (City based upon)	Δtherms _{sweep} / sweep Fossil Heat
1 (Rockford)	9.46
2 (Chicago)	9.13
3 (Springfield)	7.92
4 (Belleville)	6.31
5 (Marion)	6.45

= Number of sweeps installed n_{sweep}

= Annual therm savings from foot of caulking, sealing, or polyethlylene tape in locations ∆therms_{sealing} between conditioned and unconditioned space.

Climate Zone	Δtherms _{sealing} / ft
(City based upon)	Fossil Heat
1 (Rockford)	0.54
2 (Chicago)	0.52
3 (Springfield)	0.45
4 (Belleville)	0.36
5 (Marion)	0.37

Ifsealing = linear feet of caulking, sealing, or polyethylene tape

 $\Delta therms_{wx}$ = Annual therm savings from window weatherstripping or door weatherstripping

Climate Zone (City based upon)	Δtherms _{sx} / ft Fossil Heat
1 (Rockford)	0.63
2 (Chicago)	0.61
3 (Springfield)	0.53
4 (Belleville)	0.42
5 (Marion)	0.43

 lf_{WX} = Linear feet of window weatherstripping or door weatherstripping

= Adjustment for air sealing savings to account for prescriptive estimates overclaiming **ADJ**_{RxAirsealing}

savings1503

= 80%

Other assumptions as defined above

¹⁵⁰³ Though we do not have a specific evaluation to point to, modeled savings have often been found to overclaim. Further VEIC reviewed these deemed estimates and consider them to likely be a high estimate. As such an 80% adjustment is applied, and this could be further refined with future evaluations.

Mid-Life adjustment

In order to account for the likely replacement of existing heating and cooling equipment during the life time of this measure, a mid-life adjustment should be applied. To calculate the adjustment, re-calculate the savings above using the following new baseline system efficiency assumptions:

Efficiency Assumption	System Type	New Baseline Efficiency	
nCool	Central AC	13.4 SEER2	
IICOOI	Heat Pump	14.3 SEER2	
	Electric Resistance 1.0 COP		
	Heat Pump	1.87 COP	
	(7.5HSPF/3.413)*0.85		
	Gas Furnace	68% AFUE	
ηHeat	80% AFUE * 0.85		
	Oil Furnace	71% AFUE	
	83% AFUE * 0.85		
	Gas Boiler	84% AFUE	
	Oil Boiler	86% AFUE	

This reduced annual savings should be applied following the assumed remaining useful life of the existing equipment, estimate to be 10 years or 13 years for boilers. Note if the existing equipment efficiency is greater than the new baseline efficiency listed above, do not apply a mid-life adjustment.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-SHL-AIRS-V14-250101

REVIEW DEADLINE: 1/1/2028

¹⁵⁰⁴ This is intentionally longer than the assumptions found in the early replacement measures as the application of this measure will occur in a variety of homes that will not be targeted for early replacement HVAC systems.

5.6.2 Basement Sidewall Insulation

DESCRIPTION

Insulation is added to a basement or crawl space. Insulation added above ground in conditioned space is modeled the same as wall insulation. Below ground insulation is adjusted with an approximation of the thermal resistance of the ground. Insulation in unconditioned spaces is modeled by reducing the degree days to reflect the smaller but non-zero contribution to heating and cooling load. Cooling savings only consider above grade insulation, as below grade has little temperature difference during the cooling season.

This measure was developed to be applicable to the following program types: RF.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

This measure requires a member of the implementation staff or a participating contractor to evaluate the pre and post R-values and measure surface areas. The requirements for participation in the program will be defined by the utilities.

DEFINITION OF BASELINE EQUIPMENT

The existing condition will be evaluated by implementation staff or a participating contractor and is likely to be no basement wall or ceiling insulation.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 30 years. 1505

Note a mid-life adjustment to account for replacement of HVAC equipment during the measure life should be applied after 10 years or 13 years for boilers. 1506 See section below for detail.

DEEMED MEASURE COST

The actual installed cost for this measure should be used in screening.

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape R08 - Residential Cooling

Loadshape R09 - Residential Electric Space Heat

Loadshape R10 - Residential Electric Heating and Cooling

COINCIDENCE FACTOR

The summer peak coincidence factor for cooling is provided in two different ways below. The first is used to estimate peak savings during the utility peak hour and is most indicative of actual peak benefits, and the second represents the *average* savings over the defined summer peak period, and is presented so that savings can be bid into PJM's capacity market.

CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C (during utility peak hour)

¹⁵⁰⁵ As recommended in Guidehouse 'EMV Group A, Deliverable 16 EUL Research – Residential Insulation', prepared for California Public Utilities Commission, June 2021.

¹⁵⁰⁶ This is intentionally longer than the assumptions found in the early replacement measures as the application of this measure will occur in a variety of homes that will not be targeted for early replacement HVAC systems.

	= 68% ¹⁵⁰⁷
CF _{SSP} SF	= Summer System Peak Coincidence Factor for Heat Pumps in single family homes (during system peak hour)
	= 72% ¹⁵⁰⁸
CF _{SSP} , MF	= Summer System Peak Coincidence Factor for Heat Pumps in multifamily homes (during system peak hour)
	= 67% ¹⁵⁰⁹
CF_{PJM}	= PJM Summer Peak Coincidence Factor for Central A/C (average during PJM peak period)
	= 46.6% ¹⁵¹⁰
CF _{PJM} SF	= PJM Summer Peak Coincidence Factor for Heat Pumps in single family homes (average during PJM peak period)
	= 46.6% ¹⁵¹¹
СҒрјм, мғ	= PJM Summer Peak Coincidence Factor for Heat Pumps in multifamily homes (average during peak period)
	= 28.5%

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Where available savings from shell insulation measures should be determined through a custom analysis. When that is not feasible for the program the following engineering algorithms can be used with the inclusion of an adjustment factor to de-rate the heating savings.

 Δ kWh = (Δ kWh_cooling + Δ kWh_heatingElectric + Δ kWh_heatingFurnace)

Where:

ΔkWh cooling = If central cooling, reduction in annual cooling requirement due to insulation

= ((((1/R_old_AG - 1/(R_added+R_old_AG)) * L_basement_wall_total *

H_basement_wall_AG * (1-Framing_factor) * 24 * CDD * DUA) / (1000 * ηCool)) *

ADJ_{BasementCool} * %Cool

R_added = R-value of additional spray foam, rigid foam, or cavity insulation.

R_old_AG = R-value value of foundation wall above grade.

¹⁵⁰⁷ Based on metering of 24 homes with central AC during PY4 and PY5 in Ameren Illinois service territory.

¹⁵⁰⁸ Based on analysis of metering results from 24 heat pumps in Ameren Illinois service territory in PY5 coincident with AIC's 2010 system peak; 'Impact and Process Evaluation of Ameren Illinois Company's Residential HVAC Program (PY5)'.

¹⁵⁰⁹ Multifamily coincidence factors both from; *All-Electric Homes PY6 Metering Results: Multifamily HVAC Systems*, Cadmus, October 2015

¹⁵¹⁰ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

¹⁵¹¹ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

= Actual, if unknown assume 1.0.¹⁵¹²

L basement_wall_total = Length of basement wall around the entire insulated perimeter (ft)

H_basement_wall_AG = Height of insulated basement wall above grade (ft)

Framing_factor = Adjustment to account for area of framing when cavity insulation is used

= 0% if Spray Foam or External Rigid Foam

= 25% if studs and cavity insulation 1513

24 = Converts hours to days
CDD = Cooling Degree Days

= Dependent on location and whether basement is conditioned: 1514

Climate Zone (City based upon)	Conditioned CDD 65	Unconditioned (CDD 75) ¹⁵¹⁵
1 (Rockford)	877	326
2 (Chicago)	1047	354
3 (Springfield)	1183	448
4 (Belleville)	1641	532
5 (Marion)	1450	516
Weighted Average ¹⁵¹⁶	1098	380

DUA = Discretionary Use Adjustment (reflects the fact that people do not always operate their AC when conditions may call for it).

 $= 0.75^{1517}$

1000 = Converts Btu to kBtu

ηCool = Seasonal Energy Efficiency Ratio of cooling system (kBtu/kWh)

= Actual (where it is possible to measure or reasonably estimate). Note where new HVAC is installed in addition to shell measures, the old HVAC unit efficiency should be used and the shell measure savings calculated first, the HVAC measure then assuming the reduced heat/cooling loads. If using rated efficiencies, derate efficiency value by 1% per year (maximum of 30 years) to account for degradation over time, ¹⁵¹⁸ or if unknown assume the following. ¹⁵¹⁹ If unknown value is used, it should not be derated by age.

¹⁵¹² ORNL Builders Foundation Handbook, crawl space data from Table 5-5: Initial Effective R-values for Uninsulated Foundation System and Adjacent Soil, 1991.

¹⁵¹³ ASHRAE, 2001, "Characterization of Framing Factors for New Low-Rise Residential Building Envelopes (904-RP)," Table 7.1 ¹⁵¹⁴National Centers for Environmental Information (NCEI) Annual Normals, from 2006 - 2020, calculated with a base temp of 65°F. There is a county mapping table in Volume 1, Section 3.7 providing the appropriate city to use for each county of Illinois. ¹⁵¹⁵ Five year-average (2018 to 2022) cooling degree days with a base temperature of 75 F. Data from DegreeDays.net were used in this table because the climate normals from NCEI/NCDC used elsewhere are not available at base temps above 72F. ¹⁵¹⁶ Weighted based on number of occupied residential housing units in each zone (US Census 2010).

¹⁵¹⁷ This factor's source is: Energy Center of Wisconsin, May 2008 metering study; "Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research", p31.

¹⁵¹⁸ Justification for degradation factors can be found on page 14 of 'AIC HVAC Metering Study Memo FINAL 2_28_2018'. Estimate efficiency as (Rated Efficiency * (1-0.01)^Equipment Age).

¹⁵¹⁹ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Central AC was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely

Age of Equipment	ηCool Estimate
Before 2006	9.5
2006 - 2014	12.4
Central AC After 1/1/2015	12.4
Heat Pump After 1/1/2015	13.3
Unknown (for use in program evaluation only)	10.0

 $ADJ_{BasementCool} \\$

 Adjustment for cooling savings from basement wall insulation to account for prescriptive engineering algorithms overclaiming savings¹⁵²⁰
 75%

%Cool

= Percent of homes that have cooling

Central Cooling?	%Cool
Yes	100%
No	0%
Unknown (for use in program evaluation only) ¹⁵²¹	66%

ΔkWh_heatingElectric = If electric heat (resistance or heat pump), reduction in annual electric heating due to insulation

 $= [(((1/R_old_AG - 1/(R_added + R_old_AG)) * L_basement_wall_total * H_basement_wall_AG * (1-Framing_factor)) + ((1/R_old_BG - 1/(R_added + R_old_BG)) * L_basement_wall_total * (H_basement_wall_total - H_basement_wall_AG) * (1-Framing_factor))] * 24 * HDD) / (3,412 * <math>\eta$ Heat)) * ADJ_BasementHeat *%ElectricHeat

Where:

R_old_BG

- = R-value value of foundation wall below grade (including thermal resistance of the earth) 1522
- = dependent on depth of foundation (H_basement_wall_total -H_basement_wall_AG):
- = Actual R-value of wall plus average earth R-value by depth in table below

	Below Grade R-value								
Depth below grade (ft)	0	1	2	3	4	5	6	7	8
Earth R-value (°F-ft²-h/Btu)	2.44	4.50	6.30	8.40	10.44	12.66	14.49	17.00	20.00
Average Earth R-value (°F-ft2-h/Btu)	2.44	3.47	4.41	5.41	6.42	7.46	8.46	9.53	10.69
Total BG R-value (earth + R-1.0 foundation) default	3.44	4.47	5.41	6.41	7.42	8.46	9.46	10.53	11.69

degradation of efficiencies over time means that using the minimum standard is appropriate. Note all ratings have been converted to SEER2 equivalents – since the new rating better reflects the actual efficiency of the units.

¹⁵²⁰ As demonstrated in two years of metering evaluation by Opinion Dynamics, see Memo "Results for AIC PY6 HPwES Billing Analysis", dated February 20, 2015. TAC negotiated adjustment factor is 80%. During update cycle for version v.12, applied the percent change of NCEI Annual Normals CDD65 from 30 yr data set (1981-2010) to more recent 15 yr data (2006-2020) for all cooling-related adjustment values.

¹⁵²¹ Percentage of homes in Illinois that have central cooling from "Table HC7.9 Air Conditioning in Homes in Midwest Region, Divisions, and States, 2009" from Energy Information Administration, 2009 Residential Energy Consumption Survey

¹⁵²² Adapted from Table 1, page 24.4, of the 1977 ASHRAE Fundamentals Handbook

H_basement_wall_total = Total height of basement wall (ft)

HDD = Heating Degree Days

= dependent on location and whether basement is conditioned: 1523

Climate Zone (City based upon)	Conditioned HDD 60	Unconditioned HDD 50
1 (Rockford)	5230	3233
2 (Chicago)	4798	2845
3 (Springfield)	4266	2456
4 (Belleville)	3188	1651
5 (Marion/Murphysboro)	3390	1750
Weighted Average ¹⁵²⁴	4631	2732

ηHeat

= Efficiency of heating system

= Actual (where it is possible to measure or reasonably estimate). Note where new HVAC is installed in addition to shell measures, the old HVAC unit efficiency should be used and the shell measure savings calculated first, the HVAC measure then assuming the reduced heat/cooling loads. If using rated efficiencies, derate efficiency value by 1% per year (maximum of 30 years) to account for degradation over time, ¹⁵²⁵ or if not available refer to default table below. ¹⁵²⁶ If unknown value is used, it should not be derated by age. If actual Distribution Efficiency is not available, use 85% for heat pumps.

System Type	Age of Equipment	HSPF2 Estimate	ηHeat (Effective COP Estimate * Distribution Efficiency) (HSPF2/3.413)*0.85
	Before 2006	5.8	1.44
Heat Pump (if age unknown, assume 2006-2014)	After 2006 -2014	6.5	1.62
(ii age unknown, assume 2000-2014)	2015 on	7	1.74
Resistance	N/A	N/A	1
Unknown (for use in program evaluation only)	N/A	N/A	1.32

¹⁵²³ National Centers for Environmental Information (NCEI) Annual Normals, from 2006 - 2020, calculated with a base temp of 60°F for a conditioned basement and 50°F for an unconditioned basement), consistent with the findings of Belzer and Cort, Pacific Northwest National Laboratory in "Statistical Analysis of Historical State-Level Residential Energy Consumption Trends," 2004. There is a county mapping table in Volume 1, Section 3.7 providing the appropriate city to use for each county of Illinois. ¹⁵²⁴ Weighted based on number of occupied residential housing units in each zone.

¹⁵²⁵ Justification for degradation factors can be found on page 14 of 'AIC HVAC Metering Study Memo FINAL 2_28_2018'. Estimate efficiency as (Rated Efficiency * (1-0.01)^Equipment Age).

¹⁵²⁶ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time means that using the minimum standard is appropriate. An 85% distribution efficiency is then applied to account for duct losses for heat pumps. Note all ratings have been converted to HSPF2 equivalents – since the new rating better reflects the actual efficiency of the units.

ADJ_{BasementHeat}

= Adjustment for basement wall insulation to account for prescriptive engineering algorithms overclaiming savings¹⁵²⁷

= 63%

%ElectricHeat

= Percent of homes that have electric space heating

= 100 % for Electric Resistance or Heat Pump

= 0 % for Fossil fuel heating

= If unknown¹⁵²⁸, use the following table:

		Location				
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown	
Ameren	18%	26%	38%	39%	29%	
ComEd	14%	22%	43%	48%	21%	
PGL	1.0%	1.5%	4.0%	2.8%	2.2%	
NSG	1.3%	0.8%	32.5%	1.2%	3.3%	
Nicor	1.3%	0.8%	32.5%	1.2%	3.3%	
All DUs ¹⁵²⁹					26%	

<u>Note</u>: If a measure is supported by a gas and electric utility through a joint program, and it is unknown whether the participant has a gas supply, the electric utility values in the table above should be used. If it is known that the participant has a gas supply, the values from the gas utility above should be applied.

For example, a single family home in Chicago with a 20 by 25 by 7 foot R-2.25 basement, with 3 feet above grade, insulated with R-13 of interior spray foam, 10.5 SEER Central AC and 2.26 COP Heat Pump:

```
 \Delta kWh = (\Delta kWh\_cooling + \Delta kWh\_heating) \\ = [((((1/2.25 - 1/(13 + 2.25))*(20+25+20+25) * 3 * (1 - 0)) * 24 * 354 * 0.75)/(1000 * 10.5)) * 0.75 * 100%] + [(((((1/2.25 - 1/(13 + 2.25)) * (20+25+20+25) * 3 * (1-0)) + ((1 / (2.25 + 6.42) - 1 / (13 + 2.25 + 6.42)) * (20+25+20+25) * 4 * (1-0))) * 24 * 2845) / (3412 * 1.92)) * 0.63 * 100%]
```

= (46.6 + 835.3)

= 881.9 kWh

ΔkWh heatingFurnace = If fossil fuel furnace heat, kWh savings for reduction in fan run time

¹⁵²⁷ TAC negotiated factor of 60% was originally proposed, then, during update cycle for version v.12, applied the percent change of NCEI Annual Normals HDD60 from 30 yr data set (1981-2010) to more recent 15 yr data (2006-2020) for all cooling-related adjustment values.

¹⁵²⁸ Based on the average % Natural Gas used for space heating in Unknown residential structure types across all utilities covered by the IL program. Residence types include: SF, SF LI, MF & MF LI. Utilities included: Ameren, ComEd, People's Gas, Northshore Gas & Nicor. Data provided from 2016 Ameren Illinois Demand Side Management (DSM) Market Potential Study by Applied Energy Group, ComEd's 2019 Baseline Survey on residential space heating share, and PY2022-2023 Implementation Contractors Data for People's Gas, Northshore Gas & Nicor .

¹⁵²⁹ For the weighted average calculations, please see the Analysis file. PGL, NSG, Nicor & gas customers were assumed to follow the provided split. ComEd total customers, minus overlap with PGL,NSG & Nicor, therefore electric only homes. Ameren is total customers minus Nicor.

= Δ Therms * F_e * 29.3

F_e = Furnace Fan energy consumption as a percentage of annual fuel consumption

 $= 3.14\%^{1530}$

29.3 = kWh per therm

For example, a single family home in Chicago with a 20 by 25 by 7 foot unconditioned basement, with 3 feet above grade, insulated with R-13 of interior spray foam, and a 70% efficient furnace (for therm calculation see Fossil Fuel Savings section :

= 76.0 * 0.0314 * 29.3

= 69.9 kWh

SUMMER COINCIDENT PEAK DEMAND

 $\Delta kW = (\Delta kWh_cooling / FLH_cooling) * CF$

Where:

FLH cooling = Full load hours of air conditioning

= dependent on location: 1531

Climate Zone (City based upon)	Single Family	Multifamily
1 (Rockford)	547	499
2 (Chicago)	709	629
3 (Springfield)	779	707
4 (Belleville)	1082	982
5 (Marion)	956	868
Weighted Average ¹⁵³²		
ComEd	676	603
Ameren	875	791
Statewide	731	655

Use Multifamily if: Building meets utility's definition for multifamily and HVAC system serves single unit. For residential sized systems serving 2 or more units, assume single family hours.

 $=68\%^{1533}$

 $^{^{1530}}$ F_e is not one of the AHRI certified ratings provided for residential furnaces, but can be reasonably estimated from a calculation based on the certified values for fuel energy (Ef in MMBtu/yr) and Eae (kWh/yr). An average of a 300 record sample (non-random) out of 1495 was 3.14%. This is, appropriately, ~50% greater than the ENERGY STAR version 3 criteria for 2% F_e. See "Programmable Thermostats Furnace Fan Analysis.xlsx" for reference.

¹⁵³¹ Full load hours for Chicago, Moline and Rockford are provided in "Final Evaluation Report: Central Air Conditioning Efficiency Services (CACES), 2010, Navigant Consulting", p.33. An average FLH/Cooling Degree Day (from NCDC) ratio was calculated for these locations and applied to the CDD of the other locations in order to estimate FLH. There is a county mapping table in Volume 1, Section 3.7 providing the appropriate city to use for each county of Illinois. During update cycle for version v.12, applied percent change of CDD65, NCEI Annual Normals from 30 yr data set (1981-2010) to more recent 15 yr data (2006-2020) to all FLHcool values.

¹⁵³² Weighting for Ameren is based on electric accounts in each of the cooling zones. Weighting for ComEd and Statewide average is based on number of occupied residential housing units in each zone. ComEd is weighted average of Zones 1-2. Alternative program-weighted assumptions can be used if appropriate.

¹⁵³³ Based on metering of 24 homes with central AC during PY4 and PY5 in Ameren Illinois service territory.

CF_{SSP SF} = Summer System Peak Coincidence Factor for Heat Pumps in single-family homes

(during system peak hour)

 $=72\%^{1534}$

CF_{SSP, MF} = Summer System Peak Coincidence Factor for Heat Pumps in multi-family homes (during

system peak hour)

= 67%¹⁵³⁵

CF_{PJM} = PJM Summer Peak Coincidence Factor for Central A/C (average during PJM peak

period)

 $=46.6\%^{1536}$

CF_{PJM SF} = PJM Summer Peak Coincidence Factor for Heat Pumps in single-family homes (average

during PJM peak period)

 $=46.6\%^{1537}$

CF_{PJM, MF} = PJM Summer Peak Coincidence Factor for Heat Pumps in multi-family homes (average

during peak period)

= 28.5%

For example, a single family home in Chicago with a 20 by 25 by 7 foot unconditioned basement, with 3 feet above grade, insulated with R-13 of interior spray foam, 10.5 SEER Central AC and 2.26 COP Heat Pump:

 $\Delta kW_{SSP} = 46.6 / 709 * 0.68$

= 0.045 kW

 $\Delta kW_{PJM} = 46.6 / 709 * 0.466$

= 0.031 kW

FOSSIL FUEL SAVINGS

If Fossil Fuel heating:

 Δ Therms = (((((1/R old AG - 1/(R added+R old AG)) * L basement wall total *

H_basement_wall_AG * (1-Framing_factor)) + ((1/R_old_BG - 1/(R_added+R_old_BG)) * L_basement_wall_total * (H_basement_wall_total - H_basement_wall_AG) * (1-Framing_factor))) * 24 * HDD) / (η Heat * 100,000)) * ADJBasementHeat * %FossilHeat

ηHeat = Efficiency of heating system

= Equipment efficiency * distribution efficiency

= Actual (where it is possible to measure or reasonably estimate). Note where new HVAC is installed in addition to shell measures, the old HVAC unit efficiency should be used and the shell measure savings calculated first, the HVAC measure then assuming the reduced heat/cooling loads. If using rated efficiencies, derate efficiency value by 1% per year

¹⁵³⁴ Based on analysis of metering results from 24 heat pumps in Ameren Illinois service territory in PY5 coincident with AIC's 2010 system peak; 'Impact and Process Evaluation of Ameren Illinois Company's Residential HVAC Program (PY5)'.

¹⁵³⁵ Multifamily coincidence factors both from; *All-Electric Homes PY6 Metering Results: Multifamily HVAC Systems*, Cadmus, October 2015

¹⁵³⁶ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

¹⁵³⁷ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

(maximum of 30 years) to account for degradation over time, ¹⁵³⁸ or if unknown assume 72% for existing system efficiency ¹⁵³⁹. If unknown value is used, it should not be derated by age. If actual Distribution Efficiency is not available, use 85%.

%FossilHeat

- = Percent of homes that have fossil fuel space heating
- = 100 % for Fossil Fuel heating
- = 0 % for Electric Resistance or Heat Pump
- = If unknown¹⁵⁴⁰, use the following table:

	Location				
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown
Ameren	82%	74%	62%	61%	71%
ComEd	86%	78%	57%	52%	79%
PGL	98.9%	98.5%	96.0%	96.9%	97.7%
NSG	98.3%	99.2%	67.5%	98.8%	96.6%
Nicor	98.3%	99.2%	67.5%	98.8%	96.6%
All DUs ¹⁵⁴¹					74%

<u>Note</u>: If a measure is supported by a gas and electric utility through a joint program, and it is unknown whether the participant has a gas supply, the electric utility values in the table above should be used. If it is known that the participant has a gas supply, the values from the gas utility above should be applied.

Other factors as defined above

For example, a single family home in Chicago with a 20 by 25 by 7 foot R-2.25 basement, with 3 feet above grade, insulated with R-13 of interior spray foam, and a 72% efficient furnace:

$$= (((((1/2.25 - 1/(13 + 2.25)) * (20+25+20+25) * 3 * (1-0)) + ((1/8.67 - 1/(13 + 8.67)) * (20+25+20+25) * 4 * (1 - 0))) * 24 * 2845) / (0.72 * 100.000)) * 0.63 * 100%$$

= 76.0 therms

Mid-Life adjustment

In order to account for the likely replacement of existing heating and cooling equipment during the lifetime of this measure, a mid-life adjustment should be applied. To calculate the adjustment, re-calculate the savings above using the following new baseline system efficiency assumptions:

Efficiency Assumption	System Type	New Baseline Efficiency
nCool	Central AC	13.4 SEER2
IIICOOI	Heat Pump	14.3 SEER2
ηHeat	Electric Resistance	1.0 COP

¹⁵³⁸ Justification for degradation factors can be found on page 14 of 'AIC HVAC Metering Study Memo FINAL 2_28_2018'. Estimate efficiency as (Rated Efficiency * (1-0.01)^Equipment Age).

-

¹⁵³⁹ Based on average Nicor PY4 nameplate efficiencies derated by 15% for distribution losses.

¹⁵⁴⁰ Based on the average % Natural Gas used for space heating in Unknown residential structure types across all utilities covered by the IL program. Residence types include: SF, SF LI, MF & MF LI. Utilities included: Ameren, ComEd, People's Gas, Northshore Gas & Nicor. Data provided from 2016 Ameren Illinois Demand Side Management (DSM) Market Potential Study by Applied Energy Group, ComEd's 2019 Baseline Survey on residential space heating share, and PY2022-2023 Implementation Contractors Data for People's Gas, Northshore Gas & Nicor .

¹⁵⁴¹ For the weighted average calculations, please see the Analysis file. PGL, NSG, Nicor & gas customers were assumed to follow the provided split. ComEd total customers, minus overlap with PGL,NSG & Nicor, therefore gas only homes. Ameren is total customers minus Nicor.

Efficiency Assumption	System Type	New Baseline Efficiency
	Heat Pump (7.5HSPF/3.413)*0.85	1.87 COP
	Gas Furnace 80% AFUE * 0.85	68% AFUE
	Oil Furnace 83% AFUE * 0.85	71% AFUE
	Gas Boiler	84% AFUE
	Oil Boiler	86% AFUE

This reduced annual savings should be applied following the assumed remaining useful life of the existing equipment, estimate to be 10 years or 13 years for boilers. Note if the existing equipment efficiency is greater than the new baseline efficiency listed above, do not apply a mid-life adjustment.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-SHL-BINS-V15-250101

REVIEW DEADLINE: 1/1/2030

¹⁵⁴² This is intentionally longer than the assumption found in the early replacement measures as the application of this measure will occur in a variety of homes and will not be targeting those homes appropriate for early replacement HVAC systems.

5.6.3 Floor Insulation Above Crawlspace

DESCRIPTION

Insulation is added to the floor above a vented crawl space that does not contain pipes or HVAC equipment. If there are pipes, HVAC, or a basement, it is desirable to keep them within the conditioned space by insulating the crawl space walls and ground. Insulating the floor separates the conditioned space above from the space below the floor, and is only acceptable when there is nothing underneath that could freeze or would operate less efficiently in an environment resembling the outdoors. Even in the case of an empty, unvented crawl space, it is still considered best practice to seal and insulate the crawl space perimeter rather than the floor. Not only is there generally less area to insulate this way, but there are also moisture control benefits. There is a "Basement Insulation" measure for perimeter sealing and insulation. This measure assumes the insulation is installed above an unvented crawl space and should not be used in other situations.

This measure was developed to be applicable to the following program types: RF.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

This measure requires a member of the implementation staff or a participating contractor to evaluate the pre and post R-values and measure surface areas. The requirements for participation in the program will be defined by the utilities.

DEFINITION OF BASELINE EQUIPMENT

The existing condition will be evaluated by implementation staff or a participating contractor and is likely to be no insulation on any surface surrounding a crawl space.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 30 years. 1543

Note a mid-life adjustment to account for replacement of HVAC equipment during the measure life should be applied after 10 years or 13 years for boilers. 1544 See section below for detail.

DEEMED MEASURE COST

The actual installed cost for this measure should be used in screening.

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape R08 - Residential Cooling

Loadshape R09 - Residential Electric Space Heat

Loadshape R10 - Residential Electric Heating and Cooling

COINCIDENCE FACTOR

The summer peak coincidence factor for cooling is provided in two different ways below. The first is used to estimate peak savings during the utility peak hour and is most indicative of actual peak benefits, and the second represents

¹⁵⁴³ As recommended in Guidehouse 'EMV Group A, Deliverable 16 EUL Research – Residential Insulation', prepared for California Public Utilities Commission, June 2021.

¹⁵⁴⁴ This is intentionally longer than the assumptions found in the early replacement measures as the application of this measure will occur in a variety of homes that will not be targeted for early replacement HVAC systems.

the *average* savings over the defined summer peak period, and is presented so that savings can be bid into PJM's capacity market.

CF _{SSP}	= Summer System Peak Coincidence Factor for Central A/C (during utility peak hour) = 68% ¹⁵⁴⁵
CF _{SSP} SF	= Summer System Peak Coincidence Factor for Heat Pumps in single family homes (during system peak hour) = 72% ¹⁵⁴⁶
CF _{SSP} , MF	= Summer System Peak Coincidence Factor for Heat Pumps in multifamily homes (during system peak hour)
СҒым	= 67% ¹⁵⁴⁷ = PJM Summer Peak Coincidence Factor for Central A/C (average during PJM peak
	period)
	= 46.6% ¹⁵⁴⁸
СБРЈМ ЅБ	 PJM Summer Peak Coincidence Factor for Heat Pumps in single family homes (average during PJM peak period)
	= 46.6% ¹⁵⁴⁹
СҒ _{РЈМ, М}	= PJM Summer Peak Coincidence Factor for Heat Pumps in multifamily homes (average during peak period)

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Where available savings from shell insulation measures should be determined through a custom analysis. When that is not feasible for the program the following engineering algorithms can be used with the inclusion of an adjustment factor to de-rate the heating savings.

 $\Delta kWh = (\Delta kWh_cooling + \Delta kWh_heatingElectric + \Delta kWh_heatingFurnace)$

Where:

ΔkWh_cooling = If central cooling, reduction in annual cooling requirement due to insulation

= ((((1/R_old - 1/(R_added+R_old)) * Area * (1-Framing_factor)) * 24 * CDD * DUA) /

(1000 * ηCool))) * ADJ_{FloorCool} * %Cool

R_old = R-value value of floor before insulation, assuming 3/4" plywood subfloor and carpet

with pad

= 28.5%

¹⁵⁴⁵ Based on metering of 24 homes with central AC during PY4 and PY5 in Ameren Illinois service territory.

¹⁵⁴⁶ Based on analysis of metering results from 24 heat pumps in Ameren Illinois service territory in PY5 coincident with AIC's 2010 system peak; 'Impact and Process Evaluation of Ameren Illinois Company's Residential HVAC Program (PY5)'.

¹⁵⁴⁷ Multifamily coincidence factors both from; *All-Electric Homes PY6 Metering Results: Multifamily HVAC Systems*, Cadmus, October 2015

¹⁵⁴⁸ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

¹⁵⁴⁹ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

= Actual. If unknown assume 3.53 ¹⁵⁵⁰

R added = R-value of additional spray foam, rigid foam, or cavity insulation.

= Total floor area to be insulated Area

Framing factor = Adjustment to account for area of framing

= 12% 1551

24 = Converts hours to days

CDD = Cooling Degree Days

Climate Zone (City based upon)	Unconditioned CDD75 ¹⁵⁵²
1 (Rockford)	326
2 (Chicago)	354
3 (Springfield)	448
4 (Belleville)	532
5 (Marion)	516
Weighted	
Average ¹⁵⁵³	380

DUA = Discretionary Use Adjustment (reflects the fact that people do not always operate their

AC when conditions may call for it).

 $= 0.75^{1554}$

1000 = Converts Btu to kBtu

= Seasonal Energy Efficiency Ratio of cooling system (kBtu/kWh) ηCool

> = Actual (where it is possible to measure or reasonably estimate). Note where new HVAC is installed in addition to shell measures, the old HVAC unit efficiency should be used and the shell measure savings calculated first, the HVAC measure then assuming the reduced heat/cooling loads. If using rated efficiencies, derate efficiency value by 1% per year (maximum of 30 years) to account for degradation over time, 1555 or if unknown assume the following. 1556 If unknown value is used, it should not be derated by age.

Age of Equipment	ηCool Estimate
Before 2006	9.5
2006 - 2014	12.4
Central AC After 1/1/2015	12.4

¹⁵⁵⁰ Based on 2005 ASHRAE Handbook – Fundamentals: assuming ¾" subfloor, ½" carpet with rubber pad, and accounting for a still air film above and below: 0.68 + 0.94 + 1.23 + 0.68 = 3.53

¹⁵⁵¹ ASHRAE, 2001, "Characterization of Framing Factors for New Low-Rise Residential Building Envelopes (904-RP)," Table 7.1 1552 Five year average (2018 to 2022) cooling degree days with a base temperature of 75 F. Data from DegreeDays.net were

used in this table because the climate normals from NCEI/NCDC used elsewhere are not available at base temps above 72F. ¹⁵⁵³ Weighted based on number of occupied residential housing units in each zone (US Census 2010).

¹⁵⁵⁴ Energy Center of Wisconsin, May 2008 metering study; "Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research", p31.

¹⁵⁵⁵ Justification for degradation factors can be found on page 14 of 'AIC HVAC Metering Study Memo FINAL 2 28 2018'. Estimate efficiency as (Rated Efficiency * (1-0.01)^Equipment Age).

¹⁵⁵⁶ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Central AC was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time means that using the minimum standard is appropriate. Note all ratings have been converted to SEER2 equivalents – since the new rating better reflects the actual efficiency of the units.

Heat Pump After 1/1/2015	13.3
Unknown (for use in program	10.0
evaluation only)	

ADJFloorCool

= Adjustment for cooling savings from floor to account for prescriptive engineering algorithms overclaiming savings¹⁵⁵⁷

= 75%

%Cool

= Percent of homes that have cooling

Central Cooling?	%Cool
Yes	100%
No	0%
Unknown (for use in program evaluation only) ¹⁵⁵⁸	66%

ΔkWh_heatingElectric = If electric heat (resistance or heat pump), reduction in annual electric heating due to insulation

= (((1/R_old - 1/(R_added + R_old)) * Area * (1-Framing_factor) * 24 * HDD)/ (3,412 * η Heat)) * ADJ_{FloorHeat} *%ElectricHeat

HDD

= Heating Degree Days: 1559

Climate Zone (City based upon)	Unconditioned HDD
1 (Rockford)	3233
2 (Chicago)	2845
3 (Springfield)	2456
4 (Belleville)	1651
5 (Marion/Murphysboro)	1750
Weighted Average ¹⁵⁶⁰	2732

ηHeat = Efficiency of heating system

= Actual Heating Efficiency * Distribution Efficiency (where it is possible to measure or reasonably estimate). Note where new HVAC is installed in addition to shell measures, the old HVAC unit efficiency should be used and the shell measure savings calculated first, the HVAC measure then assuming the reduced heat/cooling loads. If using rated efficiencies, derate efficiency value by 1% per year (maximum of 30 years) to account for

¹⁵⁵⁷ As demonstrated in two years of metering evaluation by Opinion Dynamics, see Memo "Results for AIC PY6 HPwES Billing Analysis", dated February 20, 2015. TAC negotiated adjustment factor is 80%. During update cycle for version v.12, applied the percent change of NCEI Annual Normals CDD65 from 30 yr data set (1981-2010) to more recent 15 yr data (2006-2020) for all cooling-related adjustment values.

¹⁵⁵⁸ Percentage of homes in Illinois that have central cooling from "Table HC7.9 Air Conditioning in Homes in Midwest Region, Divisions, and States, 2009" from Energy Information Administration, 2009 Residential Energy Consumption Survey

¹⁵⁵⁹ National Centers for Environmental Information (NCEI) Annual Normals, from 2006 - 2020, calculated with a base temp of 50°F to account for lower impact of unconditioned space on heating system. There is a county mapping table in Volume 1, Section 3.7 providing the appropriate city to use for each county of Illinois.

¹⁵⁶⁰ Weighted based on number of occupied residential housing units in each zone.

degradation over time,¹⁵⁶¹ or if not available refer to default table below.¹⁵⁶² If unknown value is used, it should not be derated by age. If actual Distribution Efficiency is not available, use 85%.

System Type	Age of Equipment	HSPF2 Estimate	ηHeat (Effective COP Estimate * Distribution Efficiency) (HSPF2/3.413)*0.85
Heat Pump (if age unknown, assume 2006-2014)	Before 2006	5.8	1.44
	After 2006 -2014	6.5	1.62
	2015 on	7	1.74
Resistance	N/A	N/A	1
Unknown (for use in program evaluation only)	N/A	N/A	1.32

ADJ_{FloorHeat} = Adjustment for floor insulation to account for prescriptive engineering algorithms

overclaiming savings¹⁵⁶³

= 63%

%ElectricHeat = Percent of homes that have electric space heating

= 100 % for Electric Resistance or Heat Pump

= 0 % for Fossil Fuel heating

= If unknown¹⁵⁶⁴, use the following table:

	Location				
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown
Ameren	18%	26%	38%	39%	29%
ComEd	14%	22%	43%	48%	21%
PGL	1.0%	1.5%	4.0%	2.8%	2.2%
NSG	1.3%	0.8%	32.5%	1.2%	3.3%
Nicor	1.3%	0.8%	32.5%	1.2%	3.3%

 $^{^{1561}}$ Justification for degradation factors can be found on page 14 of 'AIC HVAC Metering Study Memo FINAL 2_28_2018'. Estimate efficiency as (Rated Efficiency * (1-0.01)^Equipment Age).

¹⁵⁶² These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time means that using the minimum standard is appropriate. An 85% distribution efficiency is then applied to account for duct losses for heat pumps. Note all ratings have been converted to HSPF2 equivalents – since the new rating better reflects the actual efficiency of the units.

¹⁵⁶³ As demonstrated in two years of metering evaluation by Opinion Dynamics, see Memo "Results for AIC PY6 HPwES Billing Analysis", dated February 20, 2015. TAC negotiated adjustment factor is 60%. During update cycle for version v.12, applied the percent change of NCEI Annual Normals HDD60 from 30 yr data set (1981-2010) to more recent 15 yr data (2006-2020) for all heating-related adjustment values.

¹⁵⁶⁴ Based on the average % Natural Gas used for space heating in Unknown residential structure types across all utilities covered by the IL program. Residence types include: SF, SF LI, MF & MF LI. Utilities included: Ameren, ComEd, People's Gas, Northshore Gas & Nicor. Data provided from 2016 Ameren Illinois Demand Side Management (DSM) Market Potential Study by Applied Energy Group, ComEd's 2019 Baseline Survey on residential space heating share, and PY2022-2023 Implementation Contractors Data for People's Gas, Northshore Gas & Nicor .

	Location				
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown
All DUs ¹⁵⁶⁵					26%

<u>Note</u>: If a measure is supported by a gas and electric utility through a joint program, and it is unknown whether the participant has a gas supply, the electric utility values in the table above should be used. If it is known that the participant has a gas supply, the values from the gas utility above should be applied.

Other factors as defined above.

For example, a single family home in Chicago with a 20 by 25 footprint, insulated with R-30 spray foam above the crawlspace, a 10.5 SEER Central AC and a newer heat pump:

```
\Delta kWh = (\Delta kWh\_cooling + \Delta kWh\_heating)
= ((((1/3.53 - 1/(30 + 3.53))*(20*25)*(1 - 0.12)* 24 * 354*0.75)/(1000*10.5)) * 0.75 * 1 + (((1/3.53 - 1/(30 + 3.53))*(20*25)*(1 - 0.15) * 24 * 2845)/(3412*1.92)) * 0.63 * 1)
= (50.8 + 707.3)
= 758.1 \text{ kWh}
```

ΔkWh_heatingFurnace = If fossil fuel furnace heat, kWh savings for reduction in fan run time

= Δ Therms * F_e * 29.3

Fe = Furnace Fan energy consumption as a percentage of annual fuel consumption

 $= 3.14\%^{1566}$

= kWh per therm

For example, a single family home in Chicago with a 20 by 25 footprint, insulated with R-30 spray foam above the crawlspace, and a 70% efficient furnace (for therm calculation see Fossil Fuel Savings section):

$$\Delta$$
kWh = 66.6 * 0.0314 * 29.3
= 61.3 kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = (\Delta kWh_cooling / FLH_cooling) * CF$

Where:

FLH_cooling = Full load hours of air conditioning

= Dependent on location: 1567

¹⁵⁶⁵ For the weighted average calculations, please see the Analysis file. PGL, NSG, Nicor & gas customers were assumed to follow the provided split. ComEd total customers, minus overlap with PGL,NSG & Nicor, therefore electric only homes. Ameren is total customers minus Nicor.

 $^{^{1566}}$ F_e is not one of the AHRI certified ratings provided for residential furnaces, but can be reasonably estimated from a calculation based on the certified values for fuel energy (Ef in MMBtu/yr) and Eae (kWh/yr). An average of a 300 record sample (non-random) out of 1495 was 3.14%. This is, appropriately, ~50% greater than the ENERGY STAR version 3 criteria for 2% F_e. See "Programmable Thermostats Furnace Fan Analysis.xlsx" for reference.

¹⁵⁶⁷ Full load hours for Chicago, Moline and Rockford are provided in "Final Evaluation Report: Central Air Conditioning Efficiency Services (CACES), 2010, Navigant Consulting", p.33. An average FLH/Cooling Degree Day (from NCDC) ratio was calculated for these locations and applied to the CDD of the other locations in order to estimate FLH. There is a county mapping

Climate Zone (City based upon)	Single Family	Multifamily
1 (Rockford)	547	499
2 (Chicago)	709	629
3 (Springfield)	779	707
4 (Belleville)	1082	982
5 (Marion)	956	868
Weighted Average ¹⁵⁶⁸		
ComEd	676	603
Ameren	875	791
Statewide	731	655

Use Multifamily if: Building meets utility's definition for multifamily and HVAC system serves single unit. For residential sized systems serving 2 or more units, assume single family hours.

CF _{SSP} = Summer System Peak Coincidence Factor for Central	A/C (during utility peak hour)
---	--------------------------------

 $=68\%^{1569}$

(during system peak hour)

= 72%¹⁵⁷⁰

system peak hour)

 $=67\%^{1571}$

CF_{PJM} = PJM Summer Peak Coincidence Factor for Central A/C (average during PJM peak

period)

 $=46.6\%^{1572}$

CF_{PJM SF} = PJM Summer Peak Coincidence Factor for Heat Pumps in single family homes (average

during PJM peak period)

 $=46.6\%^{1573}$

CF_{PJM, MF} = PJM Summer Peak Coincidence Factor for Heat Pumps in multifamily homes (average

during peak period)

= 28.5%

table in Volume 1, Section 3.7 providing the appropriate city to use for each county of Illinois. During update cycle for version v.12, applied percent change of CDD65, NCEI Annual Normals from 30 yr data set (1981-2010) to more recent 15 yr data (2006-2020) to all FLHcool values.

¹⁵⁶⁸ Weighting for Ameren is based on electric accounts in each of the cooling zones. Weighting for ComEd and Statewide average is based on number of occupied residential housing units in each zone. ComEd is weighted average of Zones 1-2. Alternative program-weighted assumptions can be used if appropriate.

¹⁵⁶⁹ Based on metering of 24 homes with central AC during PY4 and PY5 in Ameren Illinois service territory.

¹⁵⁷⁰ Based on analysis of metering results from 24 heat pumps in Ameren Illinois service territory in PY5 coincident with AIC's 2010 system peak; 'Impact and Process Evaluation of Ameren Illinois Company's Residential HVAC Program (PY5)'.

¹⁵⁷¹ Multifamily coincidence factors both from; *All-Electric Homes PY6 Metering Results: Multifamily HVAC Systems*, Cadmus, October 2015

¹⁵⁷² Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

¹⁵⁷³ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

For example, a single family home in Chicago with a 20 by 25 footprint, insulated with R-30 spray foam above the crawlspace, a 10.5 SEER Central AC and a newer heat pump:

 $\Delta kW_{SSP} = 50.8 / 709 * 0.68$

= 0.05 kW

 $\Delta kW_{SSP} = 50.8 / 709 * 0.466$

= 0.033 kW

FOSSIL FUEL SAVINGS

If Fossil Fuel heating:

= (((1/R_old - 1/(R_added+R_old)) * Area * (1-Framing_factor) * 24 * HDD) / ΔTherms

(100,000 * nHeat)) * ADJ_{FloorHeat} * %FossilHeat

Where:

= Efficiency of heating system ηHeat

= Equipment efficiency * distribution efficiency

= Actual (where it is possible to measure or reasonably estimate). Note where new HVAC is installed in addition to shell measures, the old HVAC unit efficiency should be used and the shell measure savings calculated first, the HVAC measure then assuming the reduced heat/cooling loads. If using rated efficiencies, derate efficiency value by 1% per year (maximum of 30 years) to account for degradation over time. 1574 or if unknown assume 72% for existing system efficiency. 1575 If unknown value is used, it should not be derated by age. If actual Distribution Efficiency is not available, use 85%.

%FossilHeat

= Percent of homes that have fossil fuel space heating

= 100 % for Fossil Fuel heating

= 0 % for Electric Resistance or Heat Pump

= If unknown¹⁵⁷⁶, use the following table:

	Location					
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown	
Ameren	82%	74%	62%	61%	71%	
ComEd	86%	78%	57%	52%	79%	
PGL	98.9%	98.5%	96.0%	96.9%	97.7%	
NSG	98.3%	99.2%	67.5%	98.8%	96.6%	
Nicor	98.3%	99.2%	67.5%	98.8%	96.6%	
All DUs ¹⁵⁷⁷					74%	

¹⁵⁷⁴ Justification for degradation factors can be found on page 14 of 'AIC HVAC Metering Study Memo FINAL 2 28 2018'. Estimate efficiency as (Rated Efficiency * (1-0.01)^Equipment Age).

¹⁵⁷⁵ Based on average Nicor PY4 nameplate efficiencies derated by 15% for distribution losses.

¹⁵⁷⁶ Based on the average % Natural Gas used for space heating in Unknown residential structure types across all utilities covered by the IL program. Residence types include: SF, SF LI, MF & MF LI. Utilities included: Ameren, ComEd, People's Gas, Northshore Gas & Nicor. Data provided from 2016 Ameren Illinois Demand Side Management (DSM) Market Potential Study by Applied Energy Group, ComEd's 2019 Baseline Survey on residential space heating share, and PY2022-2023 Implementation Contractors Data for People's Gas, Northshore Gas & Nicor.

¹⁵⁷⁷ For the weighted average calculations, please see the Analysis file. PGL, NSG, Nicor & gas customers were assumed to follow the provided split. ComEd total customers, minus overlap with PGL,NSG & Nicor, therefore gas only homes. Ameren is total customers minus Nicor.

<u>Note</u>: If a measure is supported by a gas and electric utility through a joint program, and it is unknown whether the participant has a gas supply, the electric utility values in the table above should be used. If it is known that the participant has a gas supply, the values from the gas utility above should be applied.

Other factors as defined above.

For example, a single family home in Chicago with a 20 by 25 footprint, insulated with R-30 spray foam above the crawlspace, and a 72% efficient furnace:

$$\Delta$$
Therms = $((1 / 3.53 - 1 / (30 + 3.53))*(20 * 25) * (1 - 0.12) * 24 * 2845) / (100,000 * 0.72) * 0.63 * 1 = 66.6 therms$

Mid-Life adjustment

In order to account for the likely replacement of existing heating and cooling equipment during the lifetime of this measure, a mid-life adjustment should be applied. To calculate the adjustment, re-calculate the savings above using the following new baseline system efficiency assumptions:

Efficiency Assumption	System Type	New Baseline Efficiency	
ηCool	Central AC	13.4 SEER2	
IICOOI	Heat Pump	14.3 SEER2	
	Electric Resistance	1.0 COP	
	Heat Pump	1.87 COP	
	(7.5HSPF/3.413)*0.85	1.87 COP	
	Gas Furnace	68% AFUE	
ηHeat	80% AFUE * 0.85	08/0 AT OL	
	Oil Furnace	71% AFUE	
	83% AFUE * 0.85	7170 AT OL	
	Gas Boiler	84% AFUE	
	Oil Boiler	86% AFUE	

This reduced annual savings should be applied following the assumed remaining useful life of the existing equipment, estimate to be 10 years or 13 years for boilers. 1578 Note if the existing equipment efficiency is greater than the new baseline efficiency listed above, do not apply a mid-life adjustment.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

¹⁵⁷⁸ This is intentionally longer than the assumption found in the early replacement measures as the application of this measure will occur in a variety of homes and will not be targeting those homes appropriate for early replacement HVAC systems.

MEASURE CODE: RS-SHL-FINS-V16-250101

REVIEW DEADLINE: 1/1/2030

5.6.4 Wall Insulation

DESCRIPTION

Insulation is added to wall cavities. This measure requires a member of the implementation staff evaluating the pre and post R-values and measure surface areas. The efficiency of the heating and cooling equipment in the home should also be evaluated if possible.

This measure was developed to be applicable to the following program types: RF.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

This measure requires a member of the implementation staff or a participating contractor to evaluate the pre and post R-values and measure surface areas. The requirements for participation in the program will be defined by the utilities.

DEFINITION OF BASELINE EQUIPMENT

The existing condition will be evaluated by implementation staff or a participating contractor and is likely to be empty wall cavities.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 30 years. 1579

Note a mid-life adjustment to account for replacement of HVAC equipment during the measure life should be applied after 10 years or 13 years for boilers. 1580 See section below for detail.

DEEMED MEASURE COST

The actual installed cost for this measure should be used in screening.

LOADSHAPE

Loadshape R08 - Residential Cooling

Loadshape R09 - Residential Electric Space Heat

Loadshape R10 - Residential Electric Heating and Cooling

COINCIDENCE FACTOR

The summer peak coincidence factor for cooling is provided in two different ways below. The first is used to estimate peak savings during the utility peak hour and is most indicative of actual peak benefits, and the second represents the *average* savings over the defined summer peak period, and is presented so that savings can be bid into PJM's capacity market.

CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C (during utility peak hour)

 $=68\%^{1581}$

CF_{SSP SF} = Summer System Peak Coincidence Factor for Heat Pumps in single family homes

(during system peak hour)

¹⁵⁷⁹ As recommended in Guidehouse 'EMV Group A, Deliverable 16 EUL Research – Residential Insulation', prepared for California Public Utilities Commission, June 2021.

¹⁵⁸⁰ This is intentionally longer than the assumptions found in the early replacement measures as the application of this measure will occur in a variety of homes that will not be targeted for early replacement HVAC systems.

¹⁵⁸¹ Based on metering of 24 homes with central AC during PY4 and PY5 in Ameren Illinois service territory.

	= 72% ¹⁵⁸²
CF _{SSP} , MF	= Summer System Peak Coincidence Factor for Heat Pumps in multifamily homes (during system peak hour)
	= 67% ¹⁵⁸³
СҒрЈМ	= PJM Summer Peak Coincidence Factor for Central A/C (average during PJM peak period)
	= 46.6% ¹⁵⁸⁴
CF _{PJM SF}	= PJM Summer Peak Coincidence Factor for Heat Pumps in single family homes (average during PJM peak period)
	= 46.6% ¹⁵⁸⁵
СҒрјм, мғ	= PJM Summer Peak Coincidence Factor for Heat Pumps in multifamily homes (average during peak period)
	= 28.5%

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Where available savings from shell insulation measures should be determined through a custom analysis. When that is not feasible for the program the following engineering algorithms can be used with the inclusion of an adjustment factor to de-rate the heating savings.

 Δ kWh = Δ kWh_cooling + Δ kWh_heatingElectric + Δ kWh_heatingFurnace

Where

ΔkWh_cooling = If central cooling, reduction in annual cooling requirement due to wall insulation

= ((((1/R_old - 1/R_wall) * A_wall * (1-Framing_factor_wall)) * 24 * CDD * DUA) / (1000

* ηCool)) * ADJ_{WallCool}* %Cool

R_wall = R-value of new wall assembly (including all layers between inside air and outside air).

R_old = R-value value of existing assembly and any existing insulation.

(Minimum of R-5 for uninsulated assemblies)¹⁵⁸⁶

A_wall = Net area of insulated wall (ft²)

Framing_factor_wall = Adjustment to account for area of framing

¹⁵⁸² Based on analysis of metering results from 24 heat pumps in Ameren Illinois service territory in PY5 coincident with AIC's 2010 system peak; 'Impact and Process Evaluation of Ameren Illinois Company's Residential HVAC Program (PY5)'.

¹⁵⁸³ Multifamily coincidence factors both from; *All-Electric Homes PY6 Metering Results: Multifamily HVAC Systems*, Cadmus, October 2015

¹⁵⁸⁴ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

¹⁵⁸⁵ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

¹⁵⁸⁶An estimate based on review of Madison Gas and Electric, Exterior Wall Insulation, R-value for no insulation in walls, and NREL's Building Energy Simulation Test for Existing Homes (BESTEST-EX).

 $=25\%^{1587}$

24 = Converts hours to days

CDD = Cooling Degree Days

= dependent on location: 1588

Climate Zone (City based upon)	CDD 65
1 (Rockford)	877
2 (Chicago)	1047
3 (Springfield)	1183
4 (Belleville)	1641
5 (Marion)	1450
Weighted	1098
Average ¹⁵⁸⁹	

DUA = Discretionary Use Adjustment (reflects the fact that people do not always operate their AC when conditions may call for it).

 $= 0.75^{1590}$

1000 = Converts Btu to kBtu

ηCool = Seasonal Energy Efficiency Ratio of cooling system (kBtu/kWh)

= Actual (where it is possible to measure or reasonably estimate). Note where new HVAC is installed in addition to shell measures, the old HVAC unit efficiency should be used and the shell measure savings calculated first, the HVAC measure then assuming the reduced heat/cooling loads. If using rated efficiencies, derate efficiency value by 1% per year (maximum of 30 years) to account for degradation over time, 1591 or if unknown assume the following. 1592 If unknown value is used, it should not be derated by age.

Age of Equipment	ηCool Estimate
Before 2006	9.5
2006 - 2014	12.4
Central AC After 1/1/2015	12.4
Heat Pump After 1/1/2015	13.3
Unknown (for use in program evaluation only)	10.0

¹⁵⁸⁷ ASHRAE, 2001, "Characterization of Framing Factors for New Low-Rise Residential Building Envelopes (904-RP)," Table 7.1 ¹⁵⁸⁸ National Centers for Environmental Information (NCEI) Annual Normals, from 2006 - 2020, calculated with a base temp of

National Centers for Environmental Information (NCEI) Annual Normals, from 2006 - 2020, calculated with a base temp of 65°F. There is a county mapping table Volume 1, Section 3.7 providing the appropriate city to use for each county of Illinois.

¹⁵⁸⁹ Weighted based on number of occupied residential housing units in each zone (US Census 2010).

¹⁵⁹⁰ This factor's source is: Energy Center of Wisconsin, May 2008 metering study; "Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research", p31.

¹⁵⁹¹ Justification for degradation factors can be found on page 14 of 'AIC HVAC Metering Study Memo FINAL 2_28_2018'. Estimate efficiency as (Rated Efficiency * (1-0.01)^Equipment Age).

¹⁵⁹² These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Central AC was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time means that using the minimum standard is appropriate. Note all ratings have been converted to SEER2 equivalents – since the new rating better reflects the actual efficiency of the units. Note all ratings have been converted to SEER2 equivalents – since the new rating better reflects the actual efficiency of the units.

ADJ_{WallCool}

= Adjustment for cooling savings from wall insulation to account for inaccuracies in prescriptive engineering algorithms¹⁵⁹³

= 75%

%Cool

= Percent of homes that have cooling

Central Cooling?	%Cool
Yes	100%
No	0%
Unknown (for use in program evaluation only) ¹⁵⁹⁴	66%

kWh_heatingElectric = If electric heat (resistance or heat pump), reduction in annual electric heating due to wall insulation

= (((1/R_old - 1/R_wall) * A_wall * (1-Framing_factor_wall) * 24 * HDD) / (η Heat * 3412)) * ADJ_{WallHeat} * %ElectricHeat

HDD

= Heating Degree Days

= Dependent on location: 1595

Climate Zone (City based upon)	HDD 60
1 (Rockford)	5230
2 (Chicago)	4798
3 (Springfield)	4266
4 (Belleville)	3188
5 (Marion)	3390
Weighted Average ¹⁵⁹⁶	4631

ηHeat

= Efficiency of heating system

= Actual Heating Efficiency * Distribution Efficiency (where it is possible to measure or reasonably estimate). Note where new HVAC is installed in addition to shell measures, the old HVAC unit efficiency should be used and the shell measure savings calculated first, the HVAC measure then assuming the reduced heat/cooling loads. If using rated efficiencies, derate efficiency value by 1% per year (maximum of 30 years) to account for degradation over time, ¹⁵⁹⁷ or if not available refer to default table below. ¹⁵⁹⁸ If unknown

¹⁵⁹³ As demonstrated in two years of metering evaluation by Opinion Dynamics, see Memo "Results for AIC PY6 HPwES Billing Analysis", dated February 20, 2015. TAC negotiated adjustment factor is 80%. During update cycle for version v.12, applied the percent change of NCEI Annual Normals CDD65 from 30 yr data set (1981-2010) to more recent 15 yr data (2006-2020) for all cooling-related adjustment values.

¹⁵⁹⁴ Percentage of homes in Illinois that have central cooling from "Table HC7.9 Air Conditioning in Homes in Midwest Region, Divisions, and States, 2009" from Energy Information Administration, 2009 Residential Energy Consumption Survey

¹⁵⁹⁵ National Centers for Environmental Information (NCEI) Annual Normals, from 2006 - 2020, calculated with a base temp of 60°F, consistent with the findings of Belzer and Cort, Pacific Northwest National Laboratory in "Statistical Analysis of Historical State-Level Residential Energy Consumption Trends," 2004. There is a county mapping table in Volume 1, Section 3.7 providing the appropriate city to use for each county of Illinois.

 $^{^{\}rm 1596}$ Weighted based on number of occupied residential housing units in each zone.

¹⁵⁹⁷ Justification for degradation factors can be found on page 14 of 'AIC HVAC Metering Study Memo FINAL 2_28_2018'. Estimate efficiency as (Rated Efficiency * (1-0.01)^Equipment Age).

¹⁵⁹⁸ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for

value is used, it should not be derated by age. If actual Distribution Efficiency is not available, use 85% for heat pumps.

System Type	Age of Equipment	HSPF2 Estimate	ηHeat (Effective COP Estimate * Distribution Efficiency) (HSPF2/3.413)*0.85
	Before 2006	5.8	1.44
Heat Pump (if age unknown, assume 2006-2014)	After 2006 -2014	6.5	1.62
(ii age ulikilowii, assuille 2000-2014)	2015 on	7	1.74
Resistance	N/A	N/A	1
Unknown (for use in program evaluation only)	N/A	N/A	1.32

3412 = Converts Btu to kWh

ADJ_{WallHeat} = Adjustment for heating savings to account for inaccuracies in prescriptive engineering

algorithms. 1599

= 63%

%ElectricHeat = Percent of homes that have electric space heating

= 100 % for Electric Resistance or Heat Pump

= 0 % for Fossil Fuel heating

= If unknown¹⁶⁰⁰, use the following table:

	Location					
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown	
Ameren	18%	26%	38%	39%	29%	
ComEd	14%	22%	43%	48%	21%	
PGL	1.0%	1.5%	4.0%	2.8%	2.2%	
NSG	1.3%	0.8%	32.5%	1.2%	3.3%	
Nicor	1.3%	0.8%	32.5%	1.2%	3.3%	

Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time means that using the minimum standard is appropriate. An 85% distribution efficiency is then applied to account for duct losses for heat pumps. Note all ratings have been converted to HSPF2 equivalents – since the new rating better reflects the actual efficiency of the units.

¹⁵⁹⁹ Justification for degradation factors can be found on page 14 of 'AIC HVAC Metering Study Memo FINAL 2_28_2018'. Estimate efficiency as (Rated Efficiency * (1-0.01)^Equipment Age).

¹⁵⁹⁹ TAC negotiated adjustment factor was 60%. During update cycle for version v.12, applied the percent change of NCEI Annual Normals HDD60 from 30 yr data set (1981-2010) to more recent 15 yr data (2006-2020) for all heating-related adjustment values.

¹⁶⁰⁰ Based on the average % Natural Gas used for space heating in Unknown residential structure types across all utilities covered by the IL program. Residence types include: SF, SF LI, MF & MF LI. Utilities included: Ameren, ComEd, People's Gas, Northshore Gas & Nicor. Data provided from 2016 Ameren Illinois Demand Side Management (DSM) Market Potential Study by Applied Energy Group, ComEd's 2019 Baseline Survey on residential space heating share, and PY2022-2023 Implementation Contractors Data for People's Gas, Northshore Gas & Nicor .

	Location				
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown
All DUs ¹⁶⁰¹					26%

<u>Note</u>: If a measure is supported by a gas and electric utility through a joint program, and it is unknown whether the participant has a gas supply, the electric utility values in the table above should be used. If it is known that the participant has a gas supply, the values from the gas utility above should be applied.

For example, a single family home in Chicago with 990 ft² of R-5 walls insulated to R-11, 10.5 SEER Central AC and 2.26 (1.92 including distribution losses) COP Heat Pump:

```
\Delta kWh = (\Delta kWh\_cooling + \Delta kWh\_heating)
= (((((1/5 - 1/11) * 990 * (1-0.25)) * 1,047 * 0.75 * 24)/ (1,000 * 10.5)) * 75% * 100%) + (((((1/5 - 1/11) * 990 * (1-0.25)) * 4,798 * 24) / (1.92 * 3,412)) * 63% * 100%)
= 109.0 + 897
```

ΔkWh_heatingFurnace = If fossil fuel furnace heat, kWh savings for reduction in fan run time

= Δ Therms * F_e * 29.3

F_e = Furnace Fan energy consumption as a percentage of annual fuel consumption

 $= 3.14\%^{1602}$

= kWh per therm

For example, a single family home in Chicago with 990 ft² of R-5 walls insulated to R-11 with a gas furnace with system efficiency of 66% (for therm calculation see Fossil Fuel Savings section):

$$\Delta$$
kWh_heatingGas = 89.0 * 0.0314 * 29.3
= 81.9 kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = (\Delta kWh cooling / FLH cooling) * CF$

Where:

FLH cooling = Full load hours of air conditioning

= Dependent on location as below: 1603

2025 IL TRM v13.0 Vol. 3_September 20, 2024_FINAL

¹⁶⁰¹ For the weighted average calculations, please see the Analysis file. PGL, NSG, Nicor & gas customers were assumed to follow the provided split. ComEd total customers, minus overlap with PGL,NSG & Nicor, therefore electric only homes. Ameren is total customers minus Nicor.

 $^{^{1602}}$ F_e is not one of the AHRI certified ratings provided for residential furnaces, but can be reasonably estimated from a calculation based on the certified values for fuel energy (Ef in MMBtu/yr) and Eae (kWh/yr). An average of a 300 record sample (non-random) out of 1495 was 3.14%. This is, appropriately, ~50% greater than the ENERGY STAR version 3 criteria for 2% F_e. See "Programmable Thermostats Furnace Fan Analysis.xlsx" for reference.

¹⁶⁰³ Full load hours for Chicago, Moline and Rockford are provided in "Final Evaluation Report: Central Air Conditioning Efficiency Services (CACES), 2010, Navigant Consulting", p.33. An average FLH/Cooling Degree Day (from NCDC) ratio was calculated for these locations and applied to the CDD of the other locations in order to estimate FLH. There is a county mapping table in Volume 1, Section 3.7 providing the appropriate city to use for each county of Illinois. During update cycle for version v.12, applied percent change of CDD65, NCEI Annual Normals from 30 yr data set (1981-2010) to more recent 15 yr data (2006-2020) to all FLHcool values.

Climate Zone (City based upon)	Single Family	Multifamily
1 (Rockford)	547	499
2 (Chicago)	709	629
3 (Springfield)	779	707
4 (Belleville)	1082	982
5 (Marion)	956	868
Weighted Average ¹⁶⁰⁴		
ComEd	676	603
Ameren	875	791
Statewide	731	655

Use Multifamily if: Building meets utility's definition for multifamily and HVAC system serves single unit. For residential sized systems serving 2 or more units, assume single family hours.

CF _{SSP}	= Summer System Peak Coincidence Factor for Central A/C (during utility peak hour)
	= 68% ¹⁶⁰⁵
CF _{SSP} SF	= Summer System Peak Coincidence Factor for Heat Pumps in single family homes (during system peak hour)
	= 72% ¹⁶⁰⁶
CF _{SSP} , MF	= Summer System Peak Coincidence Factor for Heat Pumps in multifamily homes (during system peak hour)
	= 67% ¹⁶⁰⁷
СГРЈМ	= PJM Summer Peak Coincidence Factor for Central A/C (average during PJM peak period)
	= 46.6% ¹⁶⁰⁸
CF _{PJM SF}	= PJM Summer Peak Coincidence Factor for Heat Pumps in single family homes (average during PJM peak period)
	= 46.6% ¹⁶⁰⁹

= PJM Summer Peak Coincidence Factor for Heat Pumps in multifamily homes (average

during peak period)

= 28.5%

CF_{PJM, MF}

¹⁶⁰⁴ Weighting for Ameren is based on electric accounts in each of the cooling zones. Weighting for ComEd and Statewide average is based on number of occupied residential housing units in each zone. ComEd is weighted average of Zones 1-2. Alternative program-weighted assumptions can be used if appropriate.

¹⁶⁰⁵ Based on metering of 24 homes with central AC during PY4 and PY5 in Ameren Illinois service territory.

¹⁶⁰⁶ Based on analysis of metering results from 24 heat pumps in Ameren Illinois service territory in PY5 coincident with AIC's 2010 system peak; 'Impact and Process Evaluation of Ameren Illinois Company's Residential HVAC Program (PY5)'.

¹⁶⁰⁷ Multifamily coincidence factors both from; All-Electric Homes PY6 Metering Results: Multifamily HVAC Systems, Cadmus, October 2015

¹⁶⁰⁸ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

¹⁶⁰⁹ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

For example, a single family home in Chicago with 990 ft² of R-5 walls insulated to R-11, 10.5 SEER Central AC, and 2.26 COP Heat Pump:

 $\Delta kW_{SSP} = 109.0 / 709 * 0.68$

= 0.10 kW

 $\Delta kW_{PJM} = 109.0 / 709 * 0.466$

= 0.07 kW

FOSSIL FUEL SAVINGS

If Fossil Fuel heating:

 Δ Therms = (((1/R_old - 1/R_wall) * A_wall * (1-Framing_factor_wall) * 24 * HDD) / (η Heat *

100,000 Btu/therm)) * ADJwallHeat* %FossilHeat

Where:

HDD = Heating Degree Days

= Dependent on location: 1610

Climate Zone (City based upon)	HDD 60
1 (Rockford)	5230
2 (Chicago)	4798
3 (Springfield)	4266
4 (Belleville)	3188
5 (Marion)	3390
Weighted Average ¹⁶¹¹	4631

ηHeat = Efficiency of heating system

= Equipment efficiency * distribution efficiency

= Actual (where it is possible to measure or reasonably estimate). ¹⁶¹² Note where new HVAC is installed in addition to shell measures, the old HVAC unit efficiency should be used and the shell measure savings calculated first, the HVAC measure then assuming the reduced heat/cooling loads. If using rated efficiencies, derate efficiency value by 1% per year (maximum of 30 years) to account for degradation over time, ¹⁶¹³ or if unknown assume 72% for existing system efficiency. ¹⁶¹⁴ If unknown value is used, it should not be derated by age. If actual Distribution Efficiency is not available, use 85%.

%FossilHeat = Percent of homes that have fossil fuel space heating

¹⁶¹⁰ National Centers for Environmental Information (NCEI) Annual Normals, from 2006 - 2020, calculated with a base temp of 60°F, consistent with the findings of Belzer and Cort, Pacific Northwest National Laboratory in "Statistical Analysis of Historical State-Level Residential Energy Consumption Trends," 2004. There is a county mapping table in Volume 1, Section 3.7 providing the appropriate city to use for each county of Illinois.

¹⁶¹¹ Weighted based on number of occupied residential housing units in each zone (US Census 2010).

¹⁶¹² Ideally, the System Efficiency should be obtained either by recording the AFUE of the unit, or performing a steady state efficiency test. The Distribution Efficiency can be estimated via a visual inspection and by referring to a look up table such as that provided by the Building Performance Institute: (see 'BPI Distribution Efficiency Table') or by performing duct blaster testing.

¹⁶¹³ Justification for degradation factors can be found on page 14 of 'AIC HVAC Metering Study Memo FINAL 2_28_2018'. Estimate efficiency as (Rated Efficiency * (1-0.01)^Equipment Age).

¹⁶¹⁴ Based on average Nicor PY4 nameplate efficiencies derated by 15% for distribution losses.

- = 100 % for Fossil Fuel heating
- = 0 % for Electric Resistance or Heat Pump
- = If unknown¹⁶¹⁵, use the following table:

		Location			
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown
Ameren	82%	74%	62%	61%	71%
ComEd	86%	78%	57%	52%	79%
PGL	98.9%	98.5%	96.0%	96.9%	97.7%
NSG	98.3%	99.2%	67.5%	98.8%	96.6%
Nicor	98.3%	99.2%	67.5%	98.8%	96.6%
All DUs ¹⁶¹⁶		_			74%

<u>Note</u>: If a measure is supported by a gas and electric utility through a joint program, and it is unknown whether the participant has a gas supply, the electric utility values in the table above should be used. If it is known that the participant has a gas supply, the values from the gas utility above should be applied.

Other factors as defined above.

For example, a single family home in Chicago with 990 ft² of R-5 walls insulated to R-11, with a gas furnace with system efficiency of 66%:

$$\Delta$$
Therms = ((((1/5 - 1/11) * 990 * (1-0.25)) * 24 * 4798) / (0.66 * 100,000)) * 63% * 100% = 89.0 therms

Mid-Life adjustment

In order to account for the likely replacement of existing heating and cooling equipment during the lifetime of this measure, a mid-life adjustment should be applied. To calculate the adjustment, re-calculate the savings above using the following new baseline system efficiency assumptions:

Efficiency Assumption	System Type	New Baseline Efficiency
nCool	Central AC	13.4 SEER2
IICOOI	Heat Pump	14.3 SEER2
	Electric Resistance	1.0 COP
ηHeat	Heat Pump (7.5HSPF/3.413)*0.85	1.87 COP
	Gas Furnace 80% AFUE * 0.85	68% AFUE
	Oil Furnace 83% AFUE * 0.85	71% AFUE

¹⁶¹⁵ Based on the average % Natural Gas used for space heating in Unknown residential structure types across all utilities covered by the IL program. Residence types include: SF, SF LI, MF & MF LI. Utilities included: Ameren, ComEd, People's Gas, Northshore Gas & Nicor. Data provided from 2016 Ameren Illinois Demand Side Management (DSM) Market Potential Study by Applied Energy Group, ComEd's 2019 Baseline Survey on residential space heating share, and PY2022-2023 Implementation Contractors Data for People's Gas, Northshore Gas & Nicor .

_

¹⁶¹⁶ For the weighted average calculations, please see the Analysis file. PGL, NSG, Nicor & gas customers were assumed to follow the provided split. ComEd total customers, minus overlap with PGL,NSG & Nicor, therefore gas only homes. Ameren is total customers minus Nicor.

Efficiency Assumption	System Type	New Baseline Efficiency
	Gas Boiler	84% AFUE
	Oil Boiler	86% AFUE

This reduced annual savings should be applied following the assumed remaining useful life of the existing equipment, estimate to be 10 years or 13 years for boilers. ¹⁶¹⁷ Note if the existing equipment efficiency is greater than the new baseline efficiency listed above, do not apply a mid-life adjustment.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-SHL-WINS-V14-250101

REVIEW DEADLINE: 1/1/2030

¹⁶¹⁷ This is intentionally longer than the assumption found in the early replacement measures as the application of this measure will occur in a variety of homes and will not be targeting those homes appropriate for early replacement HVAC systems.

5.6.5 Ceiling/Attic Insulation

DESCRIPTION

Insulation is added to the attic. This measure requires a member of the implementation staff evaluating the pre and post R-values and measure surface areas. The efficiency of the heating and cooling equipment in the home should also be evaluated if possible.

This measure was developed to be applicable to the following program types: RF.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

This measure requires a member of the implementation staff or a participating contractor to evaluate the pre and post R-values and measure surface areas. The requirements for participation in the program will be defined by the utilities.

DEFINITION OF BASELINE EQUIPMENT

The existing condition will be evaluated by implementation staff or a participating contractor and is likely to be little or no attic insulation.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 30 years. 1618

Note a mid-life adjustment to account for replacement of HVAC equipment during the measure life should be applied after 10 years or 13 years for boilers. 1619 See section below for detail.

DEEMED MEASURE COST

The actual installed cost for this measure should be used in screening.

LOADSHAPE

Loadshape R08 - Residential Cooling

Loadshape R09 - Residential Electric Space Heat

Loadshape R10 - Residential Electric Heating and Cooling

COINCIDENCE FACTOR

The summer peak coincidence factor for cooling is provided in two different ways below. The first is used to estimate peak savings during the utility peak hour and is most indicative of actual peak benefits, and the second represents the *average* savings over the defined summer peak period, and is presented so that savings can be bid into PJM's capacity market.

CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C (during utility peak hour)

 $=68\%^{1620}$

CF_{SSP SF} = Summer System Peak Coincidence Factor for Heat Pumps in single family homes

(during system peak hour)

¹⁶¹⁸ As recommended in Guidehouse 'EMV Group A, Deliverable 16 EUL Research – Residential Insulation', prepared for California Public Utilities Commission, June 2021.

¹⁶¹⁹ This is intentionally longer than the assumptions found in the early replacement measures as the application of this measure will occur in a variety of homes that will not be targeted for early replacement HVAC systems.

¹⁶²⁰ Based on metering of 24 homes with central AC during PY4 and PY5 in Ameren Illinois service territory.

	= 72% ¹⁶²¹
CF _{SSP} , MF	= Summer System Peak Coincidence Factor for Heat Pumps in multifamily homes (during system peak hour)
	= 67% ¹⁶²²
СҒым	= PJM Summer Peak Coincidence Factor for Central A/C (average during PJM peak period)
	= 46.6% ¹⁶²³
CF _{PJM SF}	= PJM Summer Peak Coincidence Factor for Heat Pumps in single family homes (average during PJM peak period)
	= 46.6% ¹⁶²⁴
СҒрјм, мғ	= PJM Summer Peak Coincidence Factor for Heat Pumps in multifamily homes (average during peak period)
	= 28.5%

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Where available savings from shell insulation measures should be determined through a custom analysis. When that is not feasible for the program the following engineering algorithms can be used with the inclusion of an adjustment factor to de-rate the heating savings.

 ΔkWh = (ΔkWh _cooling + ΔkWh _heatingElectric + ΔkWh _heatingFurnace)

Where:

ΔkWh cooling = If central cooling, reduction in annual cooling requirement due to celing/attic insulation

= ((((1/R_old - 1/R_attic) * A_attic * (1-Framing_factor_attic)) * 24 * CDD * DUA) / (1000

* nCool)) * ADJAtticCool * IENetCorrection * %Cool

R_attic = R-value of new attic assembly (including all layers between inside air and outside air).

R_old = R-value value of existing assembly and any existing insulation.

(Minimum of R-3 for uninsulated assemblies)¹⁶²⁵

A_attic = Total area of insulated ceiling/attic (ft²)

Framing_factor_attic = Adjustment to account for area of framing

= 7%¹⁶²⁶

¹⁶²¹ Based on analysis of metering results from 24 heat pumps in Ameren Illinois service territory in PY5 coincident with AIC's 2010 system peak; 'Impact and Process Evaluation of Ameren Illinois Company's Residential HVAC Program (PY5)'.

¹⁶²² Multifamily coincidence factors both from; All-Electric Homes PY6 Metering Results: Multifamily HVAC Systems, Cadmus, October 2015

¹⁶²³ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

¹⁶²⁴ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

 $^{^{1625}}$ Component estimate of airfilm above and below, sheathing and sheet rock, (0.68+0.5+0.45+0.68 = 2.3) is rounded up to R-3. 1626 lbid.

= Converts hours to days

CDD = Cooling Degree Days

= dependent on location: 1627

Climate Zone (City based upon)	CDD 65
1 (Rockford)	877
2 (Chicago)	1047
3 (Springfield)	1183
4 (Belleville)	1641
5 (Marion)	1450
Weighted	1098
Average ¹⁶²⁸	

DUA = Discretionary Use Adjustment (reflects the fact that people do not always operate their

AC when conditions may call for it).

 $= 0.75^{1629}$

1000 = Converts Btu to kBtu

ηCool = Seasonal Energy Efficiency Ratio of cooling system (kBtu/kWh)

= Actual (where it is possible to measure or reasonably estimate). Note where new HVAC is installed in addition to shell measures, the old HVAC unit efficiency should be used and the shell measure savings calculated first, the HVAC measure then assuming the reduced heat/cooling loads. If using rated efficiencies, derate efficiency value by 1% per year (maximum of 30 years) to account for degradation over time, ¹⁶³⁰ or if unknown assume the following. ¹⁶³¹ If unknown value is used, it should not be derated by age.

Age of Equipment	SEER2 Estimate
Before 2006	9.5
2006 - 2014	12.4
Central AC After 1/1/2015	12.4
Heat Pump After 1/1/2015	13.3
Unknown (for use in program evaluation only)	10.0

¹⁶²⁷ National Centers for Environmental Information (NCEI) Annual Normals, from 2006 - 2020, calculated with a base temp of 65°F. There is a county mapping table Volume 1, Section 3.7 providing the appropriate city to use for each county of Illinois.

¹⁶²⁸ Weighted based on number of occupied residential housing units in each zone (US Census 2010).

¹⁶²⁹ This factor's source is: Energy Center of Wisconsin, May 2008 metering study; "Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research", p31.

¹⁶³⁰ Justification for degradation factors can be found on page 14 of 'AIC HVAC Metering Study Memo FINAL 2_28_2018'. Estimate efficiency as (Rated Efficiency * (1-0.01)^Equipment Age).

¹⁶³¹ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Central AC was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time means that using the minimum standard is appropriate. Note all ratings have been converted to SEER2 equivalents – since the new rating better reflects the actual efficiency of the units.

ADJ_{AtticCool} = Adjustment for cooling savings to account for inaccuracies in engineering

algorithms¹⁶³²

= 114%

IE_{NetCorrection}

= 100% if not income eligible or attic insulation is installed without air sealing

= 110% if installing air sealing and attic insulation in income eligible projects with a deemed NTG value of 1.0 to offset net savings adjustment inherent when using ADJ_{AtticCool}

of 114% 1633

%Cool

= Percent of homes that have cooling

Central Cooling?	%Cool
Yes	100%
No	0%
Unknown (for use in program evaluation only) ¹⁶³⁴	66%

kWh_heatingElectric

= If electric heat (resistance or heat pump), reduction in annual electric heating

due to attic insulation

= (((($1/R_old - 1/R_attic$) * A_attic * (1-Framing_factor_attic)) * 24 * HDD) /

(ηHeat * 3,412)) * ADJ_{AtticElectricHeat}*%ElectricHeat

HDD = Heating Degree Days

= Dependent on location: 1635

Climate Zone (City based upon)	HDD 60
1 (Rockford)	5230
2 (Chicago)	4798
3 (Springfield)	4266
4 (Belleville)	3188
5 (Marion)	3390
Weighted Average ¹⁶³⁶	4631

¹⁶³² As demonstrated in air sealing and insulation research by Navigant, see Navigant (2018). ComEd and Nicor Gas Air Sealing and Insulation Research Report. Presented to Commonwealth Edison Company and Nicor Gas Company. Adjustment factor was derived from a consumption data regression analysis with an experimental design that does not require further net savings adjustment for non-income eligible populations. During update cycle for version v.12, applied the percent change of NCEI Annual Normals CDD65 from 30 yr data set (1981-2010) to more recent 15 yr data (2006-2020) for all cooling-related adjustment values. ¹⁶³³ The additional value of 10% was selected to acknowledge that some portion of the regression-derived adjustment factors accounts for gross impact effects, and that removing net effects embedded in the adjustment factors would increase savings to some degree. A review of historical NTG values for air sealing and insulation measures in non-income eligible populations did not provide definitive guidance for estimating the net component of the adjustment factors. Historically, free ridership has ranged from 9% to 26% for like measures, and spillover has ranged from 1% to 14%, while NTGs have ranged from 0.75 to 1.05. The midpoint of the NTG range would be 0.90, a 10% reduction from 1.0.

¹⁶³⁴ Percentage of homes in Illinois that have central cooling from "Table HC7.9 Air Conditioning in Homes in Midwest Region, Divisions, and States, 2009" from Energy Information Administration, 2009 Residential Energy Consumption Survey
¹⁶³⁵ National Centers for Environmental Information (NCEI) Annual Normals, from 2006 - 2020, calculated with a base temp of 60°F, consistent with the findings of Belzer and Cort, Pacific Northwest National Laboratory in "Statistical Analysis of Historical State-Level Residential Energy Consumption Trends," 2004. There is a county mapping table in Volume 1, Section 3.7 providing the appropriate city to use for each county of Illinois.

¹⁶³⁶ Weighted based on number of occupied residential housing units in each zone.

ηHeat = Efficiency of heating system

= Actual Heating Efficiency * Distribution Efficiency (where it is possible to measure or reasonably estimate). Note where new HVAC is installed in addition to shell measures, the old HVAC unit efficiency should be used and the shell measure savings calculated first, the HVAC measure then assuming the reduced heat/cooling loads. If using rated efficiencies, derate efficiency value by 1% per year (maximum of 30 years) to account for degradation over time, ¹⁶³⁷ or if not available refer to default table below. ¹⁶³⁸ If unknown value is used, it should not be derated by age. If actual Distribution Efficiency is not available, use 85% for heat pumps.

System Type	Age of Equipment	HSPF2 Estimate	ηHeat (Effective COP Estimate * Distribution Efficiency) (HSPF2/3.413)*0.85
Hand British	Before 2006	5.8	1.44
Heat Pump (if age unknown, assume 2006-2014)	After 2006 -2014	6.5	1.62
(ii age unknown, assume 2000-2014)	2015 on	7	1.74
Resistance	N/A	N/A	1
Unknown (for use in program evaluation only)	N/A	N/A	1.32

3412 = Converts Btu to kWh

ADJ_{AtticElectricHeat} = Adjustment for electric heating savings to account for inaccuracies in engineering

algorithms 1639

= 63%

%ElectricHeat = Percent of homes that have electric space heating

= 100 % for Electric Resistance or Heat Pump

= 0 % for Fossil Fuel heat

= If unknown¹⁶⁴⁰, use the following table:

 $^{^{1637}}$ Justification for degradation factors can be found on page 14 of 'AIC HVAC Metering Study Memo FINAL 2_28_2018'. Estimate efficiency as (Rated Efficiency * (1-0.01)^Equipment Age).

¹⁶³⁸ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time means that using the minimum standard is appropriate. An 85% distribution efficiency is then applied to account for duct losses for heat pumps. Note all ratings have been converted to HSPF2 equivalents – since the new rating better reflects the actual efficiency of the units.

¹⁶³⁹ As demonstrated in air sealing and insulation research by Navigant, Navigant (2018). *ComEd and Nicor Gas Air Sealing and Insulation Research Report*. Presented to Commonwealth Edison Company and Nicor Gas Company. During update cycle for version v.12, applied the percent change of NCEI Annual Normals HDD60 from 30 yr data set (1981-2010) to more recent 15 yr data (2006-2020) for all heating-related adjustment values.

¹⁶⁴⁰ Based on the average % Natural Gas used for space heating in Unknown residential structure types across all utilities covered by the IL program. Residence types include: SF, SF LI, MF & MF LI. Utilities included: Ameren, ComEd, People's Gas, Northshore Gas & Nicor. Data provided from 2016 Ameren Illinois Demand Side Management (DSM) Market Potential Study by Applied Energy Group, ComEd's 2019 Baseline Survey on residential space heating share, and PY2022-2023 Implementation Contractors Data for People's Gas, Northshore Gas & Nicor .

	Location				
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown
Ameren	18%	26%	38%	39%	29%
ComEd	14%	22%	43%	48%	21%
PGL	1.0%	1.5%	4.0%	2.8%	2.2%
NSG	1.3%	0.8%	32.5%	1.2%	3.3%
Nicor	1.3%	0.8%	32.5%	1.2%	3.3%
All DUs ¹⁶⁴¹					26%

<u>Note</u>: If a measure is supported by a gas and electric utility through a joint program, and it is unknown whether the participant has a gas supply, the electric utility values in the table above should be used. If it is known that the participant has a gas supply, the values from the gas utility above should be applied.

For example, energy savings from ceiling/attic insulation. Energy savings for air sealing are included in a separate example in Section 5.6.1: Air Sealing.

Assume a non-income eligible single family home in Chicago installs 700 ft² of attic insulation, completes air sealing, has 10.5 SEER Central AC and 2.26 (1.92 including distribution losses) COP Heat Pump, and has pre and post attic insulation R-values of R-5 and R-38, respectively:

```
ΔkWh = (ΔkWh_cooling + ΔkWh_heating)
= (((((1/5 - 1/38) * 700 * (1-0.07)) * 1,047 * 0.75 * 24)/ (1,000 * 10.5)) * 114% * 100% * 100%) + (((((1/5 - 1/38) * 700 * (1-0.07)) * 4,798 * 24) / (1.92 * 3,412)) * 63% * 100%)
= 231 + 1,252
= 1,483 kWh
```

 Δ kWh_heatingFurnace = If fossil fuel *furnace* heat, kWh savings for reduction in fan run time = Δ Therms * F_e * 29.3 * ADJ_{AtticHeatFan}

Fe = Furnace Fan energy consumption as a percentage of annual fuel consumption

 $= 3.14\%^{1642}$

= kWh per therm

ADJ_{AtticHeatFan} = Adjustment for fan savings to account for innacuracies in engineering algorithms¹⁶⁴³

= 113%

_

¹⁶⁴¹ For the weighted average calculations, please see the Analysis file. PGL, NSG, Nicor & gas customers were assumed to follow the provided split. ComEd total customers, minus overlap with PGL,NSG & Nicor, therefore electric only homes. Ameren is total customers minus Nicor.

 $^{^{1642}}$ F_e is not one of the AHRI certified ratings provided for residential furnaces, but can be reasonably estimated from a calculation based on the certified values for fuel energy (Ef in MMBtu/yr) and Eae (kWh/yr). An average of a 300 record sample (non-random) out of 1495 was 3.14%. This is, appropriately, ~50% greater than the ENERGY STAR version 3 criteria for 2% F_e. See "Programmable Thermostats Furnace Fan Analysis.xlsx" for reference.

¹⁶⁴³ As demonstrated in air sealing and insulation research by Navigant, see Navigant (2018). ComEd and Nicor Gas Air Sealing and Insulation Research Report. Presented to Commonwealth Edison Company and Nicor Gas Company. Adjustment factor was derived from a consumption data regression analysis with an experimental design that does not require further net savings adjustment for non-income eligible populations. During update cycle for version v.12, applied the percent change of NCEI Annual Normals HDD60 from 30 yr data set (1981-2010) to more recent 15 yr data (2006-2020) for all heating-related adjustment values.

For example: energy savings from ceiling/attic insulation. Energy savings for air sealing are included in a separate example in Section 5.6.1: Air Sealing.

Assume a non-income eligible single family home in Chicago installs 700 ft² of attic insulation, completes air sealing, has a gas furnace with system efficiency of 66% (for therm calculation see Fossil Fuel Savings section), and has pre and post attic insulation R-values of R-5 and R-38, respectively:

= 156 kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = (\Delta kWh_cooling / FLH_cooling) * CF$

Where:

FLH_cooling = Full load hours of air conditioning

= Dependent on location as below: 1644

Climate Zone (City based upon)	Single Family	Multifamily
1 (Rockford)	547	499
2 (Chicago)	709	629
3 (Springfield)	779	707
4 (Belleville)	1082	982
5 (Marion)	956	868
Weighted Average ¹⁶⁴⁵		
ComEd	676	603
Ameren	875	791
Statewide	731	655

Use Multifamily if: Building meets utility's definition for multifamily and HVAC system serves single unit. For residential sized systems serving 2 or more units, assume single family hours.

CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C (during utility peak hour)

 $=68\%^{1646}$

CF_{SSP SF} = Summer System Peak Coincidence Factor for Heat Pumps in single family homes

(during system peak hour)

 $=72\%^{1647}$

CF_{SSP, MF} = Summer System Peak Coincidence Factor for Heat Pumps in multifamily homes (during

system peak hour)

2025 IL TRM v13.0 Vol. 3_September 20, 2024_FINAL

¹⁶⁴⁴ Full load hours for Chicago, Moline and Rockford are provided in "Final Evaluation Report: Central Air Conditioning Efficiency Services (CACES), 2010, Navigant Consulting", p.33. An average FLH/Cooling Degree Day (from NCDC) ratio was calculated for these locations and applied to the CDD of the other locations in order to estimate FLH. There is a county mapping table in Volume 1, Section 3.7 providing the appropriate city to use for each county of Illinois. During update cycle for version v.12, applied percent change of CDD65, NCEI Annual Normals from 30 yr data set (1981-2010) to more recent 15 yr data (2006-2020) to all FLHcool values.

¹⁶⁴⁵ Weighting for Ameren is based on electric accounts in each of the cooling zones. Weighting for ComEd and Statewide average is based on number of occupied residential housing units in each zone. ComEd is weighted average of Zones 1-2. Alternative program-weighted assumptions can be used if appropriate.

¹⁶⁴⁶ Based on metering of 24 homes with central AC during PY4 and PY5 in Ameren Illinois service territory.

¹⁶⁴⁷ Based on analysis of metering results from 24 heat pumps in Ameren Illinois service territory in PY5 coincident with AIC's 2010 system peak; 'Impact and Process Evaluation of Ameren Illinois Company's Residential HVAC Program (PY5)'.

= 67% 1648

CF_{PJM} = PJM Summer Peak Coincidence Factor for Central A/C (average during PJM peak

period)

 $=46.6\%^{1649}$

CF_{PJM SF} = PJM Summer Peak Coincidence Factor for Heat Pumps in single family homes (average

during PJM peak period)

 $=46.6\%^{1650}$

CF_{PJM, MF} = PJM Summer Peak Coincidence Factor for Heat Pumps in multifamily homes (average

during peak period)

= 28.5%

For example, energy savings from ceiling/attic insulation. Energy savings for air sealing are included in a separate example in Section 5.6.1: Air Sealing.

Assume a non-income eligible single family home in Chicago installs 700 ft² of attic insulation, has 10.5 SEER Central AC and 2.26 COP Heat Pump, and has pre and post attic insulation R-values of R-5 and R-38, respectively:

 $\Delta kW_{SSP} = 231 / 709 * 0.68$

= 0.22 kW

 $\Delta kW_{PJM} = 156 / 709 * 0.466$

= 0.10 kW

FOSSIL FUEL SAVINGS

If Fossil Fuel heating:

 $\Delta Therms = ((((1/R_old - 1/R_attic) * A_attic * (1-Framing_factor_attic)) * 24 * HDD) / (\eta Heat * 100,000 Btu/therm) * ADJ_{AtticGasHeat} * IE_{NetCorrection} * %FossilHeat$

Where:

HDD = Heating Degree Days

= Dependent on location: 1651

Climate Zone (City based upon)	HDD 60
1 (Rockford)	5230
2 (Chicago)	4798
3 (Springfield)	4266
4 (Belleville)	3188
5 (Marion)	3390

¹⁶⁴⁸ Multifamily coincidence factors both from; *All-Electric Homes PY6 Metering Results: Multifamily HVAC Systems*, Cadmus, October 2015

¹⁶⁴⁹ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

¹⁶⁵⁰ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

¹⁶⁵¹ National Centers for Environmental Information (NCEI) Annual Normals, from 2006 - 2020, calculated with a base temp of 60°F, consistent with the findings of Belzer and Cort, Pacific Northwest National Laboratory in "Statistical Analysis of Historical State-Level Residential Energy Consumption Trends," 2004. There is a county mapping table in Volume 1, Section 3.7 providing the appropriate city to use for each county of Illinois.

Climate Zone (City based upon)	HDD 60
Weighted Average ¹⁶⁵²	4631

ηHeat

- = Efficiency of heating system
- = Equipment efficiency * distribution efficiency
- = Actual (where it is possible to measure or reasonably estimate). ¹⁶⁵³ Note where new HVAC is installed in addition to shell measures, the old HVAC unit efficiency should be used and the shell measure savings calculated first, the HVAC measure then assuming the reduced heat/cooling loads. If using rated efficiencies, derate efficiency value by 1% per year (maximum of 30 years) to account for degradation over time, ¹⁶⁵⁴ or if not available, use 72% for existing system efficiency. ¹⁶⁵⁵ If unknown value is used, it should not be derated by age. If actual Distribution Efficiency is not available, use 85%.

ADJ_{AtticGasHeat}

- = Adjustment for gas heating savings to account for inaccuracies in engineering
- algorithms¹⁶⁵⁶
- = 76%

IENetCorrection

- = 100% if not income eligible or attic insulation is installed without air sealing
- = 110% if installing air sealing and attic insulation in income eligible projects with a deemed NTG value of 1.0 to offset net savings adjustment inherent when using ADJ $_{\rm AtticGasHeat}$ of 76% 1657

%FossilHeat

- = Percent of homes that have fossil fuel space heating
- = 100 % for Fossil fuel heat
- = 0 % for Electric Resistance or Heat Pump
- = If unknown¹⁶⁵⁸, use the following table:

¹⁶⁵² Weighted based on number of occupied residential housing units in each zone (US Census 2010).

¹⁶⁵³ Ideally, the System Efficiency should be obtained either by recording the AFUE of the unit, or performing a steady state efficiency test. The Distribution Efficiency can be estimated via a visual inspection and by referring to a look up table such as that provided by the Building Performance Institute: (see 'BPI Distribution Efficiency Table') or by performing duct blaster testing. ¹⁶⁵⁴ Justification for degradation factors can be found on page 14 of 'AIC HVAC Metering Study Memo FINAL 2_28_2018'. Estimate efficiency as (Rated Efficiency * (1-0.01)^Equipment Age).

¹⁶⁵⁵ Based on average Nicor PY4 nameplate efficiencies derated by 15% for distribution losses.

¹⁶⁵⁶ As demonstrated in air sealing and insulation research by Navigant, Navigant (2018). ComEd and Nicor Gas Air Sealing and Insulation Research Report. Presented to Commonwealth Edison Company and Nicor Gas Company. Adjustment factor was derived from a consumption data regression analysis with an experimental design that does not require further net savings adjustment for non-income eligible populations. During update cycle for version v.12, applied the percent change of NCEI Annual Normals HDD60 from 30 yr data set (1981-2010) to more recent 15 yr data (2006-2020) for all heating-related adjustment values.

¹⁶⁵⁷ The additional value of 10% was selected to acknowledge that some portion of the regression-derived adjustment factors accounts for gross impact effects, and that removing net effects embedded in the adjustment factors would increase savings to some degree. A review of historical NTG values for air sealing and insulation measures in non-income eligible populations did not provide definitive guidance for estimating the net component of the adjustment factors. Historically, free ridership has ranged from 9% to 26% for like measures, and spillover has ranged from 1% to 14%, while NTGs have ranged from 0.75 to 1.05. The midpoint of the NTG range would be 0.90, a 10% reduction from 1.0.

¹⁶⁵⁸ Based on the average % Natural Gas used for space heating in Unknown residential structure types across all utilities covered by the IL program. Residence types include: SF, SF LI, MF & MF LI. Utilities included: Ameren, ComEd, People's Gas, Northshore Gas & Nicor. Data provided from 2016 Ameren Illinois Demand Side Management (DSM) Market Potential Study by Applied Energy Group, ComEd's 2019 Baseline Survey on residential space heating share, and PY2022-2023 Implementation Contractors Data for People's Gas, Northshore Gas & Nicor .

	Location				
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown
Ameren	82%	74%	62%	61%	71%
ComEd	86%	78%	57%	52%	79%
PGL	98.9%	98.5%	96.0%	96.9%	97.7%
NSG	98.3%	99.2%	67.5%	98.8%	96.6%
Nicor	98.3%	99.2%	67.5%	98.8%	96.6%
All DUs ¹⁶⁵⁹					74%

<u>Note</u>: If a measure is supported by a gas and electric utility through a joint program, and it is unknown whether the participant has a gas supply, the electric utility values in the table above should be used. If it is known that the participant has a gas supply, the values from the gas utility above should be applied.

Other factors as defined above.

For example, energy savings from ceiling/attic insulation. Energy savings for air sealing are included in a separate example in Section 5.6.1: Air Sealing.

Assume a non-income eligible single family home in Chicago installs 700 ft² of attic insulation, has a gas furnace with system efficiency of 66%, and has pre and post attic insulation R-values of R-5 and R-38, respectively:

$$\Delta$$
Therms = ((((1/5 - 1/38) * 700 * (1-0.07)) * 24 * 4,798) / (0.66 * 100,000)) * 76% * 100% * 100%

= 150 therms

Mid-Life adjustment

In order to account for the likely replacement of existing heating and cooling equipment during the lifetime of this measure, a mid-life adjustment should be applied. To calculate the adjustment, re-calculate the savings above using the following new baseline system efficiency assumptions:

Efficiency Assumption	System Type	New Baseline Efficiency
nCool	Central AC	13.4 SEER2
IICOOI	Heat Pump	14.3 SEER2
	Electric Resistance	1.0 COP
	Heat Pump	1.87 COP
	(7.5HSPF/3.413)*0.85	1.87 COF
	Gas Furnace	68% AFUE
ηHeat	80% AFUE * 0.85	08/8 AT OL
	Oil Furnace	71% AFUE
	83% AFUE * 0.85	71% AFUL
	Gas Boiler	84% AFUE
	Oil Boiler	86% AFUE

This reduced annual savings should be applied following the assumed remaining useful life of the existing equipment, estimate to be 10 years or 13 years for boilers. 1660 Note if the existing equipment efficiency is greater than the new

¹⁶⁵⁹ For the weighted average calculations, please see the Analysis file. PGL, NSG, Nicor & gas customers were assumed to follow the provided split. ComEd total customers, minus overlap with PGL,NSG & Nicor, therefore gas only homes. Ameren is total customers minus Nicor.

¹⁶⁶⁰ This is intentionally longer than the assumption found in the early replacement measures as the application of this measure will occur in a variety of homes and will not be targeting those homes appropriate for early replacement HVAC systems.

baseline efficiency listed above, do not apply a mid-life adjustment.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-SHL-AINS-V08-250101

REVIEW DEADLINE: 1/1/2030

5.6.6 Rim/Band Joist Insulation

DESCRIPTION

This measure describes savings from adding insulation (either rigid or spray foam) to rim/band joist cavities. This measure requires a member of the implementation staff evaluating the pre- and post-project R-values and to measure surface areas. The efficiency of the heating and cooling equipment in the home should also be evaluated if possible.

This measure was developed to be applicable to the following program types: RF.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

This measure requires a member of the implementation staff or a participating contractor to evaluate the pre and post R-values and measure surface areas. The requirements for participation in the program will be defined by the utilities.

DEFINITION OF BASELINE EQUIPMENT

The existing condition will be evaluated by implementation staff or a participating contractor and is likely to be empty wall cavities and little or no attic insulation.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 30 years. 1661

Note a mid-life adjustment to account for replacement of HVAC equipment during the measure life should be applied after 10 years or 13 years for boilers 1662. See section below for detail.

DEEMED MEASURE COST

The actual installed cost for this measure should be used in screening.

LOADSHAPE

Loadshape R08 - Residential Cooling

Loadshape R09 - Residential Electric Space Heat

Loadshape R10 - Residential Electric Heating and Cooling

COINCIDENCE FACTOR

The summer peak coincidence factor for cooling is provided in two different ways below. The first is used to estimate peak savings during the utility peak hour and is most indicative of actual peak benefits, and the second represents the average savings over the defined summer peak period, and is presented so that savings can be bid into PJM's capacity market.

= Summer System Peak Coincidence Factor for Central A/C (during utility peak hour) CF_{SSP}

 $=68\%^{1663}$

= Summer System Peak Coincidence Factor for Heat Pumps in single family homes CF_{SSP} SF

(during system peak hour)

¹⁶⁶¹ As recommended in Guidehouse 'EMV Group A, Deliverable 16 EUL Research – Residential Insulation', prepared for California Public Utilities Commission, June 2021.

¹⁶⁶² This is intentionally longer than the assumptions found in the early replacement measures as the application of this measure will occur in a variety of homes that will not be targeted for early replacement HVAC systems.

¹⁶⁶³ Based on metering of 24 homes with central AC during PY4 and PY5 in Ameren Illinois service territory.

	= 72% ¹⁶⁶⁴
CF _{SSP} , MF	= Summer System Peak Coincidence Factor for Heat Pumps in multifamily homes (during system peak hour)
	= 67% ¹⁶⁶⁵
СҒым	= PJM Summer Peak Coincidence Factor for Central A/C (average during PJM peak period)
	= 46.6% ¹⁶⁶⁶
CF _{PJM SF}	= PJM Summer Peak Coincidence Factor for Heat Pumps in single family homes (average during PJM peak period)
	= 46.6% ¹⁶⁶⁷
СҒрјм, мғ	= PJM Summer Peak Coincidence Factor for Heat Pumps in multifamily homes (average during peak period)
	= 28.5%

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Where available savings from shell insulation measures should be determined through a custom analysis. When that is not feasible for the program the following engineering algorithms can be used with the inclusion of an adjustment factor to de-rate the heating savings.

 ΔkWh = (ΔkWh cooling + ΔkWh heatingElectric + ΔkWh heatingFurnace)

Where:

ΔkWh cooling = If central cooling, reduction in annual cooling requirement due to insulation

$$=\frac{\left(\frac{1}{R_{old}}-\frac{1}{R_{Rim}}\right)*\ A_{Rim}*\ (1-FramingFactor_{Rim})*\ CDD*24*\ DUA*ADJ_{BasementCool*\%Cool}}{(1000*\eta Cool)}$$

R_{Rim} = R-value of new rim/band joist assembly (including all layers between inside air and outside air).

outside diff.

R_{old} = R-value value of existing assembly and any existing insulation.

(Minimum of R-5 for uninsulated assemblies)¹⁶⁶⁸

 A_{Rim} = Net area of insulated rim/band joist (ft²)

FramingFactor_{Rim} = Adjustment to account for area of framing

¹⁶⁶⁴ Based on analysis of metering results from 24 heat pumps in Ameren Illinois service territory in PY5 coincident with AIC's 2010 system peak; 'Impact and Process Evaluation of Ameren Illinois Company's Residential HVAC Program (PY5)'.

¹⁶⁶⁵ Multifamily coincidence factors both from; *All-Electric Homes PY6 Metering Results: Multifamily HVAC Systems*, Cadmus, October 2015

¹⁶⁶⁶ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

¹⁶⁶⁷ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

¹⁶⁶⁸ An estimate based on review of Madison Gas and Electric, Exterior Wall Insulation, R-value for no insulation in walls, and NREL's Building Energy Simulation Test for Existing Homes (BESTEST-EX).

 $=5\%^{1669}$

24 = Converts hours to days

CDD = Cooling Degree Days

= dependent on location: 1670

Climate Zone (City based upon)	Conditioned CDD 65	Unconditioned (CDD 75) ¹⁶⁷¹
1 (Rockford)	877	326
2 (Chicago)	1047	354
3 (Springfield)	1183	448
4 (Belleville)	1641	532
5 (Marion)	1450	516
Weighted Average ¹⁶⁷²	1098	380

DUA

= Discretionary Use Adjustment (reflects the fact that people do not always operate their AC when conditions may call for it).

 $= 0.75^{1673}$

1000 = Converts Btu to kBtu

ηCool = Seasonal Energy Efficiency Ratio of cooling system (kBtu/kWh)

= Actual (where it is possible to measure or reasonably estimate). Note where new HVAC is installed in addition to shell measures, the old HVAC unit efficiency should be used and the shell measure savings calculated first, the HVAC measure then assuming the reduced heat/cooling loads. If using rated efficiencies, derate efficiency value by 1% per year (maximum of 30 years) to account for degradation over time, ¹⁶⁷⁴ or if unknown assume the following. ¹⁶⁷⁵ If unknown value is used, it should not be derated by age.

Age of Equipment	SEER2 Estimate
Before 2006	9.5
2006 - 2014	12.4
Central AC After 1/1/2015	12.4
Heat Pump After 1/1/2015	13.3
Unknown (for use in program evaluation only)	10.0

¹⁶⁶⁹ Assumes the average framing factor for joists running from front-to-back (0.094) and from side-to-side (0). The front-to-back FF was calculated based on 1.5" joists for every 16" (1.5"/16" = 0.094). The side-to-side FF is 0 since joists are continuous and uninterrupted.

¹⁶⁷⁰National Centers for Environmental Information (NCEI) Annual Normals, from 2006 - 2020, calculated with a base temp of 65°F. There is a county mapping table in Volume 1, Section 3.7 providing the appropriate city to use for each county of Illinois. ¹⁶⁷¹ Five year-average (2018 to 2022) cooling degree days with a base temperature of 75 F. Data from DegreeDays.net were used in this table because the climate normals from NCEI/NCDC used elsewhere are not available at base temps above 72F. ¹⁶⁷² Weighted based on number of occupied residential housing units in each zone (US Census 2010).

¹⁶⁷³ This factor's source is: Energy Center of Wisconsin, May 2008 metering study; "Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research", p31.

¹⁶⁷⁴ Justification for degradation factors can be found on page 14 of 'AIC HVAC Metering Study Memo FINAL 2_28_2018'. Estimate efficiency as (Rated Efficiency * (1-0.01)^Equipment Age).

¹⁶⁷⁵ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Central AC was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time means that using the minimum standard is appropriate. Note all ratings have been converted to SEER2 equivalents – since the new rating better reflects the actual efficiency of the units.

 $ADJ_{\text{BasementCool}}$

= Adjustment for cooling savings from basement wall and rim/band joist insulation to account for prescriptive engineering algorithms overclaiming savings 1676

= 75%

%Cool

= Percent of homes that have cooling

Central Cooling?	%Cool
Yes	100%
No	0%
Unknown (for use in program evaluation only) ¹⁶⁷⁷	66%

kWh_heatingElectric = If electric heat (resistance or heat pump), reduction in annual electric heating due to insulation

$$=\frac{\left(\frac{1}{R_{old}}-\frac{1}{R_{Rim}}\right)*\ A_{Rim}*\ (1-FramingFactor_{Rim})*\ HDD*\ 24*ADJ_{BasementHeat}*\%ElectricHeat}{(\eta Heat*\ 3412)}$$

HDD = Heating Degree Days

= Dependent on :1678

Climate Zone	Conditioned	Unconditioned
(City based upon)	HDD 60	HDD 50
1 (Rockford)	5230	3233
2 (Chicago)	4798	2845
3 (Springfield)	4266	2456
4 (Belleville)	3188	1651
5 (Marion/Murphysboro)	3390	1750
Weighted Average ¹⁶⁷⁹	4631	2732

ηHeat

= Efficiency of heating system

= Actual Heat Efficiency * Distribution Efficiency (where it is possible to measure or reasonably estimate). Note where new HVAC is installed in addition to shell measures, the old HVAC unit efficiency should be used and the shell measure savings calculated first, the HVAC measure then assuming the reduced heat/cooling loads. If using rated efficiencies, derate efficiency value by 1% per year (maximum of 30 years) to account for degradation over time, ¹⁶⁸⁰ or if not

¹⁶⁷⁶ As demonstrated in two years of metering evaluation by Opinion Dynamics, see Memo "Results for AIC PY6 HPwES Billing Analysis", dated February 20, 2015. TAC negotiated adjustment factor is 80%. During update cycle for version v.12, applied the percent change of NCEI Annual Normals CDD65 from 30 yr data set (1981-2010) to more recent 15 yr data (2006-2020) for all cooling-related adjustment values.

¹⁶⁷⁷ Percentage of homes in Illinois that have central cooling from "Table HC7.9 Air Conditioning in Homes in Midwest Region, Divisions, and States, 2009" from Energy Information Administration, 2009 Residential Energy Consumption Survey ¹⁶⁷⁸ National Centers for Environmental Information (NCEI) Annual Normals, from 2006 - 2020, calculated with a base temp of 60°F for a conditioned basement and 50°F for an unconditioned basement), consistent with the findings of Belzer and Cort, Pacific Northwest National Laboratory in "Statistical Analysis of Historical State-Level Residential Energy Consumption Trends," 2004. There is a county mapping table in Volume 1, Section 3.7 providing the appropriate city to use for each county of Illinois. ¹⁶⁷⁹ Weighted based on number of occupied residential housing units in each zone.

¹⁶⁸⁰ Justification for degradation factors can be found on page 14 of 'AIC HVAC Metering Study Memo FINAL 2_28_2018'. Estimate efficiency as (Rated Efficiency * (1-0.01)^Equipment Age).

available, refer to default table below. 1681 If unknown value is used, it should not be derated by age. If actual Distribution Efficiency is not available, use 85% for heat pumps.

System Type	Age of Equipment	HSPF2 Estimate	ηHeat (Effective COP Estimate * Distribution Efficiency)= (HSPF2/3.413)*0.85
Heat Pump	Before 2006	5.8	1.44
(if age unknown, assume	2006 - 2014	6.5	1.62
2006-2014)	2015 on	7.0	1.74
Resistance	N/A	N/A	1.00
Unknown (for use in program evaluation only) ¹⁶⁸²	N/A	N/A	1.32

3412 = Converts Btu to kWh

ADJ_{BasementHeat} = Adjustment for basement wall and rim/band joist insulation to account for

prescriptive engineering algorithms overclaiming savings 1683

= 63%

%ElectricHeat = Percent of homes that have electric space heating

= 100 % for Electric Resistance or Heat Pump

= 0 % for Fossil Fuel heat

= If unknown¹⁶⁸⁴, use the following table:

	Location				
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown
Ameren	18%	26%	38%	39%	29%
ComEd	14%	22%	43%	48%	21%

¹⁶⁸¹ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time means that using the minimum standard is appropriate. An 85% distribution efficiency is then applied to account for duct losses for heat pumps. Note all ratings have been converted to HSPF2 equivalents – since the new rating better reflects the actual efficiency of the units.

 $^{{}^{1682} \, \}text{Justification for degradation factors can be found on page 14 of 'AIC HVAC Metering Study Memo FINAL 2_28_2018'. Estimate efficiency as (Rated Efficiency * (1-0.01)^Equipment Age).}$

¹⁶⁸² These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time means that using the minimum standard is appropriate. An 85% distribution efficiency is then applied to account for duct losses for heat pumps.

¹⁶⁸³ TAC negotiated adjustment factor was 60%, then during update cycle for version v.12, applied the percent change of NCEI Annual Normals HDD60 from 30 yr data set (1981-2010) to more recent 15 yr data (2006-2020) for all heating-related adjustment values.

¹⁶⁸⁴ Based on the average % Natural Gas used for space heating in Unknown residential structure types across all utilities covered by the IL program. Residence types include: SF, SF LI, MF & MF LI. Utilities included: Ameren, ComEd, People's Gas, Northshore Gas & Nicor. Data provided from 2016 Ameren Illinois Demand Side Management (DSM) Market Potential Study by Applied Energy Group, ComEd's 2019 Baseline Survey on residential space heating share, and PY2022-2023 Implementation Contractors Data for People's Gas, Northshore Gas & Nicor .

	Location				
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown
PGL	1.0%	1.5%	4.0%	2.8%	2.2%
NSG	1.3%	0.8%	32.5%	1.2%	3.3%
Nicor	1.3%	0.8%	32.5%	1.2%	3.3%
All DUs ¹⁶⁸⁵					26%

<u>Note</u>: If a measure is supported by a gas and electric utility through a joint program, and it is unknown whether the participant has a gas supply, the electric utility values in the table above should be used. If it is known that the participant has a gas supply, the values from the gas utility above should be applied.

For example, a single family home in Chicago with 100 ft² of uninsulated rim joist cavities in an unconditioned basement that is insulated to R-13. The home has 10.5 SEER Central AC and 2.26 (1.92 including distribution losses) COP Heat Pump:

```
 \begin{array}{lll} \Delta k Wh & = (\Delta k Wh\_cooling + \Delta k Wh\_heating) \\ & = (((1/5 - 1/13) * 100 * (1-0.05) * 281 * 24 * 0.75 * 1 *.75) / (1000 * 10.5)) + (((1/5 - 1/13) * 100 * (1-0.05) * 2845 * 24 * 0.63 * 1) / (1.92 * 3412)) \\ & = 5.3 + 76.8 \\ & = 842.1 \ kWh \\ \end{array}
```

 Δ kWh_heatingFurnace = If fossil fuel *furnace* heat, kWh savings for reduction in fan run time = Δ Therms * F_e * 29.3

 F_e = Furnace Fan energy consumption as a percentage of annual fuel consumption = $3.14\%^{1686}$

= kWh per therm

For example, a single family home in Chicago with 100 ft² of uninsulated rim joist cavities in an unconditioned basement that is insulated to R-13. The home has a gas furnace with system efficiency of 66% (for therm calculation see Fossil Fuel Savings section):

$$\Delta$$
kWh = 7.62 * 0.0314 * 29.3
= 7.0 kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = (\Delta kWh_cooling / FLH_cooling) * CF$

Where:

FLH_cooling = Full load hours of air conditioning

¹⁶⁸⁵ For the weighted average calculations, please see the Analysis file. PGL, NSG, Nicor & gas customers were assumed to follow the provided split. ComEd total customers, minus overlap with PGL,NSG & Nicor, therefore electric only homes. Ameren is total customers minus Nicor.

 $^{^{1686}}$ F_e is not one of the AHRI certified ratings provided for residential furnaces, but can be reasonably estimated from a calculation based on the certified values for fuel energy (Ef in MMBtu/yr) and Eae (kWh/yr). An average of a 300 record sample (non-random) out of 1495 was 3.14%. This is, appropriately, ~50% greater than the ENERGY STAR version 3 criteria for 2% F_e. See "Programmable Thermostats Furnace Fan Analysis.xlsx" for reference.

= Dependent on location as below: 1687

Climate Zone (City based upon)	Single Family	Multifamily
1 (Rockford)	547	499
2 (Chicago)	709	629
3 (Springfield)	779	707
4 (Belleville)	1082	982
5 (Marion)	956	868
Weighted Average ¹⁶⁸⁸		
ComEd	676	603
Ameren	875	791
Statewide	731	655

Use Multifamily if: Building meets utility's definition for multifamily and HVAC system serves single unit. For residential sized systems serving 2 or more units, assume single family hours.

CF _{SSP}	= Summer System Peak Coincidence Factor for Central A/C (during utility peak hour) = 68% ¹⁶⁸⁹
CF _{SSP} SF	= Summer System Peak Coincidence Factor for Heat Pumps in single family homes (during system peak hour) = 72% ¹⁶⁹⁰
CF _{SSP} , MF	= Summer System Peak Coincidence Factor for Heat Pumps in multifamily homes (during system peak hour)
	= 67% ¹⁶⁹¹
СГРІМ	= PJM Summer Peak Coincidence Factor for Central A/C (average during PJM peak period)
	= 46.6% ¹⁶⁹²
CF _{PJM} SF	= PJM Summer Peak Coincidence Factor for Heat Pumps in single family homes (average during PJM peak period)

 $=46.6\%^{1693}$

¹⁶⁸⁷ Full load hours for Chicago, Moline and Rockford are provided in "Final Evaluation Report: Central Air Conditioning Efficiency Services (CACES), 2010, Navigant Consulting", p.33. An average FLH/Cooling Degree Day (from NCDC) ratio was calculated for these locations and applied to the CDD of the other locations in order to estimate FLH. There is a county mapping table in Volume 1, Section 3.7 providing the appropriate city to use for each county of Illinois. During update cycle for version v.12, applied percent change of CDD65, NCEI Annual Normals from 30 yr data set (1981-2010) to more recent 15 yr data (2006-2020) to all FLHcool values.

¹⁶⁸⁸ Weighting for Ameren is based on electric accounts in each of the cooling zones. Weighting for ComEd and Statewide average is based on number of occupied residential housing units in each zone. ComEd is weighted average of Zones 1-2. Alternative program-weighted assumptions can be used if appropriate.

¹⁶⁸⁹ Based on metering of 24 homes with central AC during PY4 and PY5 in Ameren Illinois service territory.

¹⁶⁹⁰ Based on analysis of metering results from 24 heat pumps in Ameren Illinois service territory in PY5 coincident with AIC's 2010 system peak; 'Impact and Process Evaluation of Ameren Illinois Company's Residential HVAC Program (PY5)'.

¹⁶⁹¹ Multifamily coincidence factors both from; *All-Electric Homes PY6 Metering Results: Multifamily HVAC Systems*, Cadmus, October 2015

¹⁶⁹² Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

¹⁶⁹³ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

CF_{PJM, MF} = PJM Summer Peak Coincidence Factor for Heat Pumps in multifamily homes (average

during peak period)

= 28.5%

For example, a single family home in Chicago with 100 ft² of uninsulated rim joist cavities in an unconditioned basement that is insulated to R-13. The home has 10.5 SEER Central AC and 2.26 (1.92 including distribution losses) COP Heat Pump:

 $\Delta kW_{SSP} = 5.3 / 709 * 0.68$

= 0.0051 kW

 $\Delta kW_{PJM} = 5.3 / 709 * 0.466$

= 0.0035 kW

FOSSIL FUEL SAVINGS

If Fossil Fuel heating:

$$\Delta Therms = \frac{\left(\frac{1}{R_{old}} - \frac{1}{R_{Rim}}\right) * A_{Rim} * (1 - FramingFactor_{Rim}) * HDD * 24 * ADJ_{BasementHeat} * \%FossilHeat}{(\eta Heat * 100,000)}$$

Where:

ηHeat = Efficiency of heating system

= Equipment efficiency * distribution efficiency

= Actual (where it is possible to measure or reasonably estimate). ¹⁶⁹⁴ Note where new HVAC is installed in addition to shell measures, the old HVAC unit efficiency should be used and the shell measure savings calculated first, the HVAC measure then assuming the reduced heat/cooling loads. If using rated efficiencies, derate efficiency value by 1% per year (maximum of 30 years) to account for degradation over time, ¹⁶⁹⁵ or if not available, use 72% for existing system efficiency. ¹⁶⁹⁶ If unknown value is used, it should not be derated by age. If actual Distribution Efficiency is not available.

%FossilHeat = Percent of homes that have fossil fuel space heating

= 100 % for Fossil Fuel heat

= 0 % for Electric Resistance or Heat Pump

= If unknown¹⁶⁹⁷, use the following table:

	Location				
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown
Ameren	82%	74%	62%	61%	71%
ComEd	86%	78%	57%	52%	79%

1694 Ideally, the System Efficiency should be obtained either by recording the AFUE of the unit, or performing a steady state efficiency test. The Distribution Efficiency can be estimated via a visual inspection and by referring to a look up table such as that provided by the Building Performance Institute: (see 'BPI Distribution Efficiency Table') or by performing duct blaster testing.

¹⁶⁹⁵ Justification for degradation factors can be found on page 14 of 'AIC HVAC Metering Study Memo FINAL 2_28_2018'. Estimate efficiency as (Rated Efficiency * (1-0.01)^Equipment Age).

¹⁶⁹⁶ Based on average Nicor PY4 nameplate efficiencies derated by 15% for distribution losses.

¹⁶⁹⁷ Based on the average % Natural Gas used for space heating in Unknown residential structure types across all utilities covered by the IL program. Residence types include: SF, SF LI, MF & MF LI. Utilities included: Ameren, ComEd, People's Gas, Northshore Gas & Nicor. Data provided from 2016 Ameren Illinois Demand Side Management (DSM) Market Potential Study by Applied Energy Group, ComEd's 2019 Baseline Survey on residential space heating share, and PY2022-2023 Implementation Contractors Data for People's Gas, Northshore Gas & Nicor .

_

	Location				
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown
PGL	98.9%	98.5%	96.0%	96.9%	97.7%
NSG	98.3%	99.2%	67.5%	98.8%	96.6%
Nicor	98.3%	99.2%	67.5%	98.8%	96.6%
All DUs ¹⁶⁹⁸					74%

<u>Note</u>: If a measure is supported by a gas and electric utility through a joint program, and it is unknown whether the participant has a gas supply, the electric utility values in the table above should be used. If it is known that the participant has a gas supply, the values from the gas utility above should be applied.

Other factors as defined above.

For example, a single family home in Chicago with 100 ft² of uninsulated rim joist cavities in an unconditioned basement that is insulated to R-13. The home has a gas furnace with system efficiency of 66%:

$$\Delta$$
Therms = $((1/5 - 1/13) * 100 * (1-0.05) * 2845 * 24 * 0.63 * 1) / (0.66 * 100,000)$

= 7.62 therms

Mid-Life adjustment

In order to account for the likely replacement of existing heating and cooling equipment during the lifetime of this measure, a mid-life adjustment should be applied. To calculate the adjustment, re-calculate the savings above using the following new baseline system efficiency assumptions:

Efficiency Assumption	System Type	New Baseline Efficiency	
ηCool	Central AC	13.4 SEER2	
	Heat Pump	14.3 SEER2	
ηНеаt	Electric Resistance	1.0 COP	
	Heat Pump	1.87 COP	
	(7.5HSPF/3.413)*0.85	1.07 CO1	
	Gas Furnace	68% AFUE	
	80% AFUE * 0.85	00% AT 0L	
	Oil Furnace	71% AFUE	
	83% AFUE * 0.85		
	Gas Boiler	84% AFUE	
	Oil Boiler	86% AFUE	

This reduced annual savings should be applied following the assumed remaining useful life of the existing equipment, estimate to be 10 years or 13 years for boilers. Note if the existing equipment efficiency is greater than the new baseline efficiency listed above, do not apply a mid-life adjustment.

1

¹⁶⁹⁸ For the weighted average calculations, please see the Analysis file. PGL, NSG, Nicor & gas customers were assumed to follow the provided split. ComEd total customers, minus overlap with PGL,NSG & Nicor, therefore gas only homes. Ameren is total customers minus Nicor.

¹⁶⁹⁹ This is intentionally longer than the assumption found in the early replacement measures as the application of this measure will occur in a variety of homes and will not be targeting those homes appropriate for early replacement HVAC systems.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-SHL-RINS-V07-250101

REVIEW DEADLINE: 1/1/2030

5.6.7 Low-E Storm Window

DESCRIPTION

Emissivity is a measure of thermal radiation emitted by an object's surface. Emissivity values range from 0 to 1 with 1 being the emissivity of a black body. Low emissivity (low-e) storm window inserts reduce the rate of thermal radiation of the window assembly through the interaction of multiple properties. The low-e surface of the insert means that the window will transfer heat at a reduced rate. The newly created air gap between the window and the insert combined with the low emissivity of the insert improves thermal performance of the window assembly. The inserts include weather-stripping as a means of sealing the connection which reduces air infiltration. This measure offers benefits during both heating and cooling seasons, for both natural gas and electricity. In addition to energy benefits, this measure offers non-energy benefits including increased comfort and noise reduction.

The calculation of savings presented in this section apply to single and multifamily residential applications with no portable window air conditioners. Small commercial applications with operating characteristics similar to a residential profile are also eligible for the savings presented here.

This measure was developed to be applicable to the following program types: RF, DI. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient equipment is a window insert installed over either the interior or exterior of the baseline window. The insert must be ENERGY STAR certified and meet the ENERGY STAR storm windows key product criteria.

Climate Zone	Emissivity	Solar Transmission
1 - Rockford		
2 - Chicago		> 0.55
3 - Springfield	≤ 0.22	
4 - Belleville		Δην
5 – Marion		Any

ENERGY STAR key product criteria for storm windows 1700

DEFINITION OF BASELINE EQUIPMENT

The baseline condition is an existing single-pane or double-pane window with clear glass and any frame type: metal, vinyl, or wood.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The measure life is assumed to be 20 years. 1701

DEEMED MEASURE COST

The incremental cost for this measure is \$7.85 per square foot material cost. Applications using professional window installers should include an additional \$30 per window installation cost. 1702

LOADSHAPE

Loadshape R08 - Residential Cooling Loadshape R09 - Residential Electric Space Heat

¹⁷⁰⁰ ENERGY STAR Storm Windows Key Product Criteria, accessed February 2020.

¹⁷⁰¹ Pacific Northwest National Laboratory for the U.S. Department of Energy, "Task ET-WIN-PNNL-FY13-01-5.3: Database of Lowe Storm Window Energy Performance across U.S. Climate Zones," September 2013: page 5.

¹⁷⁰² Ibid.

Loadshape R10 - Residential Electric Heating and Cooling

COINCIDENCE FACTOR

The summer peak coincidence factor for cooling is provided in two different ways below. The first is used to estimate peak savings during the utility peak hour and is most indicative of actual peak benefits, and the second represents the average savings over the defined summer peak period and is presented so that savings can be bid into PJM's capacity market.

•	
CF _{SSP}	= Summer System Peak Coincidence Factor for Central A/C (during utility peak hour)
	= 68% ¹⁷⁰³
CF _{SSP SF}	= Summer System Peak Coincidence Factor for Heat Pumps in single-family homes (during system peak hour)
	= 72% ¹⁷⁰⁴
CF _{SSP, MF}	= Summer System Peak Coincidence Factor for Heat Pumps in multi-family homes (during system peak hour)
	= 67% ¹⁷⁰⁵
СҒрЈМ	= PJM Summer Peak Coincidence Factor for Central A/C (average during PJM peak period)
	= 46.6% ¹⁷⁰⁶
CF _{PJM} SF	= PJM Summer Peak Coincidence Factor for Heat Pumps in single-family homes (average during PJM peak period)
	= 46.6% ¹⁷⁰⁷
CF _{PJM, MF}	= PJM Summer Peak Coincidence Factor for Heat Pumps in multi-family homes (average during peak period)

Algorithm

CALCULATION OF ENERGY SAVINGS

= 28.5%

ELECTRIC ENERGY SAVINGS

$$\begin{split} \Delta kWh &= \Delta kWh_{cooling} + \Delta kWh_{heatingElectric} + \Delta kWh_{heatingFurnace} \\ \Delta kWh_{cooling} &= CS_{cz} * Area_{window} \\ \Delta kWh_{heatingElectric} &= EHS_{cz} * Area_{window} \\ \Delta kWh_{heatingFurnace} &= \Delta Therms * F_e * 29.3 \end{split}$$

¹⁷⁰³ Based on metering of 24 homes with central AC during PY4 and PY5 in Ameren Illinois service territory.

¹⁷⁰⁴ Based on analysis of metering results from 24 heat pumps in Ameren Illinois service territory in PY5 coincident with AIC's 2010 system peak; 'Impact and Process Evaluation of Ameren Illinois Company's Residential HVAC Program (PY5)'.

¹⁷⁰⁵ Multifamily coincidence factors both from; *All-Electric Homes PY6 Metering Results: Multifamily HVAC Systems*, Cadmus, October 2015

¹⁷⁰⁶ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

¹⁷⁰⁷ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

Where:

 CS_{cz} = Annual cooling savings per area of window by climate zone, see table below.

Cooling savings per window area by climate zone and baseline window condition 1708

Climate Zone	Single Pane Base Window (kWh/ft²)	Double Pane Base Window (kWh/ft²)
1 - Rockford	0.46	0.33
2 - Chicago	0.47	0.34
3 - Springfield	0.62	0.45
4 - Belleville	0.88	0.64
5 - Marion	0.77	0.56

 EHS_{cz} = Annual electric heating savings per area of window by climate zone, see table below Heating savings per window area by climate zone, heating type, and baseline window condition¹⁷⁰⁹

	Electric Resistance Heat		Electric Heat Pump	
Climate Zone	Single Pane Base Window (kWh/ft²)	Double Pane Base Window (kWh/ft²)	Single Pane Base Window (kWh/ft²)	Double Pane Base Window (kWh/ft²)
1 - Rockford	16.84	1.90	9.31	1.05
2 - Chicago	16.09	1.81	8.89	1.00
3 - Springfield	13.78	1.55	7.61	0.86
4 - Belleville	10.63	1.20	5.87	0.66
5 - Marion	10.82	1.22	5.98	0.67

$Area_{window}$	= Total area of installed window inserts. Use site specific value.
$\Delta Therms$	= Therm savings from fossil fuel heating as calculated below
F_e	= Furnace Fan energy consumption as a percentage of annual fuel consumption, $3.14\%^{1710}$

¹⁷⁰⁸ Based on savings modeled by EPA, "ES Storm Windows RESFEN Data and Calculations.xlsx", April 2017. Whole House Cooling energy values from the "Raw Data-Exterior Storm Windows" and "Raw Data-Interior Storm Windows," Climate Zone 5, Location IL Chicago, wood frame, single pane, exterior low-E (0.148 panel) and interior low-E (0.148 panel) were used to calculated savings. EPA only reported single pane modeling results. In order to estimate impacts for double pane windows, ratios of double pane to single pane cooling energy was applied as reported by the Pacific Northwest National Laboratory for the U.S. Department of Energy, "Task ET-WIN-PNNL-FY13-01-5.3: Database of Low-e Storm Window Energy Performance across U.S. Climate Zones," September 2013. Values from Appendix C, table C.8 for Chicago, Illinois were used to calculate the ratio of double pane to single pane cooling energy. See "Low E Window Workpaper Supporting Calculations.xlsx" for reference. The was data modified for different heating zones of Illinois.

¹⁷⁰⁹ Based on savings modeled by EPA, "ES Storm Windows RESFEN Data and Calculations.xlsx", April 2017. Whole House Heating energy values from the "Raw Data-Exterior Storm Windows" and "Raw Data-Interior Storm Windows," Climate Zone 5, Location IL Chicago, wood frame, single pane, exterior low-E (0.148 panel) and interior low-E (0.148 panel) were used to calculated savings. EPA only reported single pane modeling results. In order to estimate impacts for double pane windows, ratios of double pane to single pane cooling energy was applied as reported by the Pacific Northwest National Laboratory for the U.S. Department of Energy, "Task ET-WIN-PNNL-FY13-01-5.3: Database of Low-e Storm Window Energy Performance across U.S. Climate Zones," September 2013. Values from Appendix C, table C.8 for Chicago, Illinois were used to calculate the ratio of double pane to single pane heating energy. See "Low E Window Workpaper Supporting Calculations.xlsx" for reference. To convert from "Furnace" savings to electric, it is assumed a furnace efficiency of 72%, electric resistance of 100% and heat pump of 1.81 (average of pre-2006 and 2006-2014 federal standard).

¹⁷¹⁰ F_e is not one of the AHRI certified ratings provided for residential furnaces, but can be reasonably estimated from a

29.3 = Conversion factor, kWh per therm

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta kW = \left(\frac{\Delta kWh_{cooling}}{FLH_{cooling}}\right) * CF$$

Where:

 $FLH_{cooling}$

= Full load hours of air conditioning based on climate zone.

= Dependent on location: 1711

Climate Zone (City based upon)	Single Family	Multifamily
1 (Rockford)	547	499
2 (Chicago)	709	629
3 (Springfield)	779	707
4 (Belleville)	1,082	982
5 (Marion)	956	868
Weighted Average ¹⁷¹²		
ComEd	676	603
Ameren	875	791
Statewide	731	655

Use Multifamily if: Building meets utility's definition for multifamily and HVAC system serves single unit. For residential sized systems serving 2 or more units, assume single family hours.

Crssp = Summer System Peak Contidence Factor for Central A/C (during utility beak no	F _{SSP}	= Summer System Peak Coincidence Factor for Central A/C (during utility peal	(hour)
--	------------------	--	--------

 $=68\%^{1713}$

CF_{SSP SF} = Summer System Peak Coincidence Factor for Heat Pumps in single-family homes

(during system peak hour)

= 72%1714

CF_{SSP, MF} = Summer System Peak Coincidence Factor for Heat Pumps in multi-family homes (during

system peak hour)

calculation based on the certified values for fuel energy (Ef in MMBtu/yr) and Eae (kWh/yr). An average of a 300 record sample (non-random) out of 1495 was 3.14%. This is, appropriately, \sim 50% greater than the ENERGY STAR version 3 criteria for 2% F_e. See "Programmable Thermostats Furnace Fan Analysis.xlsx" for reference.

¹⁷¹¹ Full load hours for Chicago, Moline and Rockford are provided in "Final Evaluation Report: Central Air Conditioning Efficiency Services (CACES), 2010, Navigant Consulting", p.33. An average FLH/Cooling Degree Day (from NCDC) ratio was calculated for these locations and applied to the CDD of the other locations in order to estimate FLH. There is a county mapping table in Volume 1, Section 3.7 providing the appropriate city to use for each county of Illinois. During update cycle for version v.12, applied percent change of CDD65, NCEI Annual Normals from 30 yr data set (1981-2010) to more recent 15 yr data (2006-2020) to all FLHcool values.

¹⁷¹² Weighting for Ameren is based on electric accounts in each of the cooling zones. Weighting for ComEd and Statewide average is based on number of occupied residential housing units in each zone. ComEd is weighted average of Zones 1-2. Alternative program-weighted assumptions can be used if appropriate.

¹⁷¹³ Based on metering of 24 homes with central AC during PY4 and PY5 in Ameren Illinois service territory.

¹⁷¹⁴ Based on analysis of metering results from 24 heat pumps in Ameren Illinois service territory in PY5 coincident with AIC's 2010 system peak; 'Impact and Process Evaluation of Ameren Illinois Company's Residential HVAC Program (PY5)'.

 $=67\%^{1715}$

CF_{PJM} = PJM Summer Peak Coincidence Factor for Central A/C (average during PJM peak

period)

 $=46.6\%^{1716}$

CF_{PJM SF} = PJM Summer Peak Coincidence Factor for Heat Pumps in single-family homes (average

during PJM peak period)

 $=46.6\%^{1717}$

CF_{PJM, MF} = PJM Summer Peak Coincidence Factor for Heat Pumps in multi-family homes (average

during peak period)

= 28.5%

FOSSIL FUEL SAVINGS

 $\Delta Therms = GHS_{cz} * Area_{window}$

Where:

 GHS_{CZ} = Annual fossil fuel heating savings per area of window by climate zone, see table below

Heating savings per window area by climate zone and baseline window condition 1718

Climate Zone	Single Pane Base Window (therms/ft²)	Double Pane Base Window (therms/ft²)
1 - Rockford	0.80	0.09
2 - Chicago	0.76	0.09
3 - Springfield	0.65	0.07
4 - Belleville	0.50	0.06
5 - Marion	0.51	0.06

 $Area_{window}$ = Total area of installed window inserts. Use site specific value.

¹⁷¹⁵ Multifamily coincidence factors both from; *All-Electric Homes PY6 Metering Results: Multifamily HVAC Systems*, Cadmus, October 2015

¹⁷¹⁶ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

¹⁷¹⁷ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

¹⁷¹⁸ Based on savings modeled by EPA, "ES Storm Windows RESFEN Data and Calculations.xlsx", April 2017. Whole House Heating energy values from the "Raw Data-Exterior Storm Windows" and "Raw Data-Interior Storm Windows," Climate Zone 5, Location IL Chicago, wood frame, single pane, exterior low-E (0.148 panel) and interior low-E (0.148 panel) were used to calculated savings. EPA only reported single pane modeling results. In order to estimate impacts for double pane windows, ratios of double pane to single pane cooling energy was applied as reported by the Pacific Northwest National Laboratory for the U.S. Department of Energy, "Task ET-WIN-PNNL-FY13-01-5.3: Database of Low-e Storm Window Energy Performance across U.S. Climate Zones," September 2013. Values from Appendix C, table C.8 for Chicago, Illinois were used to calculate the ratio of double pane to single pane heating energy. See "Low E Window Workpaper Supporting Calculations.xlsx" for reference.

For example, a single family gas heated residence in Rockford installs 10 window inserts over single pane windows. Each window is 12 square feet for a total window area of 120 square feet.

$$\Delta Therms = 0.80 * 120 = 95.81 therms$$

$$\Delta kWh = 0.46 * 120 + 95.81 * 0.0314 * 29.3 = 143.37 kWh$$

$$\Delta kW_{PJM} = \left(\frac{143.37}{547}\right) * 0.466 = 0.12 kW$$

WATER AND OTHER NON-ENERGY IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-SHL-LESW-V04-250101

REVIEW DEADLINE: 1/1/2028

5.6.8 High Performance Windows

DESCRIPTION

High Performance Windows (HPWs) greatly improve building thermal envelope performance compared to code standard double-glazed windows. HPWs must achieve a U-value \leq 0.22 for the Northern climate zone, 1719 or \leq 0.25 for the North-Central climate zone. High performance windows significantly decrease heat loss through a building's envelope in a number of ways: by adding one or more additional panes of glass in the insulating glass unit (IGU), applying additional coatings to the glass panes, adding new gas fill, and/or using thermally improved spacers.

HPWs' reduced heat transfer significantly effects home energy savings as windows are often the weakest part of any building envelope. In addition to reducing heat transfer, HPWs also reduce air infiltration, thereby contributing to decreased HVAC loads. HPWs provide benefits for both heating and cooling seasons, and for both natural gasand electrically-heated and cooled homes. They also have non-energy benefits such as increased thermal comfort and decreased outside noise.

This measure was developed for the following program types: New Construction (NC), Time of Sale (TOS), and Early Replacement (EREP). If applied to other program types, the measure savings should be verified.

By default, any "standard" window replacement (i.e. replacing an existing window of the same size with no structural changes to building) should be considered TOS/EREP for savings purposes unless the local code is explicitly triggered, in which case NC savings values shall be used. 1720

DEFINITION OF EFFICIENT EQUIPMENT

HPWs are windows that meet the ENERGY STAR® version 7.0 performance specifications shown below:

ENERGY STAR Prescriptive or **IL Degree-Day Zone U-Value** SHGC Climate Zone Performance-Based ≤ 0.22 ≥ 0.17 Prescriptive 1 - Rockford = 0.23 ≥ 0.35 2 - Chicago Northern = 0.24**Equivalent Energy** 3 - Springfield Performance = 0.25 ≥ 0.40 = 0.26 4 – Belleville Prescriptive North-Central ≤ 0.25 ≤ 0.40 5 – Marion Prescriptive

Table 1: Key Product Criteria for High Performance Windows 1721

HPWs can achieve these performance specifications in a number of ways. Some examples of HPWs include:

• Thin Triple Windows (TTW) – the insulating glass unit (IGU) contains three panes of glass. A thin pane of center glass allows the IGU to fit within a standard window frame, eliminating the need to redesign the window. The inclusion of a thin pane of center glass allows for an additional surface for low-E coating, reducing the window's emissivity of thermal radiation and the rate of heat transfer by improving the U-value of the IGU and overall assembly. TTWs have two equal width panes of glass on the exterior and interior of the IGU and a thin center piece of glass that allows the IGU to fit within an existing double-pane

_

¹⁷¹⁹ In some cases, HPWs can have U-values of up to 0.26 in the Northern climate zone if the window meets alternative, performance-based SHGC thresholds. See **Error! Reference source not found.** for the specifications.

¹⁷²⁰ Preliminary analysis indicates an overwhelming majority of Illinois residents live in municipalities with code exemptions for windows being replaced for the same size/in the existing opening (e.g. Chicago does not require a building permit for "repairing or replacing (in-kind) an exterior window or skylight in the existing opening". Link: https://www.chicago.gov/city/en/sites/guide-to-building-permits/home/help/faq/DOB/bldg-permit-not-required/worktype/exterior.html). Therefore the assumption is that code is not triggered until proven otherwise. For future TRM revisions, this assumption may be revisited.

¹⁷²¹ENERGY STAR® Version 7.0 Residential Windows, Doors, and Skylights Final Specification.

window frame.

- Triple Pane Windows conventional triple pane windows that contain three panes of standard thickness glass. These windows provide an additional surface for a low-e coating and provide improved thermal performance by decreasing a window's emissivity and improving the window's resistance to heat loss. These windows are typically heavier than double-panes or TTWs and require a redesign of the window to allow the heavier, wider IGU to fit within the window frame.
- Double-pane windows that have low-e coatings on the two surfaces that face the cavity between the two panes of glass as well as on the interior-facing interior pane of glass, warm edge spacers, and improved frame thermal properties (e.g., adding foam or other insulation to the frame cavities). 1722

DEFINITION OF BASELINE EQUIPMENT

New Construction: The tables below show International Energy Conservation Code (IECC) 2018 and IECC 2021 window codes for new construction. For first permits dated November 1, 2022 or later in the city of Chicago, or January 1, 2024 for the remainder of Illinois, residential new construction must be built in accordance with IECC 2021.

Table 2. IECC – Fellestration Requirements			
IL Degree-Day Zone	IECC Climate Zone	U-Value	SHGC
1 – Rockford			Not Rated ¹⁷²⁵ (IECC 2018)
2 – Chicago	5	≤ 0.30	≤ 0.40 (IECC 2021)
3 – Springfield			3 0.40 (ILCC 2021)
4 – Belleville	4	≤ 0.32 (IECC 2018)	Not Rated ¹⁷²⁶ (IECC 2018)
5 – Marion	4	≤ 0.30 (IECC 2021)	≤ 0.40 (IECC 2021)

Table 2: IECC - Fenestration Requirements 1723,1724

Time of Sale and Early Replacement in Existing Homes:

Table 3: Existing Homes – Existing Window Values: Double Pane¹⁷²⁷

	5 Existing trinacti raides	
IL Degree-Day Zone	U-Value	SHGC
1 – Rockford		
2 – Chicago		
3 – Springfield	0.55	0.63
4 – Belleville		
5 – Marion		

¹⁷²² Stephen Selkowitz Consultants. Study of High-Performance Windows Incremental Manufacturing Cost. Prepared for NEEA, Report #E23-336. January 3, 2023.

¹⁷²³ 2018 International Energy Conservation Code, Fifth Version: November 2021. TABLE R402.1.2. https://codes.iccsafe.org/content/IECC2018P5/chapter-4-re-residential-energy-efficiency

¹⁷²⁴ 2021 International Energy Conservation Code, Second Version: September 2021. TABLE R402.1.2. https://codes.iccsafe.org/content/IECC2021P2/chapter-4-re-residential-energy-efficiency

¹⁷²⁵ Value used in modeling: SHGC=0.30. Engineering judgement made during EnergyPlus modeling by Lili Yu and Robert Hart, Lawrence Berkeley National Laboratory, May 11, 2023.

¹⁷²⁶ Value used in modeling: SHGC=0.30. Engineering judgement made during EnergyPlus modeling by Lili Yu and Robert Hart, Lawrence Berkeley National Laboratory, May 11, 2023.

¹⁷²⁷ Engineering judgement made during EnergyPlus modeling by Lili Yu and Robert Hart, Lawrence Berkeley National Laboratory, "High Performance Windows - Illinois Modeled Savings Summary," April 2021. Informed by air sealing and insulation research by Navigant, see Navigant (2018). ComEd and Nicor Gas Air Sealing and Insulation Research Report. Presented to Commonwealth Edison Company and Nicor Gas Company.

Table 4: Existing Homes – Existing Window Values: Single Pane¹⁷²⁸

IL Degree-Day Zone	U-Value	SHGC
1 – Rockford		
2 – Chicago		
3 – Springfield	1.0	0.76
4 – Belleville		
5 – Marion		

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The measure life is assumed to be 40 years. 1729

The remaining life of existing equipment is assumed to be 13 years. 1730

DEEMED MEASURE COST

The incremental cost for this measure depends on the program delivery type/baseline and climate zone.

New Construction (NC) and Time of Sale (TOS): includes only equipment cost above baseline:

IL Degree-Day Zone	ENERGY STAR Climate Zone	NC or TOS ¹⁷³¹
1 – Rockford 2 – Chicago 3 - Springfield	Northern	\$3.85/ft²
4 – Belleville 5 – Marion	North-Central	\$2.18/ft²

Early Replacement (EREP): Actual equipment and labor costs for installation, less the present value of the assumed deferred replacement cost, should be used. If this is unknown, assume the defaults below. The deferred cost (after 13 years) of replacing existing windows with a new code required double-pane baseline unit is assumed to be \$48.50 per square foot¹⁷³².

IL Degree-Day Zone	ENERGY STAR Climate Zone	EREP
1 – Rockford 2 – Chicago 3 - Springfield	Northern	\$52.35/ft²
4 – Belleville 5 – Marion	North-Central	\$50.68/ft²

LOADSHAPE

Loadshape R08 - Residential Cooling

¹⁷²⁸ Ibid

¹⁷²⁹ The Northwest Power Plan (NPCC). Please see sheet "Source Summary" within file: Com-Windows-2021P_V17.xlsx. Link: https://nwcouncil.app.box.com/s/u0dgjxkoxoj2tttym81uka3wrjcy6bo6/file/655810989510

 $^{^{1730}}$ Assumed to be one third of effective useful life. For future TRM versions, recommend RUL be informed from program research.

¹⁷³¹ Based on US EPA. ENERGY STAR® Windows, Doors, and Skylights Draft 1 Version 7 Stakeholder Webinar. July 27, 2021. https://www.energystar.gov/sites/default/files/asset/document/V7 Stakeholder%20Meeting 7-27-2021 final.pdf. Costs on slide 20 were averaged across both SHGC values as both can meet ENERGY STAR v.7 performance specifications. These costs assume a 3'x5' (15ft²) window.

¹⁷³² \$37.82 inflated using 1.91% rate.

Loadshape R09 - Residential Electric Space Heat Loadshape R10 - Residential Electric Heating and Cooling

COINCIDENCE FACTOR

The summer peak coincidence factor for cooling is provided in two different ways below. The first is used to estimate peak savings during the utility peak hour and is most indicative of actual peak benefits, and the second represents the average savings over the defined summer peak period, and is presented so that savings can be bid into PJM's Forward Capacity Market.

CF _{SSP}	= Summer System Peak Coincidence Factor for Central A/C (during utility peak hour) = 68% ¹⁷³³
CFSSP SF	= Summer System Peak Coincidence Factor for Heat Pumps in single-family homes (during system peak hour)
	= 72% ¹⁷³⁴
CFSSP, MF	= Summer System Peak Coincidence Factor for Heat Pumps in multi-family homes (during system peak hour)
	= 67% ¹⁷³⁵
СГРІМ	= PJM Summer Peak Coincidence Factor for Central A/C (average during PJM peak period)
	= 46.6% ¹⁷³⁶
CF _{PJM} SF	= PJM Summer Peak Coincidence Factor for Heat Pumps in single-family homes (average during PJM peak period)
	= 46.6% ¹⁷³⁷
СҒрјм, мғ	= PJM Summer Peak Coincidence Factor for Heat Pumps in multi-family homes (average during peak period)
	= 28.5%

over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

¹⁷³³ Based on metering of 24 homes with central AC during PY4 and PY5 in Ameren Illinois service territory.

¹⁷³⁴ Based on analysis of metering results from 24 heat pumps in Ameren Illinois service territory in PY5 coincident with AIC's 2010 system peak; 'Impact and Process Evaluation of Ameren Illinois Company's Residential HVAC Program (PY5)'.

¹⁷³⁵ Multifamily coincidence factors both from; *All-Electric Homes PY6 Metering Results: Multifamily HVAC Systems*, Cadmus, October 2015

¹⁷³⁶ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

¹⁷³⁷ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

$$\Delta kWh = \Delta kWh_{cooling} + \Delta kWh_{heating} + \Delta kWh_{fan}$$

$$\Delta kWh = CS_{cz} * Area_{window}$$

Where:

 CS_{cz} = Annual heating, cooling + fan savings per area of window by climate zone, see Tables 5-

7 below.

 $Area_{window}$ = Total area of installed high performance windows. Use site specific value.

Table 5: Air Conditioner with Gas Furnace – electric savings per window area (kWh/ft²)1738

IL Degree-Day Zone	NC (IECC 2018)	NC (IECC 2021)	TOS or EREP: Double Pane	EREP: Single Pane
1 – Rockford	0.58	0.60	1.22	2.33
2 – Chicago	0.60	0.61	1.20	2.24
3 – Springfield	0.51	0.69	1.39	2.70
4 – Belleville	0.53	0.78	1.39	2.74
5 – Marion	0.62	0.78	1.25	2.64

Table 6: Air Conditioner with Electric Resistance Heat - electric savings per window area (kWh/ft²)1739

IL Degree-Day Zone	NC (IECC 2018)	NC (IECC 2021)	TOS or EREP:	EREP:
in regice buy notice	110 (1200 2010)	110 (1200 2022)	Double Pane	Single Pane
1 – Rockford	2.42	2.58	4.24	14.77
2 – Chicago	2.71	2.79	4.04	13.43
3 – Springfield	2.64	2.30	3.70	11.39
4 – Belleville	2.97	2.07	4.10	12.35
5 – Marion	2.16	1.86	3.95	9.88

Table 7: Heat Pump – electric savings per window area (kWh/ft²)¹⁷⁴⁰

IL Degree-Day Zone	NC (IECC 2018)	NC (IECC 2021)	TOS or EREP: Double Pane	EREP: Single Pane
1 – Rockford	1.73	1.52	7.62	19.68
2 – Chicago	1.53	1.69	6.95	17.14
3 – Springfield	1.92	1.24	6.24	15.01
4 – Belleville	1.76	1.37	6.36	14.98
5 – Marion	1.43	1.34	5.90	12.62

¹⁷³⁸ EnergyPlus modeling performed by Lili Yu and Robert Hart, "2023-07-26 LBNL Modeling_NC-TOS_TMYx.xlsx", " 2023-08-04 LBNL Modeling_EREP_TMYx_Double Pane", "2023-08-30 LBNL Modeling_EREP_TMYx_Single Pane," Lawrence Berkeley National Laboratory. May 11, 2023. Yu and Hart's energy modeling incorporated the most commonly commercially available windows that meet or exceed the energy performance criteria relevant to each climate zone (CZ). Specifically, the analysts derived energy savings using these specifications for HPWs: 1) Northern CZ, NC: U=0.30/SHGC=0.30; 2) Northern CZ, TOS/EREP: U=0.22/SHGC=0.25; 3) North-Central CZ, NC: U=0.22/SGHC=0.25; 4) North-Central CZ TOS/EREP: average of savings from U=0.25/SHGC=0.20 and U=0.25/SHGC=0.28.

¹⁷³⁹ Ibid

¹⁷⁴⁰ Ibid

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta kW = \left(\frac{\Delta kW h_{cooling}}{FLH_{cooling}}\right) * CF$$

Where:

 $\Delta kWh_{cooling}$ = Annual cooling-only electricity savings, based on climate zone and equipment type. See

Tables 9-11

 $FL_{cooling}$ = Full load hours of air conditioning

= dependent on location: 1741

Climate Zone (City based upon)	Single Family	Multifamily
1 (Rockford)	547	499
2 (Chicago)	709	629
3 (Springfield)	779	707
4 (Belleville)	1082	982
5 (Marion)	956	868
Weighted Average ¹⁷⁴²		
ComEd	676	603
Ameren	875	791
Statewide	731	655

= Summer System Peak Coincidence Factor for Central A/C (during utility peak hour)

 $=68\%^{1743}$

CF_{SSP} SF = Summer System Peak Coincidence Factor for Heat Pumps in single-family homes

(during system peak hour)

 $=72\%^{1744}$

CFSSP, MF = Summer System Peak Coincidence Factor for Heat Pumps in multi-family homes (during

system peak hour)

= 67% 1745

 CF_{PJM} = PJM Summer Peak Coincidence Factor for Central A/C (average during PJM peak

period)

 CF_SSP

¹⁷⁴¹ Full load hours for Chicago, Moline and Rockford are provided in "Final Evaluation Report: Central Air Conditioning Efficiency Services (CACES), 2010, Navigant Consulting", p.33. An average FLH/Cooling Degree Day (from NCDC) ratio was calculated for these locations and applied to the CDD of the other locations in order to estimate FLH. There is a county mapping table in Volume 1, Section 3.7 providing the appropriate city to use for each county of Illinois. During update cycle for version v.12, applied percent change of CDD65, NCEI Annual Normals from 30 yr data set (1981-2010) to more recent 15 yr data (2006-2020) to all FLHcool values.

¹⁷⁴² Weighting for Ameren is based on electric accounts in each of the cooling zones. Weighting for ComEd and Statewide average is based on number of occupied residential housing units in each zone. ComEd is weighted average of Zones 1-2. Alternative program-weighted assumptions can be used if appropriate.

¹⁷⁴³ Based on metering of 24 homes with central AC during PY4 and PY5 in Ameren Illinois service territory.

¹⁷⁴⁴ Based on analysis of metering results from 24 heat pumps in Ameren Illinois service territory in PY5 coincident with AIC's 2010 system peak; 'Impact and Process Evaluation of Ameren Illinois Company's Residential HVAC Program (PY5)'.

¹⁷⁴⁵ Multifamily coincidence factors both from; All-Electric Homes PY6 Metering Results: Multifamily HVAC Systems, Cadmus, October 2015

 $=46.6\%^{1746}$

CF_{PJM SF} = PJM Summer Peak Coincidence Factor for Heat Pumps in single-family homes (average

during PJM peak period)

 $=46.6\%^{1747}$

CF_{PJM, MF} = PJM Summer Peak Coincidence Factor for Heat Pumps in multi-family homes (average

during peak period)

= 28.5%

Table 9: Air Conditioner with Gas Furnace - cooling only electric savings per window area (kWh/ft²)1748

IL Degree-Day Zone	NC (IECC 2018)	NC (IECC 2021)	TOS or EREP: Double Pane	EREP: Single Pane
1 – Rockford	0.35	0.35	0.60	1.24
2 – Chicago	0.35	0.36	0.53	1.13
3 – Springfield	0.39	0.44	0.61	1.37
4 – Belleville	0.40	0.56	0.60	1.38
5 – Marion	0.46	0.57	0.48	1.27

Table 10: Air Conditioner with Electric Resistance Heat – cooling only electric savings per window area (kWh/ft²)¹⁷⁴⁹

IL Degree-Day Zone	NC (IECC 2018)	NC (IECC 2021)	TOS or EREP: Double Pane	EREP: Single Pane
1 – Rockford	0.31	0.36	0.48	2.17
2 – Chicago	0.36	0.33	0.47	1.97
3 – Springfield	0.35	0.44	0.43	1.65
4 – Belleville	0.39	0.55	0.36	1.67
5 – Marion	0.44	0.56	0.36	1.31

Table 11: Heat Pump - cooling only electric savings per window area (kWh/ft²)1750

IL Degree-Day Zone	NC (IECC 2018)	NC (IECC 2021)	TOS or EREP: Double Pane	EREP: Single Pane
1 – Rockford	0.31	0.34	0.56	2.27
2 – Chicago	0.35	0.32	0.58	2.04
3 – Springfield	0.34	0.36	0.50	1.78
4 – Belleville	0.39	0.55	0.41	1.67
5 – Marion	0.43	0.56	0.39	1.41

2025 IL TRM v13.0 Vol. 3 September 20, 2024 FINAL

¹⁷⁴⁶ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

¹⁷⁴⁷ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

¹⁷⁴⁸ EnergyPlus modeling performed by Lili Yu and Robert Hart, "2023-07-26 LBNL Modeling_NC-TOS_TMYx.xlsx", " 2023-08-04 LBNL Modeling_EREP_TMYx_Double Pane", "2023-08-30 LBNL Modeling_EREP_TMYx_Single Pane," Lawrence Berkeley National Laboratory. May 11, 2023. Yu and Hart's energy modeling incorporated the most commonly commercially available windows that meet or exceed the energy performance criteria relevant to each climate zone (CZ). Specifically, the analysts derived energy savings using these specifications for HPWs: 1) Northern CZ, NC: U=0.30/SHGC=0.30; 2) Northern CZ, TOS/EREP: U=0.22/SHGC=0.25; 3) North-Central CZ, NC: U=0.22/SGHC=0.25; 4) North-Central CZ TOS/EREP: average of savings from U=0.25/SHGC=0.20 and U=0.25/SHGC=0.28.

¹⁷⁴⁹ Ibid

¹⁷⁵⁰ Ibid

FOSSIL FUEL SAVINGS

$$\Delta Therms = HS_{cz} * Area_{window}$$

Where:

 HS_{cz} = Annual heating savings per area of window by climate zone, see Table 12.

 $Area_{window}$ = Total area of installed high performance windows. Use site specific value.

Table 12: Gas heating savings per window area by climate zone and baseline window condition (therm/ft²)1751

IL Degree-Day Zone	NC (IECC2018)	NC (IECC 2021)	TOS or EREP: Double Pane	TOS or EREP: Single Pane
1 – Rockford	0.12	0.09	0.22	1.27
2 – Chicago	0.09	0.12	0.21	1.12
3 – Springfield	0.16	0.08	0.17	0.91
4 – Belleville	0.17	0.07	0.16	0.89
5 – Marion	0.14	0.06	0.16	0.73

For example, a single family residence in Rockford with a gas furnace and air conditioner replaces 10 existing double pane windows with HPW. Each window is 12 square feet, so the total window area is 120 square feet.

1st 13 years savings calculation:

$$\Delta Therms = 0.22 * 120 = 26.4 therms$$

$$\Delta kWh = 1.22 * 120 = 146.4 \ kWh$$

$$\Delta kW_{PJM} = \left(\frac{146.4}{512}\right) * 0.466 = 0.13 \ kW$$

Remaining 27 years savings calculation:

$$\Delta Therms = 0.12 * 120 = 14.4 therms$$

$$\Delta kWh = 0.58 * 120 = 69.6 kWh$$

$$\Delta kW_{PJM} = \left(\frac{69.6}{512}\right) * 0.466 = 0.063 \ kW$$

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

¹⁷⁵¹ EnergyPlus modeling performed by Lili Yu and Robert Hart, "2023-07-26 LBNL Modeling_NC-TOS_TMYx.xlsx", "2023-08-04 LBNL Modeling_EREP_TMYx_Double Pane", "2023-08-30 LBNL Modeling_EREP_TMYx_Single Pane," Lawrence Berkeley National Laboratory. May 11, 2023. Yu and Hart's energy modeling incorporated the most commonly commercially available windows that meet or exceed the energy performance criteria relevant to each climate zone (CZ). Specifically, the analysts derived energy savings using these specifications for HPWs: 1) Northern CZ, NC: U=0.30/SHGC=0.30; 2) Northern CZ, TOS/EREP: U=0.22/SHGC=0.25; 3) North-Central CZ, NC: U=0.22/SGHC=0.25; 4) North-Central CZ TOS/EREP: average of savings from U=0.25/SHGC=0.20 and U=0.25/SHGC=0.28.

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-SHL-TTWI-V05-250101

REVIEW DEADLINE: 1/1/2028

5.6.9 Insulated Cellular Shades

DESCRIPTION

Insulating cellular shades greatly improve the thermal envelope performance compared to uncovered windows or conventional vinyl window coverings. These coverings have a honeycomb or cellular structure that can be operated manually or automated. Insulated cellular shades are considered to have the highest R-value among available blinds, shades, and other window coverings. They are designed with multiple layers of varying fabrics to trap air inside pockets that act as insulators and increase the R-value of the window covering and reduce the thermal heat transfer through windows.

The window's reduced heat loss has a significant impact on home energy savings as windows are often the weakest part of any building envelope. These products provide benefits for both heating and cooling seasons and for both natural gas and electric heated and cooled homes. They also have non-energy benefits such as, increased thermal comfort and decreased outside noise.

This measure was developed to be applicable to the following program types: TOS, NC. If applied to other program types, the measure savings should be verified

DEFINITION OF EFFICIENT EQUIPMENT

The efficient insulating cellular shades must be at least a double cell design installed on at least 75% of a home's windows. The Attachments Energy Rating Council (AERC) has a third party verified rating that has been developed for residential window attachments¹⁷⁵². If possible, utilizing the AERC rating system, eligible insulating cellular shades need to have a Cool Climate Rating greater or equal to 10 due to the Illinois climate.

DEFINITION OF BASELINE EQUIPMENT

The baseline for this measure is a home with uncovered windows or standard existing shades or blinds.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The measure life is assumed to be 10 years.

DEEMED MEASURE COST

The costs of window coverings vary greatly based on factors other than energy efficiency. The incremental cost of insulated cellular shades over standard window coverings is assumed to be \$40 per shade or \$600 per home.

LOADSHAPE

Loadshape R08 - Residential Cooling

Loadshape R09 - Residential Electric Space Heat

Loadshape R10 - Residential Electric Heating and Cooling

COINCIDENCE FACTOR

CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C (during utility peak hour)

 $=68\%^{1753}$

CF_{SSP SF} = Summer System Peak Coincidence Factor for Heat Pumps in single-family homes

(during system peak hour)

¹⁷⁵² Attachments Energy Rating Council. May 01, 2022. www.https://aercenergyrating.org/

¹⁷⁵³ Based on metering of 24 homes with central AC during PY4 and PY5 in Ameren Illinois service territory.

 $=72\%^{1754}$

CF_{SSP, MF} = Summer System Peak Coincidence Factor for Heat Pumps in multi-family homes (during

system peak hour)

 $=67\%^{1755}$

CFPJM = PJM Summer Peak Coincidence Factor for Central A/C (average during PJM peak

period)

 $=46.6\%^{1756}$

CF_{PJM SF} = PJM Summer Peak Coincidence Factor for Heat Pumps in single-family homes (average

during PJM peak period)

 $=46.6\%^{1757}$

CF_{PJM, MF} = PJM Summer Peak Coincidence Factor for Heat Pumps in multi-family homes (average

during peak period)

= 28.5%

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = (\Delta kWh_{cooling} + \Delta kWh_{heatingElectric} + \Delta kWh_{heatingFurnace})$

Where:

 $\Delta kWh_{_Cooling}$ = If central cooling, reduction in annual cooling requirement due to cellular window

shades

= FLH_{cool} * Capacity cooling * ((1/SEER2)/1000) * ESF_{cool}

FLH_{cool} = Full load cooling hours

= Dependent on location as below: 1758

Climate Zone (City based upon)	Single Family	Multifamily
1 (Rockford)	547	499
2 (Chicago)	709	629

¹⁷⁵⁴ Based on analysis of metering results from 24 heat pumps in Ameren Illinois service territory in PY5 coincident with AIC's 2010 system peak; 'Impact and Process Evaluation of Ameren Illinois Company's Residential HVAC Program (PY5)'.

¹⁷⁵⁵ Multifamily coincidence factors both from; *All-Electric Homes PY6 Metering Results: Multifamily HVAC Systems*, Cadmus, October 2015

 ¹⁷⁵⁶ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.
 1757 Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.
 1758 Full load hours for Chicago, Moline and Rockford are provided in "Final Evaluation Report: Central Air Conditioning Efficiency Services (CACES), 2010, Navigant Consulting", p.33. An average FLH/Cooling Degree Day (from NCDC) ratio was calculated for these locations and applied to the CDD of the other locations in order to estimate FLH. There is a county mapping table in Volume 1, Section 3.7 providing the appropriate city to use for each county of Illinois. During update cycle for version v.12, applied percent change of CDD65, NCEI Annual Normals from 30 yr data set (1981-2010) to more recent 15 yr data (2006-2020) to all FLHcool values.

Climate Zone (City based upon)	Single Family	Multifamily
3 (Springfield)	779	707
4 (Belleville)	1082	982
5 (Marion)	956	868
Weighted Average ¹⁷⁵⁹		
ComEd	676	603
Ameren	875	791
Statewide	731	655

Use Multifamily if: Building meets utility's definition for multifamily and HVAC system serves single unit. For residential sized systems serving 2 or more units, assume single family hours.

Capacity cooling = Size of new equipment in Btu/hr (note 1 ton = 12,000Btu/hr)

= Use actual when program delivery allows size of AC unit to be known. If unknown, assume 33,600 Btu/hr for single family homes, 28,000 Btu/hr for multifamily, or 24,000 Btu/hr for mobile homes. 1760 If building type is unknown, assume 31,864Btu/hr. 1761

SFFR2

- = the cooling equipment's Seasonal Energy Efficiency Ratio rating (kBtu/kWh)
- = Use actual SEER2 rating where it is possible to measure or reasonably estimate. If using rated efficiencies, derate efficiency value by 1% per year (maximum of 30 years) to account for degradation over time 1762. If unknown, use the following assumption (do not derate further by age):

Cooling System	SEER2 ¹⁷⁶³
Air Source Heat Pump	11.4
Central AC	11.4

ESF_{cool}

- = Insulating cellular shades cooling energy savings factor
- $= 0.05^{1764}$

2025 IL TRM v13.0 Vol. 3 September 20, 2024 FINAL

ΔkWh_Heating Electric = If electric heat (resistance or heat pump), reduction in annual electric heating due to cellular window shades

= FLH_{heat} * Capacity heating * ((1/HSPF2_{ASHP})/1000) * ESF_{heat}

¹⁷⁵⁹ Weighting for Ameren is based on electric accounts in each of the cooling zones. Weighting for ComEd and Statewide average is based on number of occupied residential housing units in each zone. ComEd is weighted average of Zones 1-2. Alternative program-weighted assumptions can be used if appropriate.

¹⁷⁶⁰ Single family cooling capacity based on Final Evaluation Report: Central Air Conditioning Efficiency Services (CACES), October 19, 2010, ComEd, Navigant Consulting. Multifamily capacity based on weighted average of PY9 Ameren and ComEd MF cooling capacities. Mobile home capacity based on ENERGY STAR's Manufactured Home Cooling Equipment Sizing Guidelines which vary by climate zone and home size. The average size of a mobile home in the East North Central region (1,120 square feet) from the 2015 RECS data is used to calculated appropriate size.

¹⁷⁶¹ Unknown is based on statewide weighted average of 69% single family and 31% multifamily, based on IL data from 2009 RECS Table HC2.9 Structural and Geographic Characteristics of Homes in Midwest Region, Divisions and States, 2009.

 $^{^{1762}}$ Justification for degradation factors can be found on page 14 of 'AIC HVAC Metering Study Memo FINAL 2_28_2018'. Estimate efficiency as (Rated Efficiency * (1-0.01)^Equipment Age).

¹⁷⁶³ Estimate based upon Navigant, 2018 "EIA – Technology Forecast Updates – Residential and Commercial Building Technologies - Reference Case", converted to SEER2.

¹⁷⁶⁴ Average of HVAC savings for typical use compared to baseline conditions of no shades and common vinyl blinds. "Testing the Performance and Dynamic Control of Energy-Efficient Cellular Shades in the PNNL Lab Homes." PNNL. August 2018. Table 4.3 https://aercnet.org/wp-content/uploads/2018/10/Testing-the-Performance-and-Dynamic-Control-of-Energy-Efficient-Cellular-Shades-in-the-PNNL-Lab-Homes.pdf.

FLHheat = Full load heating hours

= Dependent on location as below: 1765

Climate Zone (City based upon)	FLH_heat
1 (Rockford)	1924
2 (Chicago)	1726
3 (Springfield)	1708
4 (Belleville)	1195
5 (Marion/Murphysboro)	1270
Weighted Average ¹⁷⁶⁶	
ComEd	1766
Ameren	1547
Statewide	1700

Capacity heating = Heating output capacity (Btu/hr) of electric heat

= Actual

HSPF2_{ASHP} = Heating Seasonal Performance Factor of efficient Air Source Heat Pump (kBtu/kWh)

= Actual or 7.2 if unknown¹⁷⁶⁷

ESF_{heat} = Insulating cellular shades heating energy savings factor

 $= 0.02^{1768}$

ΔkWh_Heating Furnace = If fossil fuel heat, kWh savings for reduction in furnace fan run time

= Δ Therms * F_e * 29.3

 Δ Therms = (CAPInputPre * EFLH * (1/ Eff)*ESFheat)) / 100,000

CAPInputPre = Gas Furnace input capacity (Btuh)

= Actual. If unknown, use the table below:

Eligibility Tier	Input Capacity ¹⁷⁶⁹	
AFUE ≥ 95 (all furnaces, no tiers)	84,305	

¹⁷⁶⁵ Heating EFLH based on ENERGY STAR EFLH for Rockford, Chicago, and Springfield and on NCDC/NOAA HDD for the other two cities. In all cases, the hours were adjusted based on average natural gas heating consumption in IL. During update cycle for version v.12, applied percent change of HDD60, NCEI Annual Normals from 30 yr data set (1981-2010) to more recent 15 yr data (2006-2020) to all FLHheat values

_

¹⁷⁶⁶ Weighting for Ameren is based on electric heat accounts in each of the heating zones. Weighting for ComEd and Statewide average is based on number of occupied residential housing units in each zone. ComEd is weighted average of Zones 1-2. Alternative program-weighted assumptions can be used if appropriate.

¹⁷⁶⁷ ENERGY STAR minimum, converted to HSPF2.

¹⁷⁶⁸ "Testing the Performance and Dynamic Control of Energy-Efficient Cellular Shades in the PNNL Lab Homes." PNNL. August 2018. https://aercnet.org/wp-content/uploads/2018/10/Testing-the-Performance-and-Dynamic-Control-of-Energy-Efficient-Cellular-Shades-in-the-PNNL-Lab-Homes.pdf.

¹⁷⁶⁹ Average Input Capacity for Northern Illinois, based on analysis of Nicor Gas 2019 Home Energy Efficiency Rebate Program participant tracking data, prepared by Guidehouse, Inc., based on 12,549 furnaces rebated at the 95 AFUE Tier, and 1,103 furnaces rebated at the 97 AFUE Tier. Approximately 10% of tracked input capacities were adjusted by Guidehouse based on verification of manufacturer model numbers. Values for Southern Illinois not available.

EFLH = Equivalent Full Load Hours for heating¹⁷⁷⁰

Climate Zone (City based upon)	EFLH ⁵³⁴	
1 (Rockford)	998	
2 (Chicago)	915	
3 (Springfield)	814	
4 (Belleville)	609	
5 (Marion)	647	
Weighted Average ¹⁷⁷¹		
ComEd	932	
Ameren	800	
Statewide	883	

Eff = Efficiency of furnace

= Actual. If unknown, use 72% for existing system efficiency. 1772

F_e = Furnace Fan energy consumption as a percentage of annual fuel consumption

 $= 3.14\%^{1773}$

29.3 = kWh per therm

SUMMER COINCIDENT PEAK DEMAND SAVINGS

ΔkW = Capacity_cooling * ((1/EER2)/1000) * ESF_d * CF

Where:

EER2 = Energy Efficiency Ratio of existing cooling system (kBtu/hr / kW)

= Use actual EER (converted to EER2) rating where it is possible to measure or reasonably estimate. If EER2 unknown but SEER2 available convert using the equation:

 $EER2 = (-0.02 * SEER2_exist^2) + (1.12 * SEER2_exist)^{1774}$

If SEER2 or EER2 rating unavailable, use:

Cooling System	EER2 ¹⁷⁷⁵
Air Source Heat Pump	10.0

¹⁷⁷⁰ Heating EFLH based on ENERGY STAR EFLH for Rockford, Chicago, and Springfield and on NCDC/NOAA HDD for the other two cities. In all cases, the hours were adjusted based on average natural gas heating consumption in IL. During update cycle for version v.12, applied percent change of HDD60, NCEI Annual Normals from 30 yr data set (1981-2010) to more recent 15 yr data (2006-2020) to all FLHheat values

¹⁷⁷¹ Weighting for Ameren is based on gas accounts in each of the heating zones. Weighting for ComEd and Statewide average is based on number of occupied residential housing units in each zone. ComEd is weighted average of Zones 1-2. Alternative program-weighted assumptions can be used if appropriate.

¹⁷⁷² Based on average Nicor PY4 nameplate efficiencies derated by 15% for distribution losses.

 $^{^{1773}}$ F_e is not one of the AHRI certified ratings provided for residential furnaces, but can be reasonably estimated from a calculation based on the certified values for fuel energy (Ef in MMBtu/yr) and Eae (kWh/yr). An average of a 300 record sample (non-random) out of 1495 was 3.14%. This is, appropriately, ~50% greater than the ENERGY STAR version 3 criteria for 2% F_e. See "Programmable Thermostats Furnace Fan Analysis.xlsx" for reference.

¹⁷⁷⁴ From Wassmer, M. (2003). A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations. Masters Thesis, University of Colorado at Boulder.

¹⁷⁷⁵ Based on converting SEER2 assumption to EER2.

Cooling System	EER2 ¹⁷⁷⁵
Central AC	

ESF_d = Insulating cellular shades heating energy savings factor

 $= 0.02^{1776}$

CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C (during utility peak hour)

 $=68\%^{1777}$

CF_{SSP SF} = Summer System Peak Coincidence Factor for Heat Pumps in single-family homes

(during system peak hour)

= **72**%¹⁷⁷⁸

CF_{SSP, MF} = Summer System Peak Coincidence Factor for Heat Pumps in multi-family homes (during

system peak hour)

 $=67\%^{1779}$

CF_{PJM} = PJM Summer Peak Coincidence Factor for Central A/C (average during PJM peak

period)

 $=46.6\%^{1780}$

CF_{PJM SF} = PJM Summer Peak Coincidence Factor for Heat Pumps in single-family homes (average

during PJM peak period)

 $=46.6\%^{1781}$

CF_{PJM, MF} = PJM Summer Peak Coincidence Factor for Heat Pumps in multi-family homes (average

during peak period)

= 28.5%

WATER AND OTHER NON-ENERGY IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

^{1776 &}quot;Testing the Performance and Dynamic Control of Energy-Efficient Cellular Shades in the PNNL Lab Homes." PNNL. August 2018. https://aercnet.org/wp-content/uploads/2018/10/Testing-the-Performance-and-Dynamic-Control-of-Energy-Efficient-Cellular-Shades-in-the-PNNL-Lab-Homes.pdf.

¹⁷⁷⁷ Based on metering of 24 homes with central AC during PY4 and PY5 in Ameren Illinois service territory.

¹⁷⁷⁸ Based on analysis of metering results from 24 heat pumps in Ameren Illinois service territory in PY5 coincident with AIC's 2010 system peak; 'Impact and Process Evaluation of Ameren Illinois Company's Residential HVAC Program (PY5)'.

¹⁷⁷⁹ Multifamily coincidence factors both from; *All-Electric Homes PY6 Metering Results: Multifamily HVAC Systems*, Cadmus, October 2015

¹⁷⁸⁰ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

¹⁷⁸¹ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

MEASURE CODE: RS-SHL-INCS-V03-250101

REVIEW DEADLINE: 1/1/2026

5.6.10 Multifamily Whole Building Aerosol Sealing

DESCRIPTION

Multifamily buildings have many of the same leakage paths as single-family homes, as well as additional paths hidden in shared walls or other cavities that are difficult to seal with conventional methods. Typically, shared walls between multifamily homes are difficult to air seal effectively, leading to issues when trying to meet code. This measure is the application of an aerosol sealant to a new or existing multifamily building. The aerosol envelope sealing technology uses an automated approach to produce extremely tight envelopes.

Air is blown into a multifamily unit while an aerosol sealant "fog" is released in the interior. As air escapes the building through leaks in the envelope, the sealant particles are carried to the leaks where they impact and stick to the edges of the leaks, eventually sealing them. A standard house or duct air leakage test fan is used to pressurize the building and provide real-time feedback and a permanent record of the sealing. The process is more effective and convenient than conventional sealing methods because it requires less time and effort, it can seal a larger portion of a leakage area more quickly, and can be used to meet more stringent compartmentalization requirements. It can be used to seal multiple units in a residential multi-family building in a cost-effective manner. Energy savings are estimated using EnergyPlus whole-building energy simulations.

This measure was developed to be applicable to the following program types: RF and NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

Existing multifamily units which have been aerosol sealed that meet an air exchange rate of 3.0 ACH50 (air changes per hour) or lower. This meets the residential energy code tightness requirements ¹⁷⁸². New multifamily units which have been aerosol sealed that meet an air exchange rate of 0.6 ACH50 (air changes per hour) or lower. This meets the Passive House tightness requirements. ¹⁷⁸³

DEFINITION OF BASELINE EQUIPMENT

Existing multifamily buildings that are undergoing a major envelope retrofit. The existing air leakage should be determined through approved and appropriate test methods using a blower door at 50 Pascals. Note that setting up a blower door is a required step in the aerosol sealing process.

The baseline for new construction buildings would be the applicable code for air exchange rate.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 20 years. 1784

DEEMED MEASURE COST

The measure cost for this aerosol sealing technology is \$0.50/sq.ft. of home size¹⁷⁸⁵.

LOADSHAPE

Loadshape R09 - Residential Electric Space Heat Loadshape R10 - Residential Electric Heating and Cooling

 $^{^{1782}}$ ICC. 2018 International Energy Conservation Code, International Code Council, Inc

ICC. 2018 International Residential Code, International Code Council, Inc.

¹⁷⁸³ PHI (Passive House Institute). 2016. Passive House requirements (http://passiv.de/en/02_informations/02_passive-house-requirements/02_passive-house-requirements.htm). Information accessed on April 2022

¹⁷⁸⁴ Center for Energy and Environment. Demonstrating the Effectiveness of an Aerosol Sealant to Reduce Multi-Unit Dwelling Envelope Air Leakage. December 30, 2016. http://mn.gov/commerce-stat/pdfs/card-cee-aerosol.pdf#page=47&zoom=100,0,404 ¹⁷⁸⁵ Ibid

COINCIDENCE FACTOR

N/A

Algorithm

CALCULATION OF ENERGY SAVINGS

Energy savings are estimated using EnergyPlus whole-building energy simulations.

It is important to note that the energy savings for multifamily whole-building sealing process cannot be estimated using a simple infiltration algorithm. This is because conversion of the measured building leakage (ACH50) to infiltration at natural conditions treats the entire building as a single zone and does not account for air movement between zones and housing units and also does not consider effects of mechanical ventilation. Therefore, whole building level energy modeling must be done to estimate energy savings.

Baseline and efficient energy models were developed in the referenced study for Minneapolis climate zone. ¹⁷⁸⁶ The energy savings in this measure have been adjusted for the Illinois climate zones based on degree days. ¹⁷⁸⁷ A multifamily building with six floors was modeled containing four housing units in each floor. Each modeled unit is 30 ft wide and 40 ft long with a floor area of 1,200 ft². The floor plan is the same for each of the six floors in the modeled building and is symmetric to minimize the effects of building orientation on the simulation results.

The heating system consists of a central boiler that served each apartment through terminal units. The boiler system is rated for 75% seasonal efficiency. Cooling is provided by window air conditioners. The independent variables include the building's physical characteristics and operating parameters of the ventilation systems. The dependent variables include building energy use, total outside air flow (e.g. infiltration and ventilation), and inter-zonal air flows (e.g. adjoining units and units to/from common spaces).

ELECTRIC ENERGY SAVINGS

There is minimal impact on the cooling energy savings. ¹⁷⁸⁸ There is a slight increase in the cooling energy needed after sealing due to less infiltration to offset internal loads. Due to the relatively small impact on cooling, it is not considered to be significant.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

FOSSIL FUEL SAVINGS

The natural gas space heating savings are dependent on the ventilation system and whether the multifamily unit is existing or new construction.

Four types of continuous ventilation schemes were modeled for the apartments.

- a) Exhaust Only: Exhaust fan in each unit with no direct supply of outdoor air. Consists of a single fan connected to a centrally located, single exhaust point in the house.
- b) Exhaust and Half Supply: Ventilation scheme having both exhaust and supply ventilation systems. Full capacity exhaust fan in each unit with supply ventilation to the unit that is approximately half the exhaust capacity.
- c) Balanced: A balanced ventilation system that has two fans and two duct systems. They introduce and exhaust approximately equal quantities of fresh outside air and polluted inside air.
- d) No Ventilation: No continuous or intermittent mechanical ventilation. This is the most common type of

¹⁷⁸⁶ Center for Energy and Environment. Demonstrating the Effectiveness of an Aerosol Sealant to Reduce Multi-Unit Dwelling Envelope Air Leakage. December 30, 2016. http://mn.gov/commerce-stat/pdfs/card-cee-aerosol.pdf#page=47&zoom=100,0,404 ¹⁷⁸⁷ "Whole Home Sealing HDD Adjustment Spreadsheet.xlsx"

¹⁷⁸⁸ "Whole Home Sealing HDD Adjustment Spreadsheet.xlsx". The cooling savings penalties are extremely small in the order of 1-3% of the heating savings and have been excluded from this analysis.

ventilation scheme in existing multifamily buildings.

Natural Gas savings for each ventilation type normalized per multifamily unit are listed in the below tables by climate zone. The air exchange rate baseline for the New Building energy simulations was 3.0ACH50 and the measure case was 0.6ACH50; whereas the baseline for the existing building energy simulations was 9.5ACH50 and the measure case was 3.0ACH50¹⁷⁸⁹.

Climate Zone	New Building Space Heating Savin (therms/unit)			Savings
(City based upon)	Exhaust	Exhaust and half supply	Balanced	No ventilation
1 (Rockford)	10.3	14.6	23.2	22.3
2 (Chicago)	9.9	14.1	22.4	21.5
3 (Springfield)	8.6	12.2	19.4	18.7
4 (Belleville)	6.9	9.7	15.5	14.9
5 (Marion)	7.0	9.9	15.8	15.2

Climate Zone	Existing Building Space Heating Savii (therms/unit)			g Savings
(City based upon)	Exhaust	Exhaust and half supply	Balanced	No ventilation
1 (Rockford)	35.2	48.1	57.5	58.4
2 (Chicago)	34.0	46.4	55.5	56.3
3 (Springfield)	29.5	40.2	48.1	48.9
4 (Belleville)	23.5	32.1	38.3	38.9
5 (Marion)	24.0	32.8	39.2	39.8

 $\Delta Therms/unit = Therms_{ModeledSavings} \times \ Heating \ Efficiency_{Correction \ Factor} \times Volume_{Correction \ Factor}$

Where:

Therms_{ModeledSavings} = From above tables depending on the building vintage, climate

zone and ventilation system

HeatingEfficiencyCorrectionFactor = HeatingEfficiencyModeled/HeatingEfficiencyActual

Where:

HeatingEfficiency $_{Modeled}$ = 0.75

HeatingEfficiency_{Actual} = the efficiency of the actual heating system. If unknown, use

a correction factor of 1 for existing buildings and the applicable code baseline efficiency for new buildings.

Volume_{CorrectionFactor} = Volume_{Actual}/Volume_{Modeled}

2025 IL TRM v13.0 Vol. 3_September 20, 2024_FINAL

¹⁷⁸⁹ Center for Energy and Environment. Demonstrating the Effectiveness of an Aerosol Sealant to Reduce Multi-Unit Dwelling Envelope Air Leakage. pp 76, 79. December 30, 2016. http://mn.gov/commerce-stat/pdfs/card-cee-aerosol.pdf#page=47&zoom=100,0,404

Where:

 $Volume_{Modeled} = 12,000 \text{ ft}^3$

Volume_{Actual} = Volume of the actual unit. If unknown, use a correction factor

of 1.

For example, An existing 1,000 sq.ft. multi-family unit with 10 ft. ceilings, 80% efficiency central boiler in a 6-unit building in Chicago with no dedicated ventilation is sealed using whole home aerosol sealing technique. The annual natural gas savings for the measure from the table would be -

 Δ Therms = 56.3 x (0.75/0.80) x (10,000/12,000)

= 43.9 therms

WATER AND OTHER NON-ENERGY IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-SHL-AERO-V01-230101

REVIEW DEADLINE: 1/1/2026

5.6.11 Insulated Concrete Forms

DESCRIPTION

Insulated Concrete Forms (ICFs) are building assembly blocks that are used to construct walls of a building both above grade and below grade walls. They are made of lightweight, hollow foam blocks with reinforced steel bars that are filled with concrete. The foam blocks provide insulation, while the concrete provides strength and durability. ICFs are a popular construction method for energy-efficient and passive buildings because they provide excellent insulation, which can result in lower energy costs and a more comfortable living environment. They also have good soundproofing properties and can be used in areas with high wind and seismic activity. ICFs are easy to work with and can be assembled to fit the specific needs of a building. Additionally, ICFs are durable and long-lasting, and they require minimal maintenance over time.

Energy saving potential of ICFs walls when compared to traditional building wall construction assemblies, across residential building types is detailed in this measure. When considering a building material for both above grade and below grade (basement) walls, insulated concrete forms provide a high effective thermal resistance (R-value) and it eliminates the requirement of any additional insulation material. Heating and cooling energy reductions are derived from higher and continuous thermal resistance provided by ICFs walls leading to reduction in overall heating and cooling loads.

This measure was developed to be applicable to the following program types: NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

ICFs assembly consist of a system of expanded or extruded polystyrene rigid insulation blocks separated by plastic webbing. Reinforcement bars are placed in the openings between the forms and concrete is poured and sandwiched between two layers of insulation material. The assembly provides continuous insulation and thermal mass across the building envelope. Effective thermal resistance R-values of the ICFs walls assembly are manufacturer published values to be used as a part of the measure. ICFs walls to be considered in this measure should have assembly U-values that shall exceed minimum required assembly R-values as defined by International Energy Efficiency Code¹⁷⁹⁰, listed below. A heated basement condition shall be required to utilize measure savings in below grade applications.

ICF Above grade wall assembly R-value >22.2 (hr $ft^{2\circ}F/Btu$)

ICF Below grade wall assembly R-value > 20 (hr ft^{2} °F/Btu)

DEFINITION OF BASELINE EQUIPMENT

Widely prevalent traditional building wall construction types¹⁷⁹¹ ¹⁷⁹² listed in table below are considered as baseline for this measure. Thermal resistance R-values corresponding to code required thermal transmittance U-value listed in 2021 International energy conservation code. These values are to be used in prescriptive energy saving calculation methodology.

¹⁷⁹⁰ 2021 International Energy Efficiency Code, Chapter 4 Residential energy efficiency, section R402, table R402.1.2. Minimum assembly R values are calculated from listed assembly maximum U values for wooden frame and basement walls.

¹⁷⁹¹ U.S. Building Stock Characterization Study by National Renewable Energy Laboratory. <u>US Building Typology Segmentation</u> Residential | Tableau Public. Data shows that 84% of the single-family homes and 30-74% of Multifamily homes in Illinois are built with wood frame construction since the 1980s.

¹⁷⁹² A technology report from Portland Cement Association briefs¹⁷⁹², lists Concrete as the most common product of choice for basement construction with 98% of North American basements built of one of many available concrete wall systems. Concrete Basements | Concrete Construction Magazine

Wall Type	Туре	Code	Zone	Assembly U- Value (Max.)	Corresponding Assembly R- Value (Min.) ¹⁷⁹³
Above grade wall	Wood Frame Wall	2021 IECC (Residential)	All	0.045	22.2
Below	Basement		Zone 4	0.059	16.9
grade wall	Wall		Zone 5	0.05	20

Note: U Values and R values listed are in Imperial units. U-value: (Btu/hr $ft^{2\circ}F$), R-value: (hr $ft^{2\circ}F$ / Btu)

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 50 years 1794.

DEEMED MEASURE COST

The actual capital cost for this measure should be used in screening. If unknown, use total measure cost listed in table below include the cost of ICF blocks, concrete, reinforcement materials and labor. Incremental costs are compared against a wood frame wall for above grade walls and a standard concrete wall for below grade walls. Manufacturer specified R-values of ICF block/panels and actual concrete type R values shall be used to calculate ICF assembly R-value.

ICF Core thickness ¹⁷⁹⁵	Total Measure cost ¹⁷⁹⁶ (\$/Square ft of wall area)	Incremental cost against above grade wood frame wall ¹⁷⁹⁷ (\$/Square ft of wall area)	Incremental cost against Basement concrete wall ¹⁷⁹⁸ (\$/Square ft of wall area)	ICF assembly R- Value ^{1799 1800} (ft ² ·°F·h /BTU)
4"	12.14	6.58	6.94	23.9
6"	13.20	7.64	5.85	27.1
8"	16.37	10.81	8.34	28.4

^{1793 2021} International Energy conservation code (IECC) lists maximum allowable U-value for wood frame walls under residential energy efficiency section. Minimum required R-value is calculated as a reciprocal of the 2021 IECC listed U-value for wood frame walls. U-values correspond to climate zones 5A and 4C for Illinois.

¹⁷⁹⁴ While manufacturers claim the lifetime of the foam exceeds 100 years, due to likely degradation and or changes to the building shell over that timeframe, the TAC proposed a measure life of 50 years.

¹⁷⁹⁵ Core thickness indicate the space in between the EPS panels in ICF assembly.

¹⁷⁹⁶ Total measure costs include ICF blocks, concrete, rebar and labor costs. ICF block pricing information from ICF manufacturer Build Block and Fox blocks. Concrete costs and labor costs are from RSMeans 2023 residential cost database.

¹⁷⁹⁷ Baseline above grade wood frame wall cost include wall framing cost and code minimum insulation (cavity insulation and continuous insulation). These costs are referenced from 2023 RSMeans residential cost database.

¹⁷⁹⁸ Baseline basement wall costs include concrete, labor and code minimum insulation. These costs are referenced from 2023 RSMeans residential cost database.

¹⁷⁹⁹ National Concrete Masonry Association listed R-Value per thickness for different Concrete densities is utilized to calculated ICF assembly R-Values. A concrete density of 105 lb/ft³ is assumed for calculation purpose. Actual Concrete R-Value should be used in the measure. R-VALUES AND U-FACTORS OF SINGLE WYTHE CONCRETE MASONRY WALLS - NCMA

¹⁸⁰⁰ An R-value of 4.2 ft^{2.}°F·h /BTU-inch is used for calculating R-value of ICF blocks with a total thickness of 5.25". ICF blocks from manufacturers Buildblock and Fox block are considered for this analysis.

https://buildblock.com/download/r-value-and-performance-of-buildblock-and-buildlock-knockdown-insulating-concreteforms/?tmstv=1683660365

https://buildblock.com/technical-support/product-specifications/

https://www.foxblocks.com/resources?category=specifications-guides

LOADSHAPE

Loadshape R08 - Residential Cooling

Loadshape R09 - Residential Electric Space Heat

Loadshape R10 - Residential Electric Heating and Cooling

COINCIDENCE FACTOR

The summer peak coincidence factor for cooling is provided in two different ways below. The first is used to estimate peak savings during the utility peak hour and is most indicative of actual peak benefits, and the second represents the average savings over the defined summer peak period and is presented so that savings can be bid into PJM's capacity market.

CF _{SSP}	= Summer System Peak Coincidence Factor for Central A/C (during utility peak hour)
-------------------	--

 $=68\%^{1801}$

CF_{SSP SF} = Summer System Peak Coincidence Factor for Heat Pumps in single-family homes

(during system peak hour)

= 72% 1802

CF_{SSP, MF} = Summer System Peak Coincidence Factor for Heat Pumps in multi-family homes (during

system peak hour)

 $=67\%^{1803}$

CF_{PJM} = PJM Summer Peak Coincidence Factor for Central A/C (average during PJM peak

period)

 $=46.6\%^{1804}$

CF_{PJM SF} = PJM Summer Peak Coincidence Factor for Heat Pumps in single-family homes (average

during PJM peak period)

 $=46.6\%^{1805}$

CF_{PJM, MF} = PJM Summer Peak Coincidence Factor for Heat Pumps in multi-family homes (average

during peak period)

= 28.5%

¹⁸⁰¹ Based on metering of 24 homes with central AC during PY4 and PY5 in Ameren Illinois service territory.

¹⁸⁰² Based on analysis of metering results from 24 heat pumps in Ameren Illinois service territory in PY5 coincident with AIC's 2010 system peak; 'Impact and Process Evaluation of Ameren Illinois Company's Residential HVAC Program (PY5)'.

¹⁸⁰³ Multifamily coincidence factors both from; All-Electric Homes PY6 Metering Results: Multifamily HVAC Systems, Cadmus, October 2015

¹⁸⁰⁴ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

¹⁸⁰⁵ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

Following engineering algorithms can be used to calculate electric energy savings due to ICFs.

 $\Delta kWh = (\Delta kWh_cooling + \Delta kWh_heatingElectric + \Delta kWh_heatingGas)$

Where:

ΔkWh Cooling = If central cooling, reduction in annual cooling requirement due to ICF insulation

= ((((1/R _base AG - 1/R_ICF_AG) * A_wall AG) * 24 * CDD65 * DUA) / (1000 * ηCool)) *

ADJwallCool * %Cool

R_base AG = Thermal resistance R-value of the baseline above grade exterior wall assembly in IP units

ft²·°F·h/BTU

= 22.2 ft².°F·h /BTU¹⁸⁰⁶

R_ICF_AG = R_ICF block + R_Concrete + R_ ICF inserts

R_ICF block = Rated R-value of the wall assembly as provided by the manufacturer. IP units

ft²·°F·h/BTU

= If unknown, Use R-Value per inch of ICF panel thickness¹⁸⁰⁷ of 4.2 h ft².°F/BTU-

inch

R Concrete = Actual R-value of the concrete used in the ICF assembly

= R-Value per inch * Concrete thickness, If unknown, use table below 1808 1809

Concrete density lb/ft ³	R-Value per inch
85	0.3
95	0.25
105	0.20
115	0.17
125	0.14
135	0.11
145	0.075

R ICF inserts = R-value of any additional ICF inserts/panels in the actual assembly

A wall AG = Net area of the above grade exterior wall envelope in ft².

DUA = Discretionary Use Adjustment (reflects the fact that people do not always operate their

AC when conditions may call for it).

 $= 0.75^{1810}$

2025 IL TRM v13.0 Vol. 3_September 20, 2024_FINAL

¹⁸⁰⁶ Calculated based on maximum assembly U-value requirement for a wood frame wall from 2021 IECC, Rmin=1/Umax, CHAPTER 4 [RE] RESIDENTIAL ENERGY EFFICIENCY, 2021 International Energy Conservation Code (IECC) | ICC Digital Codes (iccsafe.org)

¹⁸⁰⁷ BB-R-value-and-Performance-of-BuildBlock-ICFs-2014.pdf

¹⁸⁰⁸ National Concrete Masonry Association, Thermal data Table 5, https://ncma.org/resource/rvalues-ufactors-of-single-wythe-concrete-masonry-walls/

¹⁸⁰⁹ https://www.concreteconstruction.net/_view-object?id=00000153-96ee-dbf3-a177-96ffa5500000

¹⁸¹⁰ This factor's source is: Energy Center of Wisconsin, May 2008 metering study; "Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research", p31.

1000 = Converts Btu to kBtu

CDD65 = Cooling Degree Days per year.

= Dependent on location: 1811

Climate Zone (City based upon)	CDD 65
1 (Rockford)	877
2 (Chicago)	1047
3 (Springfield)	1183
4 (Belleville)	1641
5 (Marion/Murphysboro)	1450
Weighted Average ¹⁸¹²	1098

ηCool

- = Seasonal Energy Efficiency Ratio of cooling system (kBtu/kWh)
- = Actual (where it is possible to measure or reasonably estimate). Note where new HVAC is installed in addition to shell measures, the old HVAC unit efficiency should be used and the shell measure savings calculated first, the HVAC measure then assuming the reduced heat/cooling loads. If using rated efficiencies, derate efficiency value by 1% per year (maximum of 30 years) to account for degradation over time, ¹⁸¹³ or if unknown assume the following. ¹⁸¹⁴ If unknown value is used, it should not be derated by age.

Age of Equipment	SEER2 Estimate
Before 2006	9.5
2006 - 2014	12.4
Central AC After 1/1/2015	12.4
Heat Pump After 1/1/2015	13.3
Unknown (for use in program evaluation only)	10.0

ADJ_{WallCool}

- = Adjustment for cooling savings from wall insulation to account for inaccuracies in prescriptive engineering algorithms¹⁸¹⁵
- = 75%

%Cool

= Percent of homes that have cooling. Actual value shall be used.

Central Cooling	%Cool
Yes	100%
No	0%

¹⁸¹¹ National Centers for Environmental Information (NCEI) Annual Normals, from 2006 - 2020, calculated with a base temp of 65°F.

¹⁸¹² Weighted based on number of occupied residential housing units in each zone (US Census 2010).

¹⁸¹³ Justification for degradation factors can be found on page 14 of 'AIC HVAC Metering Study Memo FINAL 2_28_2018'. Estimate efficiency as (Rated Efficiency * (1-0.01)^Equipment Age).

¹⁸¹⁴ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Central AC was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate. Note all ratings have been converted to SEER2 equivalents – since the new rating better reflects the actual efficiency of the units.

¹⁸¹⁵ As demonstrated in two years of metering evaluation by Opinion Dynamics, see Memo "Results for AIC PY6 HPwES Billing Analysis", dated February 20, 2015. TAC negotiated adjustment factor is 80%. During update cycle for version v.12, applied the percent change of NCEI Annual Normals CDD65 from 30 yr data set (1981-2010) to more recent 15 yr data (2006-2020) for all cooling-related adjustment values.

Central Cooling	%Cool
Unknown (for use in program evaluation only) ¹⁸¹⁶	66%

ΔkWh heating Electric = (((((1/R_base AG - 1/R_ICF_AG) * A_wall AG) +((1/R_base AG_basement - 1/R_ICF_AG_basement) *A_wall AG_basement) + ((1/R_base BG_basement - 1/R_ICF_BG_basement) *A_wall BG_basement)) * 24 * HDD60) / (3412 * ηHeat)) * ADJ_{Wallheat} * %ElectricHeat

A_wall AG_basement = Net area of the above grade exterior basement wall envelope in ft²

A_wall BG_basement = Net area of the below grade exterior basement wall envelope in ft²

R_base AG_basement = R_basement wall

R_basement wall = Thermal resistance R-value of the baseline basement wall assembly in IP units $ft^2 \cdot ^\circ F \cdot h/BTU$

= 16.9 ft 2 .°F·h/BTU for a basement wall in Climate zone 4 20 ft 2 .°F·h/BTU for a basement wall in Climate zone 5^{1817}

R_ICF_AG_basement = R_ICF block + R_Concrete + R_ICF Inserts

R_base BG_basement = R_basement wall + R_earth average

R_earth average = Average R value of earth from table below

Below Grade R- Value ¹⁸¹⁸									
Depth below grade (ft)	0	1	2	3	4	5	6	7	8
Average Earth	2.44	3.47	4.41	5.41	6.42	7.46	8.46	9.53	10.69
R-value (ft²·°F·h/BTU)									

R_ICF_BG_basement = R_ICF block + R_Concrete + R_ICF Inserts + R_earth average

HDD60 = Heating degree days as listed in table below

Climate Zone	HDD60
1(Rockford)	5230
2(Chicago)	4798
3(Springfield)	4266
4(Belleville)	3188
5(Marion)	3390
Weighted Average ¹⁸¹⁹	4631

4.

¹⁸¹⁶Percentage of homes in Illinois that have central cooling from "Table HC7.9 Air Conditioning in Homes in Midwest Region, Divisions, and States, 2009" from Energy Information Administration, 2009 Residential Energy Consumption Survey.

¹⁸¹⁷ Calculated based on maximum assembly U-value requirement for a basement wall from 2021 IECC, Rmin = 1/Umax, International energy conservation code 2021, chapter 4 residential energy efficiency, table R402.1.4 equivalent U-factors.

¹⁸¹⁸ 2022 Illinois Statewide Technical reference manual for energy efficiency version 10.0, volume 3: Residential measures, 5.6.2 Basement sidewall insulation.

¹⁸¹⁹ 2022 Illinois Statewide Technical reference manual for energy efficiency version 10, volume 3: Residential measures, 5.6.2 Basement sidewall insulation.

3412 = Conversion factor from Btu to kWh

ηHeat = Efficiency of heating system

= Actual value or if known, refer to table below

System Type	Age of Equipment	HSPF2 Estimate	nHeat (Effective COP Estimate * Distribution Efficiency)= (HSPF2/3.413)*0.85
Heat Pump	Before 2006	5.8	1.44
(if age unknown	2006 - 2014	6.5	1.62
assume 2006-2014)	2015 on	7.0	1.74
Resistance	N/A	N/A	1.00
Unknown (for use in program evaluation only) ¹⁸²⁰	N/A	N/A	1.32

ADJ_{Wallheat}

= Adjustment for heating savings to account for inaccuracies in prescriptive engineering algorithms 1821

=63%

%Electric Heat

= Percent of homes that have electric space heating Actual value or Actual planned value during engineering design shall be used.

= 0 % for Natural Gas, 100 % for Electric Resistance or Heat Pump, Actual electric % value if both fuel sources are used.

= If unknown¹⁸²², use the following table:

	Location				
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown
Ameren	18%	26%	38%	39%	29%
ComEd	14%	22%	43%	48%	21%
PGL	1.0%	1.5%	4.0%	2.8%	2.2%
NSG	1.3%	0.8%	32.5%	1.2%	3.3%
Nicor	1.3%	0.8%	32.5%	1.2%	3.3%

¹⁸²⁰ Calculation assumes 35% Heat Pump and 65% Resistance, which is based upon data from Energy Information Administration, 2009 Residential Energy Consumption Survey, see "HC6.9 Space Heating in Midwest Region.xls", using average for East North Central Region. Average efficiency of heat pump is based on assumption that 50% are units from before 2006 and 50% from 2006-2014. Program or evaluation data should be used to improve this assumption if available.

¹⁸²¹ As demonstrated in two years of metering evaluation by Opinion Dynamics, see Memo "Results for AIC PY6 HPwES Billing Analysis", dated February 20, 2015. TAC negotiated adjustment factor is 60%. During update cycle for version v.12, applied the percent change of NCEI Annual Normals HDD60 from 30 yr data set (1981-2010) to more recent 15 yr data (2006-2020) for all heating-related adjustment values.

¹⁸²² Based on the average % Natural Gas used for space heating in Unknown residential structure types across all utilities covered by the IL program. Residence types include: SF, SF LI, MF & MF LI. Utilities included: Ameren, ComEd, People's Gas, Northshore Gas & Nicor. Data provided from 2016 Ameren Illinois Demand Side Management (DSM) Market Potential Study by Applied Energy Group, ComEd's 2019 Baseline Survey on residential space heating share, and PY2022-2023 Implementation Contractors Data for People's Gas, Northshore Gas & Nicor.

	Location				
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown
All DUs ¹⁸²³					26%

<u>Note</u>: If a measure is supported by a gas and electric utility through a joint program, and it is unknown whether the participant has a gas supply, the electric utility values in the table above should be used. If it is known that the participant has a gas supply, the values from the gas utility above should be applied.

ΔkWh heating Gas = If gas furnace heat, kWh savings for reduction in fan run time

= ΔTherms * Fe * 29.3

Fe = Furnace Fan energy consumption as a percentage of annual fuel consumption

= 3.14% 1824 1825

= kWh per therm

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = (\Delta kWh cooling / FLH cooling) * CF$

Where:

FLH cooling = Full load hours of air conditioning

= Dependent on location: 1826

Climate Zone (City based upon)	Single Family	Multifamily
1 (Rockford)	547	499
2 (Chicago)	709	629
3 (Springfield)	779	707
4 (Belleville)	1082	982
5 (Marion/Murphysboro)	956	868
Weighted Average ¹⁸²⁷	676	603
ComEd	875	791
Ameren	731	655

¹⁸²³ For the weighted average calculations, please see the Analysis file. PGL, NSG, Nicor & gas customers were assumed to follow the provided split. ComEd total customers, minus overlap with PGL,NSG & Nicor, therefore electric only homes. Ameren is total customers minus Nicor.

¹⁸²⁴ Fe is not one of the AHRI certified ratings provided for residential furnaces but can be reasonably estimated from a calculation based on the certified values for fuel energy (Ef in MMBtu/yr) and Eae (kWh/yr). An average of a 300-record sample (non-random) out of 1495 was 3.14%. This is, appropriately, ~50% greater than the ENERGY STAR version 3 criteria for 2% Fe. See "Programmable Thermostats Furnace Fan Analysis.xlsx" for reference.

¹⁸²⁵ 2022 Illinois Statewide Technical reference manual for energy efficiency version 11.0, volume 3: Residential measures, 5.6.2 Basement sidewall insulation.

¹⁸²⁶ Full load hours for Chicago, Moline and Rockford are provided in "Final Evaluation Report: Central Air Conditioning Efficiency Services (CACES), 2010, Navigant Consulting", p.33. An average FLH/Cooling Degree Day (from NCDC) ratio was calculated for these locations and applied to the CDD of the other locations in order to estimate FLH. During update cycle for version v.12, applied percent change of CDD65, NCEI Annual Normals from 30 yr data set (1981-2010) to more recent 15 yr data (2006-2020) to all FLHcool values.

¹⁸²⁷ Weighting for Ameren is based on electric accounts in each of the cooling zones. Weighting for ComEd and Statewide average is based on number of occupied residential housing units in each zone. ComEd is weighted average of Zones 1-2. Alternative program-weighted assumptions can be used if appropriate.

Climate Zone (City based upon)	Single Family	Multifamily
Statewide		

Use Multifamily if the building meets utility's definition for multifamily and HVAC system serves single unit. For residential sized systems serving 2 or more units, assume single family hours.

CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C (during utility peak hour)

= 68% 1828

CF_{SSP SF} = Summer System Peak Coincidence Factor for Heat Pumps in single-family homes

(during system peak hour)

 $=72\%^{1829}$

CF_{SSP, MF} = Summer System Peak Coincidence Factor for Heat Pumps in multi-family homes (during

system peak hour)

 $=67\%^{1830}$

CF_{PJM} = PJM Summer Peak Coincidence Factor for Central A/C (average during PJM peak

period)

 $=46.6\%^{1831}$

CFPIM SF = PJM Summer Peak Coincidence Factor for Heat Pumps in single-family homes (average

during PJM peak period)

 $=46.6\%^{1832}$

CF_{PJM, MF} = PJM Summer Peak Coincidence Factor for Heat Pumps in multi-family homes (average

during peak period)

= 28.5%

FOSSIL FUEL SAVINGS

 $\Delta Therms = ((((1/R_base\ AG - 1/R_ICF_AG)*A\ wall\ AG) + ((1/R_base\ BG - 1/R_ICF_BG)*A\ wall\ BG)*24*HDD65) / (\eta Heat*100,000\ Btu/therm))*ADJ_{wallheat}*%FossilHeat$

Where:

nheat = Efficiency of the heating system

= Actual or if known use values from table below

Equipment type	Age of equipment	AFUE ¹⁸³³
Gas Furnaces	After 11/19/2015	80%

¹⁸²⁸ Based on metering of 24 homes with central AC during PY4 and PY5 in Ameren Illinois service territory.

¹⁸²⁹ Based on analysis of metering results from 24 heat pumps in Ameren Illinois service territory in PY5 coincident with AIC's 2010 system peak; 'Impact and Process Evaluation of Ameren Illinois Company's Residential HVAC Program (PY5)'.

¹⁸³⁰ Multifamily coincidence factors both from; *All-Electric Homes PY6 Metering Results: Multifamily HVAC Systems*, Cadmus, October 2015

¹⁸³¹ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

¹⁸³² Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

¹⁸³³ Code of federal regulations, title 10, chapter ii, subchapter D, part 430, subpart C Energy and water conservation standards. <u>eCFR</u> :: 10 CFR Part 430 Subpart C -- Energy and Water Conservation Standards

Gas fired hot water Boilers	After 1/15/2021	84%
	9/1/2012- 1/15/2021	82%
Gas fired steam Boilers	After 1/15/2021	82%
	9/1/2012- 1/15/2021	80%

ADJWallheat

= Adjustment for heating savings to account for inaccuracies in prescriptive engineering algorithms 1834

= 60%

%FossilHeat

- = Percent of homes that have gas space heating. Actual value or Actual planned value during engineering design shall be used.
- = 100 % for Natural Gas, 0 % for Electric Resistance or Heat Pump, Actual gas % value if both fuel sources are used.
- = If unknown¹⁸³⁵, use the following table:

	Location				
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown
Ameren	82%	74%	62%	61%	71%
ComEd	86%	78%	57%	52%	79%
PGL	98.9%	98.5%	96.0%	96.9%	97.7%
NSG	98.3%	99.2%	67.5%	98.8%	96.6%
Nicor	98.3%	99.2%	67.5%	98.8%	96.6%
All DUs ¹⁸³⁶					74%

Note: If a measure is supported by a gas and electric utility through a joint program, and it is unknown whether the participant has a gas supply, the electric utility values in the table above should be used. If it is known that the participant has a gas supply, the values from the gas utility above should be applied.

¹⁸³⁴ As demonstrated in two years of metering evaluation by Opinion Dynamics, see Memo "Results for AIC PY6 HPwES Billing Analysis", dated February 20, 2015. TAC negotiated adjustment factor is 60%.

¹⁸³⁵ Based on the average % Natural Gas used for space heating in Unknown residential structure types across all utilities covered by the IL program. Residence types include: SF, SF LI, MF & MF LI. Utilities included: Ameren, ComEd, People's Gas, Northshore Gas & Nicor. Data provided from 2016 Ameren Illinois Demand Side Management (DSM) Market Potential Study by Applied Energy Group, ComEd's 2019 Baseline Survey on residential space heating share, and PY2022-2023 Implementation Contractors Data for People's Gas, Northshore Gas & Nicor .

¹⁸³⁶ For the weighted average calculations, please see the Analysis file. PGL, NSG, Nicor & gas customers were assumed to follow the provided split. ComEd total customers, minus overlap with PGL,NSG & Nicor, therefore gas only homes. Ameren is total customers minus Nicor.

For Example, a one-story single-family home in Chicago with above ground wall area of 1,500 square feet and basement 8 feet completely below ground with a wall area of 1000 square feet is built with ICF construction with R-33 ICF blocks with 6" core thickness and concrete R-value per inch of 0.2 ft².°F·h/BTU-inch. The home has a 13.4 SEER Central AC and 2.2 COP Heat pump.

 $\Delta kWh Cooling$ = {[((1/R _base AG - 1/R_ICF_AG) * A_wall AG) * 24 * CDD65 * DUA] / (1000 * $\eta Cool$)} *

ADJ_{WallCool} * %Cool

 Δ kWh Cooling ={[((1/22.2 - 1/(33+(6*0.2)))*1,500)*24*1047*0.75]/(1,000*13.2)}*0.75*1

= 25.39 kWh

 Δ kWh heating ={[(((1/22.2 - 1/(33+(6*0.2)))*1,500)+ ((1/(20+10.69) - 1/(34.2+10.69)))*1000)

)*24*4798]/(3412*2.2)}*0.63*1

=328.74 kWh

 Δ kWh Savings = 25.39 + 328.74

= 354.13 kWh

Summer coincident peak demand savings during system peak hour

 ΔkW_{SSP} =(25.39/709)*0.68

=0.024 kW

Summer coincident peak demand savings (Average during peak period)

 ΔkW_{PJM} =(25.39/709)*0.466

=0.017 kW

For the same example with a Natural gas furnace with 80% efficiency for heating,

 Δ Therms ={[(((1/22.2 - 1/(33+(6*0.2)))*1,500)+ ((1/(20+10.69) - 1/(34.2+10.69)))*1000)

)*24*4798]/(100,000*0.8)}*0.63*1

=30.85 Therms

 Δ kWh heating Gas = 30.85*0.0314*29.3

=28.4 kWh

WATER AND OTHER NON-ENERGY IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-SHL-ICF-V02-250101

REVIEW DEADLINE: 1/1/2027

5.7 Miscellaneous

5.7.1 High Efficiency Pool Pumps

DESCRIPTION

Residential outdoor pool pumps can be single speed, two/multi speed or variable speed. A federal standard (82 FR 5650) effective July 19, 2021, which requires new pumps to be at least two speed.

Single speed pumps are often oversized, and run frequently at constant flow regardless of load. Single speed pool pumps require that the motor be sized for the task that requires the highest speed. As such, energy is wasted performing low speed tasks at high speed. Two speed and variable speed pool pumps reduce speed when less flow is required, such as when filtering is needed but not cleaning, and have timers that encourage programming for fewer on-hours. Variable speed pool pumps use advanced motor technologies to achieve efficiency ratings of 90% while the average single speed pump will have efficiency ratings between 30% and 70%. 1837

This measure is the characterization of the purchasing and installing of a new ENERGY STAR or CEE T1 variable speed residential pool pump motor in place of a new baseline pump meeting the federal standard for Time of Sale and New Construction, or the early replacement of a standard single speed motor of equivalent horsepower.

This measure was developed to be applicable to the following program types: TOS, NC, RF.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The high efficiency equipment is an ENERGY STAR or CEE Tier residential pool pump meeting the ENERGY STAR minimum qualifications for either in-ground or above ground pools. ENERGY STAR version 3.0 specification takes effect on July 19, 2021. Note that for in ground pools, the CEE T1 level is the same as the new Federal Standard, and Tier 2 is the same as ENERGY STAR V3 for the standard size pumps, so savings for CEE T1 is only provided for above ground pools where there is an increment in efficiency.

Pump Sub- Type	Size Class	ENERGY STAR Version 3.1 Energy Efficiency Level	CEE Tier 1	CEE Tier 2
Self-Priming (Inground) Pool Pumps	Extra Small (hhp ≤ 0.13)	WEF ≥ 13.40	N/A	N/A
	Small (hhp > 0.13	WEF ≥ -2.45 x ln (hhp)	WEF ≥ -1.30 x ln (hhp)	WEF ≥ -2.83 x ln (hhp)
	and < 0.711)	+ 8.40	+ 4.95	+ 8.84
	Standard Size (hhp	WEF \geq -2.45 x ln (hhp)	WEF ≥ -2.3 x ln (hhp) +	WEF \geq -2.45 x ln (hhp)
	≥ 0.711)	+ 8.40	6.59	+ 8.4
Non-Self	Extra Small (hhp ≤	WEF ≥ 4.92	N/A	N/A
Priming	0.13)			
(Aboveground)	Standard Size (hhp	WEF \geq -1.00 x In (hhp)	WEF ≥ -1.60 x ln (hhp)	N/A
Pool Pumps	> 0.13)	+ 3.85	+ 9.10	

DEFINITION OF BASELINE EQUIPMENT

For TOS and NC, the baseline equipment is a two speed residential pool pump meeting the Federal Standard, provided below:

2025 IL TRM v13.0 Vol. 3_September 20, 2024_FINAL

¹⁸³⁷ U.S. DOE, 2012. Measure Guideline: Replacing Single-Speed Pool Pumps with Variable Speed Pumps for Energy Savings. Report No. DOE/GO-102012-3534.

Pump Sub-Type	Size Class	Baseline
Self-Priming (Inground) Pool	Extra Small (hhp ≤ 0.13)	WEF ≥ 5.55
Pumps	Small (hhp > 0.13 and < 0.711)	WEF ≥ -1.30 x ln (hhp) + 2.90
i unips	Standard Size (hhp ≥ 0.711)	WEF ≥ -2.30 x ln (hhp) + 6.59
Non-Self Priming	Extra Small (hhp ≤ 0.13)	WEF ≥ 4.60
(Aboveground) Pool Pumps	Standard Size (hhp > 0.13)	WEF ≥ -0.85 x ln (hhp) + 2.87

For early replacement, the baseline equipment is the existing single speed residential pool pump.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The estimated useful life for a two speed or variable speed pool pump is 7 years. 1838

DEEMED MEASURE COST

For TOS and NC, the incremental costs for ENERGY STAR in-ground pool pumps are estimated as \$314¹⁸³⁹ and for above ground pool pumps are estimated as \$930.¹⁸⁴⁰

For early replacement, the full replacement costs shall be used. A deferred new baseline cost (after 4 years) of replacing the existing equipment should also be included.

LOADSHAPE

Loadshape R15 - Residential Pool Pumps

COINCIDENCE FACTOR

The coincidence factor for this measure is assumed to be 0.831.¹⁸⁴¹

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS¹⁸⁴²

For TOS and NC:

 Δ kWh = (Gallons * Turnovers * (1/WEF_{base} - 1/WEF_{ESTAR}) * Days) / 1000

For Early Replacement:

 Δ kWh = (Gallons * Turnovers * (1/EF_{Exist} - 1/WEF_{ESTAR}) * Days) / 1000

Where:

Gallons = Capacity of the pool

¹⁸³⁸ As recommended in Navigant 'ComEd Effective Useful Life Research Report', May 2018.

¹⁸³⁹ ENERGY STAR Pool Pump Calculator and represent the difference between the two/multi speed incremental cost and the variable speed incremental cost.

¹⁸⁴⁰ CEE Efficient Residential Swimming Pool Initiative, December 2012, page 18 and represent the difference between the two/multi speed incremental cost and the variable speed incremental cost.

¹⁸⁴¹ Based on assumptions of daily load pattern through pool season. Assumption was developed for Efficiency Vermont but is considered a reasonable estimate for Illinois.

The methodology followed is consistent with the most recent version of the 2020 ENERGY STAR calculator (Pool_Pump_Calculator_2020.05.05_FINAL.xls), however this has not been updated to account for the new federal standard.

= Actual. If unknown assume:

Pool Type	Gallons
In ground	22,000 ¹⁸⁴³
Above ground	7,540 ¹⁸⁴⁴

Turnovers = Desired number of pool water turnovers per day

 $= 2^{1845}$

WEF_{base} = Weighted Energy Factor of baseline pump (gal/Wh) ¹⁸⁴⁶

Pool Type	WEF _{Base}
In ground	4.75
Above ground	2.58

WEF_{ESTAR} = Weighted Energy Factor of ENERGY STAR pump (gal/Wh) ¹⁸⁴⁷

Dool Tymo	WEFEE		
Pool Type	ENERGY STAR	CEE Tier 1	
In ground	6.44	N/A	
Above ground	3.51	8.55	

EF_{Exist} = Energy Factor of existing single speed pump (gal/Wh)

 $= 2.3^{1848}$

Days = Number of days per year that the swimming pool is operational

 $= 122^{1849}$

1,000 = Conversion factor from Wh to kWh

Based on the defaults provided above, the annual energy savings (ΔkWh) are detailed in the table below:

	ΔkWh			
Dool Tyro	TOS/NC		Retrofit	
Pool Type	ENERGY STAR	CEE T1	ENERGY STAR	CEE T1
In ground	296.0	N/A	1528.1	N/A
Above ground	188.4	496.9	285.7	594.2

¹⁸⁴³ Consistent with assumption in the 2020 ENERGY STAR calculator.

¹⁸⁴⁴ Based on typical pool sizes from "Evaluation of Potential Best Management Practices - Pools, Spas, and Fountains, The California Urban Water Conservation Council", 2010.

 $^{^{1845}}$ Consistent with assumption in the 2020 ENERGY STAR calculator.

¹⁸⁴⁶ Based on applying the federal standard specifications to the average Curve-C rated hydraulic horsepower (hhp) from the ENERGY STAR Qualified Products List, accessed 5/03/2024.

¹⁸⁴⁷ Based on applying the ENERGY STAR and CEE Tier 1 specifications to the average Curve-C rated hydraulic horsepower (hhp) from the ENERGY STAR Qualified Products List, accessed 5/03/2024.

 $^{^{1848}}$ Consistent with assumption in the 2020 ENERGY STAR calculator, assuming 1.5 HP pump.

¹⁸⁴⁹ Consistent with assumption in the 2020 ENERGY STAR calculator.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

For TOS and NC:

 ΔkW = ((kWh/day_{base})/(Hrs/day_{base}) - (kWh/day_{ESTAR})/(Hr/day_{ESTAR})) * CF

For Early Replacement:

 ΔkW = ((kWh/dayexist)/(Hrs/dayexist) - (kWh/dayestar)/(Hr/dayestar)) * CF

Where:

kWh/day = daily energy consumption of pool pump, as defined above.

= Actual, defaults provided below:

	ΔkWh/day			
Pool Type	Base	ENERGY STAR	CEE T1	Exist
In ground	9.3	6.8	N/A	19.4
Above ground	5.8	4.3	1.8	6.6

Hrs/day_{base} = daily run hours of pool pump

= (Gallons * Turnover) / GPM

		Weighted Average GPM ¹⁸⁵⁰	Hours/Day
	Base	43.6	16.8
In ground	Efficient	32.2	22.8
	Exist	78	9.4
Above	Base	44.7	5.6
ground	Efficient	27.3	9.2
	Exist	78.1	3.2

CF = Summer Peak Coincidence Factor for measure

 $= 0.831^{1851}$

Based on defaults provided above:

	ΔkW			
Pool Type	TOS/N	IC	Retrof	it
Pool Type	ENERGY STAR	CEE T1	ENERGY STAR	CEE T1
In ground	0.2087	N/A	1.4689	N/A
Above ground	0.4770	0.7059	1.3300	1.5590

Mid-Life Baseline Adjustment

For early replacement measures, to account for the fact that the existing pump would have needed to be replaced

2025 IL TRM v13.0 Vol. 3_September 20, 2024_FINAL

¹⁸⁵⁰ The 2013 ENERGY STAR calculator provided high and low flow and hour assumptions for multi and variable speed pumps. This is used to estimate a weighted average GPM assumption, see 'IL TRM_Pool Pump Calculator_2024.xls'.

¹⁸⁵¹ Based on assumptions of daily load pattern through pool season. Assumption was developed for Efficiency Vermont but is considered a reasonable estimate for Illinois.

within the lifetime of the measure, a mid-life adjustment should be applied. This is calculated as the savings from the federal standard to the ESTAR pump divided by the savings from the existing pump. This should be applied after 4 years.

Based on defaults provided above:

	Adjustment Factor applied to		
Pool Type	Annual kWh Savings		
	ENERGY STAR	CEE T1	
In ground	19%	N/A	
Above ground	66%	84%	

FOSSIL FUEL SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-MSC-RPLP-V04-250101

REVIEW DEADLINE: 1/1/2027

5.7.2 Low Flow Toilets

DESCRIPTION

The first federal standards dealing with water consumption for toilets was the Energy Policy Act of 1992. It specified a gallon per flush (gpf) standard for both fixtures. These standards are used to define the baseline equipment for this measure. The Subsequent U.S. EPA WaterSense program in 2009 set even tighter standards for plumbing fixtures, including toilets. These standards are used to define the efficient equipment for this measure.

DEFINITION OF EFFICIENT EQUIPMENT

The high efficiency equipment is a U.S. EPA WaterSense certified residential toilet fixture.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a toilet that has a maximum gallons per flush outlined by the Energy Policy Act of 1992.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The estimated useful life for this measure is assumed to be 25 years. 1852

DEEMED MEASURE COST

The incremental costs for both are \$0.1853

LOADSHAPE

Loadshape RO3 - Residential Electric DHW

COINCIDENCE FACTOR

N/A

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

The following savings should be included in the total savings for this measure, but should not be included in TRC tests to avoid double counting the economic benefit of water savings.

 Δ kWh = Δ Water / 1,000,000 * Ewater total Ewater = IL Total Water Energy Factor (kWh/Million Gallons) = 5,010¹⁸⁵⁴

¹⁸⁵² http://www.metrohome.us/information_kit_files/life.pdf and ATD Home Inspection:

http://www.atdhomeinspection.com/advice/average-product-life/ is 50 years. 25 years is used to be conservative.

¹⁸⁵³ Measure cost assumption from City of Fort Collins, "Green Building Practice Summary," March 21, 2011, page 2. The document states "Information from the EPA WaterSense web site: WaterSense® labeled toilets are not more expensive than regular toilets. MaP testing results have shown no correlation between price and performance. Prices for toilets can range from less than \$100 to more than \$1,000. Much of the variability in price is due to style, not functional design."

¹⁸⁵⁴ This factor includes 2571 kWh/MG for water supply based on Illinois energy intensity data from a 2012 ISAWWA study and 2439 kWh/MG for wastewater treatment based on national energy intensity use estimates. For more information please review Elevate Energy's 'IL TRM: Energy per Gallon Factor, May 2018 paper'.

Toilet Calculation

For example, a low flow toilet is installed in a single family home with unknown occupancy.

 Δ kWh = 1495 / 1,000,000 * 5,010

= 7.5 kWh/year

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

FOSSIL FUEL SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

ΔWater = (GPF_{Base} - GPF_{Eff}) * NFPD * Household * ADPY

Where:

GPF_{Base} = Baseline equipment gallons per flush

= 1.6 for toilets¹⁸⁵⁵

GPF_{Eff} = Efficient equipment gallons per flush

 $= 1.28 \text{ for toilets}^{1856}$

NFPD = Number of flushes per day per occupant

 $= 5^{1857}$

Household = Number of people in the houshold.

= Actual. If unknown assume average number of people per household:

	Household ¹⁸⁵⁸		
Household Unit Type	IQ Participants	Non-IQ Participants	All Participants
Single-Family - Deemed	2.76	2.62	2.67
Multifamily - Deemed	2.3	2.09	2.18
Household type unknown			2.52 ¹⁸⁵⁹
Custom	Actual Occupancy or Number of Bedrooms 1860		

Use Multifamily if: Building meets utility's definition for multifamily

ADPY = Annual days per year

= 365 for residential

¹⁸⁵⁵ U. S. EPA WaterSense. "Water Efficiency Management Guide – Bathroom Suite" (EPA 832-F-17-016d), Nov 2017.

¹⁸⁵⁶ U. S. EPA WaterSense. "Water Efficiency Management Guide – Bathroom Suite" (EPA 832-F-17-016d), Nov 2017.

¹⁸⁵⁷ U.S. EPA WaterSense, "Water Specification for Flushing Urinals Supporting Statement." Appendix B: References for Calculation Assumptions.

¹⁸⁵⁸ Assumptions are taken from the draft unadjusted 2024 Baseline Study evaluation data provided in 07/2024 by GDS Associates. ¹⁸⁵⁹ Unknown is based on statewide weighted average of 69% single family and 31% multifamily, based on IL data from 2009 RECS Table HC2.9 Structural and Geographic Characteristics of Homes in Midwest Region, Divisions and States, 2009.

¹⁸⁶⁰ Bedrooms are suitable proxies for household occupancy, and may be preferable to actual occupancy due to turnover rates in residency and non-adult population impacts.

Toilet Calculation

For example, a low flow toilet is installed in a single family IQ home with unknown occupancy.

$$\Delta$$
Water = (1.6 – 1.28) * 5 * 2.76 * 365
= 1612 gal/year

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-MSC-LFTU-V02-250101

REVIEW DEADLINE: 1/1/2029

5.7.3 Level 2 Electric Vehicle Charger

DESCRIPTION

The measure is for the purchase of a Level 2 electric vehicle charger consistent with the ENERGY STAR specification for Electric Vehicle Supply Equipment (EVSE) installed for residential household use. Networked chargers enable access to online energy management tools through an EVSE network. Non-networked chargers are standalone units that are not connected to other units through an EVSE network.

This measure was developed to be applicable to the following program types: TOS. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

An ENERGY STAR qualified networked or non-networked level 2 electric vehicle charger.

DEFINITION OF BASELINE EQUIPMENT

A non-ENERGY STAR networked or non-networked level 2 electric vehicle charger.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life for the EV charger is assumed to be 10 years. 1861

DEEMED MEASURE COST

The incremental cost for the EV charger is assumed to be \$84 for a non-networked charger and \$47 for a networked charger. 1862

LOADSHAPE

Loadshape R19 - Residential Electric Vehicle Charger

COINCIDENCE FACTOR

Coincidence factor is embedded in deemed demand reduction savings estimate, so the coincidence factor is assumed to be 1.

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = (((Hours_PS + Hours_US) * SP_base) - (Hours_PS * SP_EEp + Hours_US * SP_EEu))/1000)$

Where:

Hours_C = Annual Active Charging Hours = 278 hours¹⁸⁶³

¹⁸⁶¹ Based on Northwest Power and Conservation Council, Regional Technical Forum updated workbook for Level 2 Electric Vehicle Charger version 3.1. See 'Lvl2EVChrgrsv2 3.xls'.

¹⁸⁶² Based on Northwest Power and Conservation Council, Regional Technical Forum updated workbook for Level 2 Electric Vehicle Charger version 3.1. See 'Lvl2EVChrgrsv2_3.xls'.

¹⁸⁶³ Based on Northwest Power and Conservation Council, Regional Technical Forum updated workbook for Level 2 Electric Vehicle Charger version 3.1. See 'Lvl2EVChrgrsv2_3.xls'.

Hours P = Total Annual Hours Plugged In

 $= 3,511 hours^{1864}$

Hours_PS = Annual Standby Hours Plugged In

= Hours_P - Hours_C

= 3,233 hours

Hours_US = Annual Standby Hours Unplugged

= 8760 - Hours_P

= 5,249 hours

SP_base = Baseline Average Standby Power (W)

= 3.7 for non-networked, 9.9 for networked 1865

SP EEp = Efficient Average Standby Power (W) with vehicle plugged in

= 3.5 for non-networked, 3.2 for networked 1866

SP_EEu = Efficient Average Standby Power (W) in no vehicle mode

= 2.1 for non-networked, 2.5 for networked 1867

 Δ kWh per non-networked charger = (((3,233 + 5,249) * 3.7) - (3,233 * 3.5 + 5,249 * 2.1))/ 1000)

= 9.0 kWh

 Δ kWh per networked charger = (((3,233 + 5,249) * 9.9) - (3,233 * 3.2 + 5,249 * 2.5))/ 1000)

= 60.5 kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

ΔkW = AveragekW * CF

Where:

AveragekW = Average electric demand during standby.

Non-networked = (((3.7-3.5) * 3233/8482) + ((3.7-2.1) * 5249/8482))/1000

= 0.00107 kW

Networked = (((9.9-3.2) * 3233/8482) + ((9.9-2.5) * 5249/8482))/1000

¹⁸⁶⁴ Based on Northwest Power and Conservation Council, Regional Technical Forum updated workbook for Level 2 Electric Vehicle Charger version 3.1. See 'Lvl2EVChrgrsv2 3.xls'.

¹⁸⁶⁵ INL charger testing https://avt.inl.gov/evse-type/ac-level-2 and ENERGY STAR Market and Industry Scoping Report Electric Vehicle Supply Equipment (EVSE) September 2013 (source data is from INL).

¹⁸⁶⁶ 2021 ENERGY STAR QPL of Residential EVSE. Averaged Partial On Mode Input Power (W) and Idle Mode Input Power (W). See Northwest Power and Conservation Council, Regional Technical Forum updated workbook for Level 2 Electric Vehicle Charger version 3.1. See 'Lvl2EVChrgrsv2 3.xls'.

¹⁸⁶⁷ 2021 ENERGY STAR QPL of Residential EVSE. See Northwest Power and Conservation Council, Regional Technical Forum updated workbook for Level 2 Electric Vehicle Charger version 3.1. See 'Lvl2EVChrgrsv2_3.xls'.

= 0.00713 kW

CF = Summer peak coincidence factor

= 1

FOSSIL FUEL SAVINGS

N/A

WATER AND OTHER NON-ENERGY IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-MSC-L2CH-V03-250101

REVIEW DEADLINE: 1/1/2029

5.7.4 Heat Pump Swimming Pool Heater

DESCRIPTION

This measure is applicable to electric heat pump pool heaters in residential applications. Heat pumps capture heat and move it from one place to another. The saving equations presented herein comprise three aspects of pool heating: convective heat loss via pool surface area due to water and air temperature differential, initial heat of full pool volume for seasonal pool use and reheat of pool refill on year round pools, and the heating of added pool water to offset water loss through evaporation. This measure applies to replacing either a gas-fired pool heater or a an electric resistance pool heater. If baseline equipment is a gas-fired pool heater, electric energy impacts result in additional electrical usage, but lower overall site energy usage.

This measure is only applicable to inground or outdoor single family home pools and is not applicable to spas. This measure is not applicable to community pools in multifamily housing complexes. 1869

This measure was developed to be applicable to the following program types: TOS, NC, EREP.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient equipment is defined as a heat pump that is more efficient than Illinois energy code. This type of heat pump is designed to heat pool water for residential sized pools. Compliance condition of the equipment is that it is an AHRI-certified heat pump pool heater.

DEFINITION OF BASELINE EQUIPMENT

The baseline reflects the existing pool water heater which could be natural gas, electric resistance or a less electric efficient heat pump water heater. The baseline equipment must be less efficient than that new equipment.

Heating Type	Heat Pump Efficiency
Natural Gas	82% Thermal
	Efficiency ¹⁸⁷⁰
Electric Resistance	100%
Heat Pump	3.5 COP

The California Appliance Efficiency Regulations (Title 20) requires a minimum coefficient of performance (COP) of 3.5 for heat pump pool heaters and a minimum thermal efficiency (TE) of 82% for all natural residential pool water heaters.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

15 years. 1871

DEEMED MEASURE COST

Estimated gross and incremental installation costs are listed below. 1872 Costs include material cost of heat pump,

2025 IL TRM v13.0 Vol. 3_September 20, 2024_FINAL

¹⁸⁶⁸ ASHRAE Handbook: HVAC Applications, 2019, pg 51.25. ASHRAE states that except in aboveground pools and rare cases where cold groundwater flows past the pool walls, conductive losses through pool walls are small and can be ignored. ASRHAE additionally indicates that radiation losses that occur due to sky temperature differentials

at night may be offset by solar heat gains of an unshaded pool during the day.

¹⁸⁶⁹ New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs — Residential, Multi-family, and Commercial/Industrial Measures Version 9

¹⁸⁷⁰ Department of Energy. "10 CFR 430.32 - Energy and water conservation standards and their effective dates." Section (k) (2).

¹⁸⁷¹ Database for Energy Efficient Resources (DEER). "2014 DEER Update Study." July 17, 2013.

http://www.deeresources.com/files/home/download/DEER2014UpdatePlan-July2013-v1.pdf

¹⁸⁷² California Technical Reference Manual for Energy Efficiency. Southern California Edison (SCE). 2021. "SWRE005-01 Cost Analysis.xlsm."

infrastructure for installation, and labor.

Equipment Type	Gross Cost	Incremental Cost
Gas Heater	\$5,158	N/A
Heat Pump Heater	\$7,074	\$1,916

LOADSHAPE

Loadshape R15 - Residential Pool Pumps

COINCIDENCE FACTOR

The prescribed value for the coincidence factor is 0 for outdoor pools and is 0.8 for indoor pools.

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

Non fuel switch measures:

Net site energy consumed at the site is calculated below:

$$\Delta kWh = \frac{\left(BTU_{Surface} + BTU_{Reheat} + BTU_{Evap}\right)}{3{,}412} * \left[\left(\frac{F_{fuel\ baseline}}{E_{t,baseline}}\right) + \left(\frac{F_{elec,baseline}}{COP_{baseline}} - \frac{1}{COP_{ee}}\right)\right]$$

Fuel switch measures:

Fuel switch measures must produce positive total lifecycle energy savings (i.e., reduction in Btus at the premises) in order to qualify. This is determined as follows:

FossilHeatReplaced
$$= \frac{\left(BTU_{Surface} + BTU_{Reheat} + BTU_{Evap}\right)}{1,000,000} * \left[\left(\frac{F_{fuel\ baseline}}{E_{t,baseline}}\right) \right]$$

$$= \frac{({}_{BTU_{Surface}} + {}_{BTU_{Reheat}} + {}_{BTU_{Evap}})}{1,000,000} * \left[\left(\frac{F_{fuel\ baseline}}{E_{t,baseline}} \right) + \left(\frac{F_{elec,baseline}}{COP_{baseline}} - \frac{1}{COP_{ee}} \right) \right]$$

If SiteEnergySavings calculated above is positive, the measure is eligible.

The appropriate savings claim is dependent on which utilities are supporting the measure as provided in a table below:

Measure supported by:	Electric Utility claims (kWh):	Gas Utility claims (therms):
Electric utility only	SiteEnergySavings * 1,000,000/3,412	N/A
Electric and gas utility (Note utilities may make alternative agreements to how savings are allocated as long as total MMBtu savings remains the same).	%IncentiveElectric * SiteEnergySavings * 1,000,000/3,412	%IncentiveGas * SiteEnergySavings * 10

Measure supported by:	Electric Utility claims (kWh):	Gas Utility claims (therms):
Gas utility only	N/A	SiteEnergySavings * 10

Where:

BTU _{Surface} 1873	= Annual heating energy load contributed by convection/radiation heat losses via pool surface
	$= (T_{pool} - T_{amb}) * A_{pool} * U * [hrs - (hrs_{cover} - ESF_{cover,surface})]$
BTU _{Reheat} 1874	= Annual heating energy load contributed by heating the full volume of pool water
	$= V_{pool} * 8.33 * (T_{pool} - T_{main}) * F_{Reheat}$
BTU _{Evap} 1875	= Annual heating energy load contributed by evaporation
	$= 0.1*AF*A_{pool}*\left(P_{\omega}-P_{dp}\right)*\left(T_{pool}-T_{main}\right)*\left[hrs-\left(hrs_{cover}*ESF_{cover,evap}\right)\right]$
F _{elec,baseline}	= Baseline electric pool heater factor; used to account for the presence or absence of an electric pool heater.
	= 1.0 if baseline system is electric resistance pool heater
	= 0 if baseline system is not an electric resistance pool heater
Ffuel,baseline	= Baseline fossil fuel pool heater factor; used to account for the presence or absence of a fossil fuel-fired pool heater.
	= 1.0 if baseline system is fossil fuel-fired pool heater
	= 0 if baseline system is not a fossil fuel-fired pool heater
COP _{baseline}	= Coefficient of performance, ratio of output energy/input energy of baseline electric resistance pool heater, if present.
	= 1.0 if heater is electric resistance; 3.5 if heater is a heat pump
COP_ee	= Coefficient of performance, ratio of output energy/input energy of heat pump pool heater.
	= Actual
E _t ,baseline	= Thermal efficiency of baseline fossil fuel-fired pool heater, if present.
	= 0.82 if unknown
T_pool	= Pool temperature set point, (°F).
	= Actual
T _{amb}	= Average temperature of surrounding ambient air, (°F). If pool is indoors, this is the indoor temperature of room with pool from application. For outdoor pools, see "Ambient Air Temperature and Pressure (T_{amb} and P_{dp})" table below.
T_{main}	= Supply water temperature in water main, (°F). See "Cold Water Inlet Temperature
	(**

¹⁸⁷³ ASHRAE Handbook: HVAC Applications, 2019, Ch 51 Service Water Heating, Swimming Pools/Health Clubs.

(Tmain)" table below.

¹⁸⁷⁴ Ibid, eqn. 14

 $^{^{1875}}$ ASHRAE Handbook: HVAC Applications, 2019, Ch 6 Indoor Swimming Pools, eqn. 3, multiplied by required heating temperature difference

= Surface area of pool, (ft²). From application. Assistance in determining the area of A_{pool} common pool shapes as follows: 1876 Elliptical: 3.14 x short radius x long radius Kidney Shaped: 0.45 x length x (width at one end x width at other end) Oval: 3.14 x radius² + (length of straight sides x width) Rectangular: length x width V_{pool} = Volume of pool water, (gallons) = ActualFrom application. FReheat = Factor capturing annual number of times full pool volume is heated to the desired temperature, whether as the result of refill or heating of pool water from ground water temperature at start of season. From application. = 0 if pool is filled by delivery service providing preheated water = 1 if otherwise 1877 = Surface heat loss coefficient, (BTU/hr ft² °F)¹⁸⁷⁸ U = 3.9 for indoor pool = 5.3 for outdoor pool, sheltered = 6.6 for outdoor pool, unsheltered ΑF = Activity Factor, consideration of activity within pool, allowing for splashing and a limited area of wetted deck. 1879 = 0.5 $P_{\boldsymbol{\omega}}$ = Saturation vapor pressure taken at surface water temperature, (in. Hg). See "Saturation Vapor Pressure $(P_{\omega})''$ table below based on pool water temperature. P_{dp} = Saturation pressure at dew point, (in. Hg). See "Ambient Air Temperature and Pressure (Tamb and Pdp)" table below. hrs = Total annual swimming season hours. From application. Hours shall reflect the total annual hours through the swimming season (number of days between season opening and season closing x 24). = Total annual hours pool covered during the swimming season. From application. Hours hrscover shall reflect the total hours pool covered during the swimming season. Set equal to 0 if pool is left uncovered throughout swimming season. ESF_{cover,surface} = Energy Savings Factor of pool cover to insulate from convective and radiation heat

__

¹⁸⁷⁶ Guidance for determining surface area of common pool shapes can be found at ASHRAE Handbook: HVAC Applications, 2019.

¹⁸⁷⁷ The water temperature of an undrained pool between swim seasons is assumed to have reached the water main temperature by the beginning of the next swim season. If the pool remains open throughout the year, it is assumed the pool undergoes one effective full pool volume reheat from water main temperature for cleaning and other maintenance (CDC, Healthy Swimming, Operating Public Swimming Pools).

¹⁸⁷⁸ ASHRAE Handbook: HVAC Applications, 2019, Ch 51, eqn. 15. Surface heat loss coefficient adjusted from ASHRAE Handbook rolled up surface heat transfer conservations by discounting contribution of evaporation (50-60%) and applying the following assumption for wind velocity: Indoor pools experience average wind speeds less than 3.5 mph (10.5x0.5x0.75), outdoor sheltered pools experience wind speeds between 3.5 and 5 mph (10.5x0.5), and outdoor unsheltered pools experience wind speeds above 5 mph (10.5x0.5x1.25).

¹⁸⁷⁹ ASHRAE Handbook, Applications, 2019, Ch 6, Table 1

	losses
	$= 0.80^{1880}$
ESF _{cover,evap}	= Energy Savings Factor of pool cover to insulate from evaporative heat loss = 0.95 ¹⁸⁸¹
0.1	= Simplified empirically derived evaporation factor considering latent heat and air flow. 1882 Assumes 1,000 BTU/lb of latent heat required to change water to vapor at surface water temperature and air velocity over water surface ranging from 10 to 30 fpm, (lb/hr ft² in. hg)
8.33	= Energy required (BTU) to heat one gallon of water by one degree Fahrenheit
3,412	= Conversion factor, one kWh equals 3,412 BTU

Cold Water Inlet Temperature (T_{main})

Supply water main temperatures vary according to climate, and are approximately equal to the annual average outdoor temperature plus 6°F.¹⁸⁸³ Supply main temperatures based on the annual outdoor temperature are shown below.

Climate Zone	Annual Average Outdoor Temperature (°F) ¹⁸⁸⁴	T _{main} (°F)
1 (Rockford)	49.2	55.2
2 (Chicago)	51.4	57.4
3 (Springfield)	53.0	59.0
4 (Belleville)	57.3	63.3
5 (Marion)	56.5	62.5

Saturation Vapor Pressure (Pω)

Lookup saturation vapor pressure taken at surface water temperature for indoor and outdoor pools from the table below, based on pool temperature. 1885

Pool Temperature, Tpool (°F)	P _ω (in. Hg)
72	0.79
74	0.85
76	0.91
78	0.97
80	1.03
82	1.10
84	1.18

¹⁸⁸⁰ U.S. D.O.E., Swimming Pool Covers.

¹⁸⁸¹ National Plasterers Council, Effectiveness of Pool Covers to Reduce Evaporation from Swimming Pools, prepared by California Polytechnic State University, January 2016.

¹⁸⁸² Simplified constant presented in ASHRAE Handbook: HVAC Application 2019 Ch 6 based on empirically derived eqn (2) constants and ASHRAE's variable assumptions

¹⁸⁸³ Burch, Jay and Christensen, Craig, "Towards Development of an Algorithm for Mains Water Temperature." National Renewable Energy Laboratory.

 $^{^{1884}}$ Average annual outdoor temperatures taken from NCDC 1981-2010 climate normals. https://www.ncdc.noaa.gov/cdo-web/datatools/normals

¹⁸⁸⁵ ASHRAE Handbook: Fundamentals 2017, Ch 1 Psychrometrics, Table 3 Thermodynamic Properties of Water at Saturation

Ambient Air Temperature and Pressure (Tamb and Pdp)

Indoor pools shall apply ambient air temperature from application based on facility set point temperature. Lookup saturation vapor pressure based on facility set point temperature and relative humidity (RH) from the table below, based on psychrometric analysis. Interpolation may be performed for indoor pool ambient temperatures not listed.

Indoor Pool	Indoor Pool, P _{dp} (in. Hg)		
Temperature, Tamb (°F)	RH 50%	RH 55%	RH 60%
72	0.40	0.44	0.47
74	0.42	0.47	0.51
76	0.45	0.50	0.54
78	0.48	0.53	0.58
80	0.52	0.56	0.62
82	0.55	0.61	0.66
84	0.59	0.65	0.71
86	0.63	0.69	0.75

For outdoor pools, lookup T_{amb} and P_{dp} from the table below based on location. Ambient temperature averages for outdoor pools apply a 4-month swimming season.

Climate Zone	Outdoor Pool Temperature T _{amb} (°F) ¹⁸⁸⁶	Outdoor Pool P _{dp} (in. Hg) ¹⁸⁸⁷
1 (Rockford)	69.6	0.52
2 (Chicago)	73.4	0.53
3 (Springfield)	72.9	0.58
4 (Belleville)	73.9	0.60
5 (Marion)	74.8	0.62

Fuel Switch Example

A gas pool heater is replaced with a heat pump pool heater at a single family home located near Chicago. The swimming season spans 4 months (2,904 hours) per year and the pool is left uncovered at night. The pool is 15 ft by 30 ft and has a volume of 17,600 gallons, and is sheltered from winds by the house and backyard trees. The pool temperature is maintained at 80°F. The replaced gas pool heater has an efficiency of 82% and the heat pump pool heater has an efficiency of 5.0 COP. Annual Electric Energy Savings, Summer Peak Coincident Demand Savings and Annual Fossil Fuel Energy Savings are calculated as below.

 $\Delta kWh = (BTUSurface + BTUReheat + BTUEvap)/3,412 \times (Felec,baseline/COPbaseline - 1/COPee)$

 $\Delta kW = \Delta kWh/hrs \times CF$

 $\Delta MMBtu = (BTUSurface + BTUReheat + BTUEvap)/1,000,000 \times Ffuel, baseline/Et, base$

where:

¹⁸⁸⁶ DOE Weather Data, TMY3 (Typical Meteorological Year), developed by NREL. Adjusted to apply to outside air temperature from June 1 to September 30 in each climate zone.

¹⁸⁸⁷ DOE Weather Data, TMY3 (Typical Meteorological Year), developed by NREL. Saturation pressure at dew point calculated as a function of dew point and atmospheric pressure. Values averaged from June 1 to September 30 in each climate zone.

 $BTUSurface=(Tpool-Tamb)\times Apool\times U\times [hrs-(hrscover\times ESFcover, surface)]$

BTUReheat=Vpool×8.33×(Tpool-Tmain)×FReheat

 $BTUEvap = 0.1 \times AF \times Apool \times (P\omega - Pdp) \times (Tpool - Tmain) \times [hrs - (hrscover \times ESF cover, evap)]$

Tpool = 80, from application

Tamb = 73.4, from Ambient Air Temperature and Pressure section based on location from application

Apool = width x length = $15' \times 30' = 450$ square feet

Width and length from application

U = 5.3, from Summary of Variables and Data Sources table based on conditions from application

hrs = 2,904, from 121 day season or application

hrscover = 0, from application

ESFcover, surface = 0.8, from Summary of Variables and Data Sources table

Vpool = 17,600, from application

Tmain = 57.4, from Cold Water Inlet Temperature table based on location from application

FReheat = 1, from Summary of Variables and Data Sources table

AF = 0.5, from Summary of Variables and Data Sources table

 $P\omega = 1.03$, from Saturation Vapor Pressure section based on pool temperature from application

Pdp = 0.53, from Ambient Air Temperature and Pressure section based on location from application

ESFcover, evap = 0.95, from Summary of Variables and Data Sources table

Felec, baseline = 0, from Summary of Variables and Data Sources table based on application

COPee = 5.0, from application

CF = 0, from Summary of Variables and Data Sources table based on application

Ffuel, baseline = 1, from Summary of Variables and Data Sources table based on application

Et,baseline = 0.82, from application

 $BTUSurface = (80-73.4) \times 450 \times 5.3 \times [2,904-(0)] = 45,711,864$ Btu

BTUReheat=17,600×8.33×(80-57.4)×1=3,313,341 Btu

BTUEvap=0.1×0.5×450×(1.03-0.53)×(80-57.4)×[2,904-(0)]=738,342 Btu

 $\Delta kWh = (45,711,864+3,313,341+738,342)/3,412 \times (0-1/5) = -2,917 \ kWh$

= -10.0 $\Delta MMBtu$ of Electric Site Energy

 $\Delta kW = -2,917 \times 0 = 0 \ kW$

 $\Delta MMBtu$ =(45,711,864+3,313,341+738,342)/1,000,000×1/0.82=60.7 $\Delta MMBtu$ of Natural Gas Site Energy

Converted to Therms this is 607

 $\Delta MMBtu$ Site Energy Savings is = 60.7 MMBtu – 10.0 MMBtu = 50.7 MMBtu

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta kW = \frac{\left(BTU_{Surface} + BTU_{Reheat} + BTU_{Evap}\right)}{3,412} * \left(\frac{F_{elec,baseline}}{COP_{baseline}} - \frac{1}{COP_{ee}}\right) * \frac{CF}{hrs}$$

Where CF value depends on location of pool

CF = 0 for outdoor pools

CF = 0.8 for indoor pools

FOSSIL FUEL SAVINGS

N/A

WATER AND OTHER NON-ENERGY IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-MSC-HPPH-V01-230101

REVIEW DEADLINE: 1/1/2026

5.7.5 Tree Planting

DESCRIPTION

This measure describes savings from a program where utility sponsored staff work with homeowners or building operators to determine the appropriate location and ultimately plant trees to maximize HVAC savings.

How measure saves energy:

- Trees when in full foliage block direct sunlight onto exterior surfaces of residences, and in the cooling season
 reduce energy use. Primary effects are reduced insulation into residences through windows. Secondary
 effects are reduced wall and roof temperatures which reduce conduction through walls and roofs into
 residences.
- 2. Trees when in full foliage block winds and associated infiltration into residences. This saves both heating and cooling energy since outdoor air is generally either hotter or colder than the desired indoor temperature.
- 3. Because trees have differential winter impacts, based on whether they are leaf-retaining (Coniferous) or leaf-shedding (Deciduous), there are significantly differential effects of tree types for each facing wall of a residence. Therefore, eligibility requirements for types of trees planted on specific residence wall faces have been set to maximize savings and minimize losses due to trees.
- 4. Trees must provide shading to at least the 3rd story of a home in the cooling season and eligibility therefore requires trees to be a minimum of 30 feet tall when fully mature.

Markets measure serves:

This measure provides benefits to single-family residences as well as multi-family residences. It provides benefits for all types of homes, from 1 story to 3 story residences. Trees must be planted within 30 feet of the walls of homes so that they provide shading during summer days when the sun is at a high angle.

Limitations to measure applicability:

This measure is inapplicable to residences that currently have trees shading the face where the trees are proposed to be added (that is, the face of the existing residence where the tree is proposed must currently be unshaded). Coniferous trees are ineligible on the East and South faces of residences because these trees block beneficial sunlight in the heating season, which reduces annual savings severely. Similarly, Deciduous trees are ineligible on North faces of residences because they lose their leaves in winter and therefore have a minimal wind-blocking effect on infiltration during prevailing NW and W winter winds; in addition, because they are on the North face, they provide attenuated benefits for summer cooling energy use.

This measure was developed to be applicable to the following program types: RF, NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

Trees must be horticulturally defined as either leaf-retaining (e.g., Coniferous) or leaf-shedding (e.g., Deciduous). The eligibility of tree types are dependent on the orientation of the wall of the residence being shaded as follows:

- 1. On North-facing walls, only Coniferous trees (i.e., trees that retain leaves all year) are eligible.
- 2. On East- and South-facing walls, only Deciduous trees (i.e., trees that lose all leaves in Fall) are eligible.
- 3. On West-facing walls, both deciduous and coniferous trees are eligible.
- 4. Trees must be minimum 30 ft tall when fully mature and have a lifetime of at least 20 years in Midwest climate.
- 5. Trees must be planted within 30 feet of the wall that they are shading and no closer than 20 feet apart.

DEFINITION OF BASELINE EQUIPMENT

Residence wall where trees are proposed to be planted currently must be fully or partially unshaded OR currently

be planted with "ineligible" trees that will be removed and replaced with "eligible" trees. If the residence wall currently is partially shaded, the proposed tree must be planted in front of the currently unshaded portion of the wall.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

Savings from tree planting take a number of years to be realized as significant growth is required before the shading makes a significant impact. The length of time before savings are fully achieved will be dependent on a number of factors including size of tree when planted, proximity to building and the speed of growth. This measure has been designed based on the assumption that savings would not be achieved for the first five years and would then be realized from year 6 and for a further 20 years.

However, in order to simplify the implementation of this measure, a reduced savings is claimed from year 1 and for an assumed measure life of 25 years, which results in an equivalent present value of lifetime savings. This results in a 79% multiplier 1888 applied to the calculated annual savings for the measure.

If there is reason to believe that the length of time before savings are achieved is significantly different to the 5 years assumed, an alternative multiplier can be applied.

DEEMED MEASURE COST

Use actual installed cost per tree planted.

LOADSHAPE

Loadshape R08 - Residential Cooling

Loadshape R09 - Residential Electric Space Heat

Loadshape R10 - Residential Electric Heating and Cooling

COINCIDENCE FACTOR

The summer peak coincidence factor for cooling is provided in two different ways below. The first is used to estimate peak savings during the utility peak hour and is most indicative of actual peak benefits, and the second represents the *average* savings over the defined summer peak period, and is presented so that savings can be bid into PJM's capacity market.

```
CFssp = Summer System Peak Coincidence Factor for Central A/C (during utility peak hour)
```

 $=68\%^{1889}$

CF_{SSP} = Summer System Peak Coincidence Factor for Heat Pumps (during system peak hour)

= 72%1890

CF_{PJM} = PJM Summer Peak Coincidence Factor for Central A/C (average during PJM peak period)

 $=46.6\%^{1891}$

¹⁸⁸⁸ Assuming Real Discount Rate of 0.46%.

¹⁸⁸⁹ Based on metering of 24 homes with central AC during PY4 and PY5 in Ameren Illinois service territory.

¹⁸⁹⁰ Based on analysis of metering results from 24 heat pumps in Ameren Illinois service territory in PY5 coincident with AIC's 2010 system peak; 'Impact and Process Evaluation of Ameren Illinois Company's Residential HVAC Program (PY5)'.

¹⁸⁹¹ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

Total $\Delta kWh = (\Delta kWh_{HeatingDirectSolar} + \Delta kWh_{CoolingDirectSolar} + \Delta kWh_{HeatingInfiltration} + \Delta kWh_{CoolingInfiltration}) * (1- LMR) * NPVDiscount$

Where:

ΔkWh_{HeatingDirectSolar} = Annual heating savings due to reduction in Direct Solar Gain

= #Trees * ThermsHeatingIncrease/Tree * 100,000 / 3,412 / nHeat * %ElectricHeat

#_Trees = total number of eligible trees planted

= actual number of eligible trees planted on any face of the residence

ThermsHeatingIncrease/Tree = net annual therms of heating increase per tree due to shading, based

on the average annual savings of eligible trees planted on all faces of

the residence

= - 3.2 Therms/tree ¹⁸⁹²

100,000 = conversion of Therms to BTUs

3,412 = conversion BTUs to kWh

ηHeat = Efficiency of heating system

= In order to account for the long-term aspect of this measure and the likely replacement of existing heating and cooling equipment during the lifetime of this measure, the following system efficiency assumptions should be used:

Efficiency Assumption	System Type	New Baseline Efficiency
ηHeat	Electric Resistance	1.0 COP
	Heat Pump (7.0HSPF2/3.413)*0.85	1.74 COP
	Furnace 80% AFUE * 0.85	68% AFUE
	Boiler	84% AFUE

%ElectricHeat = Percent of homes that have electric space heating

= 100 % for Electric Resistance or Heat Pump

= 0 % for Natural Gas

_

¹⁸⁹² Savings are based upon a modeling spreadsheet provided by Leidos – see 'Shade Tree Energy Savings – REVISED.xlsx'. This analysis includes a large number of assumptions and therefore resultant savings were trued up against TRM assumptions of full cooling energy consumption to result in a percentage savings that was consistent with a number of reviewed studies (namely: Home Energy Magazine: "Shade Trees as a Demand-Side Resource", Energy and Buildings: "Peak power and cooling energy savings of shade trees", and Ecological Economics: "Energy Savings from tree shade". These references can be found in the reference folder.)

= If unknown ¹⁸⁹³	use the foll	owing table:
------------------------------	--------------	--------------

	Location				
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown
Ameren	18%	26%	38%	39%	29%
ComEd	14%	22%	43%	48%	21%
PGL	1.0%	1.5%	4.0%	2.8%	2.2%
NSG	1.3%	0.8%	32.5%	1.2%	3.3%
Nicor	1.3%	0.8%	32.5%	1.2%	3.3%
All DUs ¹⁸⁹⁴					26%

<u>Note</u>: If a measure is supported by a gas and electric utility through a joint program, and it is unknown whether the participant has a gas supply, the electric utility values in the table above should be used. If it is known that the participant has a gas supply, the values from the gas utility above should be applied.

 $\Delta kWh_{CoolingDirectSolar}$ = Annual cooling savings due to reduction in Direct Solar Gain

= #Trees * Ton-hrCoolingSaved/Tree * 12,000 / (1,000 * ηCool) * %Cool

Ton-hrCoolingSaved/Tree = Net annual Ton-hours of cooling saved per tree due to shading, based on the

average annual savings of eligible trees planted on all faces of the residence

= 137.3 ton-hrs/year/tree¹⁸⁹⁵

12,000 = conversion of ton-hours to BTUs

ηCool = Efficiency (SEER2) of Air Conditioning equipment (kBtu/kWh)

= In order to account for the long-term aspect of this measure and the likely replacement of existing heating and cooling equipment during the lifetime of this

measure, the following system efficiency assumptions should be used:

Efficiency Assumption	System Type	New Baseline Efficiency
nCool	Central AC	12.4 SEER2
IJCOOI	Heat Pump	13.3 SEER2

%Cool = Percent of homes that have cooling

_

¹⁸⁹³ Based on the average % Natural Gas used for space heating in Unknown residential structure types across all utilities covered by the IL program. Residence types include: SF, SF LI, MF & MF LI. Utilities included: Ameren, ComEd, People's Gas, Northshore Gas & Nicor. Data provided from 2016 Ameren Illinois Demand Side Management (DSM) Market Potential Study by Applied Energy Group, ComEd's 2019 Baseline Survey on residential space heating share, and PY2022-2023 Implementation Contractors Data for People's Gas, Northshore Gas & Nicor .

¹⁸⁹⁴ For the weighted average calculations, please see the Analysis file. PGL, NSG, Nicor & gas customers were assumed to follow the provided split. ComEd total customers, minus overlap with PGL,NSG & Nicor, therefore electric only homes. Ameren is total customers minus Nicor.

¹⁸⁹⁵ Savings are based upon a modeling spreadsheet provided by Leidos – see 'Shade Tree Energy Savings – REVISED.xlsx'. This analysis includes a large number of assumptions and therefore resultant savings were trued up against TRM assumptions of full cooling energy consumption to result in a percentage savings that was consistent with a number of reviewed studies (namely: Home Energy Magazine: "Shade Trees as a Demand-Side Resource", Energy and Buildings: "Peak power and cooling energy savings of shade trees", and Ecological Economics: "Energy Savings from tree shade". These references can be found in the reference folder.)

Central Cooling?	%Cool
Yes	100%
No	0%
Unknown (for use in program evaluation only) ¹⁸⁹⁶	66%

 $\Delta kWh_{HeatingInfiltration}$

- = Annual heating savings due to reduction in infiltration
- = #Trees * CFM50/sqft * Area/ N_Heat * %Reduction_HeatingInfiltration/Tree * 60 * 24
- * HDD60 * 0.018 / (COPHeating * 3,412) * %ElectricHeat

CFM50/sqft

= Average CFM of infiltration per square foot of residence floor area based on 50 pascal pressure differential (This is a Customer Input of degree of leakage rate of house; Assumes the CFM50 leakage rates in the following table; assumes CFM50 leakage rates were based on a typical 2,250 sq. ft. residence.)

Shade Tree ECM Constants	CFM50/sqft	CFM50	Source
Leaky/Low Insulation	2.22	5,000 CFM at 50 pascal	Estimate for Leaky 2,250 sqft dwelling
Average/Average Insulation Or if Unknown	1.51	3,400 CFM at 50 pascal	Estimate for Average 2,250 sqft dwelling
Tight/High Insulation	1.00	2,250 CFM at 50 pascal	Estimate for Tight 2,250 sqft dwelling

Area = floor area of residence

= actual

%Reduction HeatingInfiltration/Tree

= Average infiltration reduction per tree during heating season due to tree blocking wind, based on average annual savings of eligible trees planted on all faces of the residence.

= 0.47% infiltration reduction per tree ¹⁸⁹⁷

N heat

- = Conversion factor from leakage at 50 Pascal to leakage at natural conditions
- = Based on climate zone, building height and exposure level: 1898

Climate Zone	N_heat (by # of stories)			
(City based upon)	1	1.5	2	3
1 (Rockford)	23.8	21.1	19.3	17.1
2 (Chicago)	23.9	21.1	19.4	17.2
3 (Springfield)	24.2	21.5	19.7	17.4
4 (St Louis, MO)	25.4	22.5	20.7	18.3

¹⁸⁹⁶ Percentage of homes in Illinois that have central cooling from "Table HC7.9 Air Conditioning in Homes in Midwest Region, Divisions, and States, 2009" from Energy Information Administration, 2009 Residential Energy Consumption Survey

¹⁸⁹⁷ Savings are based upon a modeling spreadsheet provided by Leidos – see 'Shade Tree Energy Savings – REVISED.xlsx'. This analysis includes a large number of assumptions and therefore resultant savings were trued up against TRM assumptions of full cooling energy consumption to result in a percentage savings that was consistent with a number of reviewed studies (namely: Home Energy Magazine: "Shade Trees as a Demand-Side Resource", Energy and Buildings: "Peak power and cooling energy savings of shade trees", and Ecological Economics: "Energy Savings from tree shade". These references can be found in the reference folder.)

¹⁸⁹⁸ N-factor is used to convert 50-pascal blower door air flows to natural air flows and is dependent on geographic location and # of stories. These were developed by applying the LBNL infiltration model (see LBNL paper 21040, *Exegisis of Proposed ASHRAE Standard 119: Air Leakage Performance for Detached Single-Family Residential Buildings*; Sherman, 1986; page v-vi, Appendix page 7-9) to the reported wind speeds and outdoor temperatures provided by the NRDC 30 year climate normals. For more information see Bruce Harley, CLEAResult "Infiltration Factor Calculations Methodology.doc".

Climate Zone	N_heat (by # of stories)			
(City based upon)	1	1.5	2	3
5 (Paducah, KY)	27.8	24.6	22.6	20.0

60 = conversion of ton-hours cooling to BTUs

24 = conversion of Watts to kWh

HDD = Heating Degree Days

= Dependent on location: 1899

Climate Zone (City based upon)	HDD 60
1 (Rockford)	5230
2 (Chicago)	4798
3 (Springfield)	4266
4 (Belleville)	3188
5 (Marion)	3390
Weighted Average ¹⁹⁰⁰	4631

0.018 = Specific Heat capacity of Air (BTU/Cu.Ft./F)

 $\Delta kWh_{CoolingInfiltration}$

- = Annual cooling savings due to reduction in infiltration
- = #Trees * CFM50/sqft * Area / N_Cool * %_ ReductionCoolingInfiltration/Tree * 60
- * 24 * CDD65 * LM * 0.018 / (ηCool * 1000) * %Cool

N_cool

- = Conversion factor from leakage at 50 Pascal to leakage at natural conditions
- =Dependent on location and number of stories: 1901

Climate Zone	N_cool (by # of stories)			
(City based upon)	1	1.5	2	3
1 (Rockford)	39.5	35.0	32.1	28.4
2 (Chicago)	38.9	34.4	31.6	28.0
3 (Springfield)	41.2	36.5	33.4	29.6
4 (St Louis, MO)	40.4	35.8	32.9	29.1
5 (Paducah, KY)	43.6	38.6	35.4	31.3

%Reduction_CoolingInfiltration/Tree

= Average infiltration reduction per tree during cooling season due to tree blocking wind, based on average annual savings of

¹⁸⁹⁹ National Centers for Environmental Information (NCEI) Annual Normals, from 2006 - 2020, calculated with a base temp of 60°F, consistent with the findings of Belzer and Cort, Pacific Northwest National Laboratory in "Statistical Analysis of Historical State-Level Residential Energy Consumption Trends," 2004. There is a county mapping table in Volume 1, Section 3.7 providing the appropriate city to use for each county of Illinois.

¹⁹⁰⁰ Weighted based on number of occupied residential housing units in each zone.

¹⁹⁰¹ N-factor is used to convert 50-pascal blower door air flows to natural air flows and is dependent on geographic location and # of stories. These were developed by applying the LBNL infiltration model (see LBNL paper 21040, *Exegisis of Proposed ASHRAE Standard 119: Air Leakage Performance for Detached Single-Family Residential Buildings*; Sherman, 1986; page v-vi, Appendix page 7-9) to the reported wind speeds and outdoor temperatures provided by the NRDC 30 year climate normals. For more information see Bruce Harley, CLEAResult "Infiltration Factor Calculations Methodology.doc".

eligible trees planted on all faces of the residence.

= 2.26% infiltration reduction per tree ¹⁹⁰²

CDD = Cooling Degree Days

= Dependent on location: 1903

Climate Zone (City based upon)	CDD 65
1 (Rockford)	877
2 (Chicago)	1047
3 (Springfield)	1183
4 (Belleville)	1641
5 (Marion)	1450
Weighted	1098
Average ¹⁹⁰⁴	

LM = Latent Multiplier

= Multiplies the CDD dry bulb temperature difference by a factor that accounts for the additional energy needed to dehumidify air when in cooling mode

Climate Zone (City based upon)	LM
1 (Rockford)	3.3
2 (Chicago)	3.2
3 (Springfield)	3.7
4 (St Louis, MO)	3.6
5 (Paducah, KY)	3.7

LMR

= Lifetime Mortality Rate – i.e. assumed percentage of trees that do not go on to provide the savings characterized in this measure.

= 18% for single family and 39% for multi family 1905

NPVDiscount

= Multiplier to reduce annual savings claimed from year 1 to account for assumed length of time before savings are realized.

 $= 79\%^{1906}$

¹⁹⁰² Savings are based upon a modeling spreadsheet provided by Leidos – see 'Shade Tree Energy Savings – REVISED.xlsx'. This analysis includes a large number of assumptions and therefore resultant savings were trued up against TRM assumptions of full cooling energy consumption to result in a percentage savings that was consistent with a number of reviewed studies (namely: Home Energy Magazine: "Shade Trees as a Demand-Side Resource", Energy and Buildings: "Peak power and cooling energy savings of shade trees", and Ecological Economics: "Energy Savings from tree shade". These references can be found in the reference folder.)

¹⁹⁰³ National Centers for Environmental Information (NCEI) Annual Normals, from 2006 - 2020, calculated with a base temp of 65°F. There is a county mapping table Volume 1, Section 3.7 providing the appropriate city to use for each county of Illinois.

 $^{^{1904}}$ Weighted based on number of occupied residential housing units in each zone (US Census 2010).

¹⁹⁰⁵ Assumption based on McPherson, "Energy-Saving Potential of Trees in Chicago", page 24.

¹⁹⁰⁶ Based on assumption that savings would not be realized for first 5 years and then continue for 20 years. Applying this multiplier and claiming savings from year one and for a measure life of 25 years results in equivalent NPV of lifetime savings, applying a Real Discount Rate of 0.46%. If reason to believe savings will be realized after a significantly different length of time, and alternative multiplier can be calculated.

For example: Assuming 5 eligible trees are planted around home with average leakage and Insulation Levels; 2,500 Sq. Ft. floor area in a 2 story Single Family Residence in Springfield with an Air Source Heat Pump with unknown efficiency.

$$\Delta kWh = \left(\Delta kWh_{\text{HeatingDirectSolar}} + \Delta kWh_{\text{CoolingDirectSolar}} + \Delta kWh_{\text{HeatingInfiltration}} + \Delta kWh_{\text{CoolingInfiltration}}\right) * (1 - LMR) * NPVDiscount$$

$$\Delta kWh_{HeatingDirectSolar} = \#Trees * ThermsHeatingIncreased/Tree * 100,000 / 3,412 / \eta Heat * \%ElectricHeat$$

$$= 5 * -3.2 * 100,000 / 3,412 / 2.04 * 100\%$$

$$= -230 \text{ kWh}$$

$$\Delta$$
kWh_{CoolingDirectSolar} = #Trees * Ton-hrCoolingSaved/Tree * 12,000 / (1,000 * η Cool) * %Cool = 5 * 137.3 * 12,000 / (1,000 * 14) * 100% = 588 kWh

 $\Delta kWh_{HeatingInfiltration} = \#Trees * CFM50/sqft * Area/ N_Heat * \%Reduction_HeatingInfiltration/Tree * 60 * 24 * HDD60 * 0.018 / (COPHeating * 3,412) * \%ElectricHeat$

$$\Delta$$
kWh_{CoolingInfiltration} = #Trees * CFM50/sqft * Area / N_Cool * %_ ReductionCoolingInfiltration/Tree * 60 * 24 * CDD65 * LM * 0.018 / (η Cool * 1000) * %Cool = 5 * 1.51 * 2,500/33.4 * 2.26% * 60 * 24 * 1,183 * 3.7 * 0.018 / (14 * 1,000) * 100%

= 104 kWh

$$\Delta$$
kWh = (-230 + 588 + 72 + 104) * (1 – 0.18) * 0.79

= 345 kWh (69 kWh per tree)

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = kWh_{Cool} / FLH_{Cooling} * CF * (1-LMR) * NPVDiscount$

Where:

kWh_{cool} = Total cooling kWh savings from measure

 $= \Delta kWh_{CoolingDirectSolar} + \Delta kWh_{CoolingInfiltration}$

FLH cooling = Full load hours of air conditioning

= Dependent on location: 1907

¹⁹⁰⁷ Full load hours for Chicago, Moline and Rockford are provided in "Final Evaluation Report: Central Air Conditioning Efficiency Services (CACES), 2010, Navigant Consulting", p.33. An average FLH/Cooling Degree Day (from NCDC) ratio was calculated for these locations and applied to the CDD of the other locations in order to estimate FLH. There is a county mapping table in Volume 1, Section 3.7 providing the appropriate city to use for each county of Illinois. During update cycle for version

Climate Zone (City based upon)	Single Family	Multifamily
1 (Rockford)	547	499
2 (Chicago)	709	629
3 (Springfield)	779	707
4 (Belleville)	1082	982
5 (Marion)	956	868
Weighted Average ¹⁹⁰⁸		
ComEd	676	603
Ameren	875	791
Statewide	731	655

Use Multifamily if: Building meets utility's definition for multifamily and HVAC system serves single unit. For residential sized systems serving 2 or more units, assume single family hours.

CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C (during system peak hour)

 $=68\%^{1909}$

CF_{SSP} = Summer System Peak Coincidence Factor for Heat Pumps (during system peak hour)

= **72**% ¹⁹¹⁰

CF_{PJM} = PJM Summer Peak Coincidence Factor for Central A/C (average during peak period)

= 46.6% 1911

For example, using example from above and CF_{SSP} for heat pumps:

 $\Delta kW = kWh_{Cool} / FLH_{Cooling} * CF * (1 - LMR) * NPVDiscount$

 $kWh_{Cool} = 588 + 104$

= 692

 Δ kW = 692 / 711 * 0.72 * (1-0.18) * 0.79

= 0.454

FOSSIL FUEL SAVINGS

 Δ Therms = (Δ Therms_{HeatingDirectSolar} + Δ Therms_{HeatingInfiltration}) * (1- LMR) * NPVDiscount

Where:

 $\Delta Therms_{\text{HeatingDirectSolar}} \hspace{0.5in} = \text{Annual therm savings due to reduction in direct solar gain}$

= #_Trees * ThermsHeatingIncreased/Tree / ηHeat * %FossilHeat

v.12, applied percent change of CDD65, NCEI Annual Normals from 30 yr data set (1981-2010) to more recent 15 yr data (2006-2020) to all FLHcool values.

¹⁹⁰⁸ Weighting for Ameren is based on electric accounts in each of the cooling zones. Weighting for ComEd and Statewide average is based on number of occupied residential housing units in each zone. ComEd is weighted average of Zones 1-2. Alternative program-weighted assumptions can be used if appropriate.

¹⁹⁰⁹ Based on metering of 24 homes with central AC during PY4 and PY5 in Ameren Illinois service territory.

¹⁹¹⁰ Based on analysis of metering results from 24 heat pumps in Ameren Illinois service territory in PY5 coincident with AIC's 2010 system peak; 'Impact and Process Evaluation of Ameren Illinois Company's Residential HVAC Program (PY5)'.

¹⁹¹¹ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

ThermsHeatingIncreased/Tree = Net annual therms of heating saved per tree due to shading and

infiltration effects, based on the average annual savings of eligible trees $% \left(1\right) =\left(1\right) \left(1\right$

planted on all faces of the residence.

= -3.2 Therms/Tree

ηHeat = as defined above

%FossilHeat = Percent of homes that have fossil fuel space heating

= 100 % for Fossil fuel

= 0 % for Electric Resistance or Heat Pump

= If unknown¹⁹¹², use the following table:

	Location				
Utility	Single Family	Single Family Low Income	Multi Family	Multi Family Low Income	Unknown
Ameren	82%	74%	62%	61%	71%
ComEd	86%	78%	57%	52%	79%
PGL	98.9%	98.5%	96.0%	96.9%	97.7%
NSG	98.3%	99.2%	67.5%	98.8%	96.6%
Nicor	98.3%	99.2%	67.5%	98.8%	96.6%
All DUs ¹⁹¹³					74%

<u>Note</u>: If a measure is supported by a gas and electric utility through a joint program, and it is unknown whether the participant has a gas supply, the electric utility values in the table above should be used. If it is known that the participant has a gas supply, the values from the gas utility above should be applied.

ΔTherms_{HeatingInfiltration} = Annual therm savings due to reduction in infiltration

= #Trees * CFM50/SqFt * Area/ N_Heat * %_ ReductionHeatingInfiltration/Tree * 60 * 24 * HDD60 * 0.018 / (η Heat * 100,000)

_

¹⁹¹² Based on the average % Natural Gas used for space heating in Unknown residential structure types across all utilities covered by the IL program. Residence types include: SF, SF LI, MF & MF LI. Utilities included: Ameren, ComEd, People's Gas, Northshore Gas & Nicor. Data provided from 2016 Ameren Illinois Demand Side Management (DSM) Market Potential Study by Applied Energy Group, ComEd's 2019 Baseline Survey on residential space heating share, and PY2022-2023 Implementation Contractors Data for People's Gas, Northshore Gas & Nicor .

¹⁹¹³ For the weighted average calculations, please see the Analysis file. PGL, NSG, Nicor & gas customers were assumed to follow the provided split. ComEd total customers, minus overlap with PGL,NSG & Nicor, therefore gas only homes. Ameren is total customers minus Nicor.

For example: Assuming 5 eligible trees are planted around home with average leakage and Insulation Levels; 2,500 Sq. Ft. floor area in a 2 story Single Family Residence in Springfield with furnace with system efficiency of 68%.

 Δ Therms = (Δ Therms_{HeatingDirectSolar} + Δ Therms_{HeatingInfiltration}) * (1 – LMR) * NPVDiscount

ΔThermsHeatingDirectSolar = #Trees * ThermsHeatingIncreased/Tree / ηHeat * %FossilHeat

= 5 * -3.2/0.68 * 100%

= -23.5 Therms

ΔTherms_{HeatingInfiltration} = #Trees * CFM50/SqFt * Area/ N_Heat * %_ ReductionHeatingInfiltration/Tree * 60

* 24 * HDD60 * 0.018 / (nHeat * 100,000)

= 5 * 1.51 * 2,500/19.7 * 0.47% * 60 * 24 * 4,266 * 0.018 / (0.68 * 100,000) * 100%

= 7.3 Therms

 Δ Therms = (-23.5 + 7.3) * (1 – 0.18) * 0.79

= - 10.5 Therms

WATER AND OTHER NON-ENERGY IMPACT DESCRIPTIONS AND CALCULATION

n/a

DEEMED O&M COST ADJUSTMENT CALCULATION

n/a

MEASURE CODE: RS-HVC-TREE-V03-250101

REVIEW DEADLINE: 1/1/2029